
Pattern Matching

Using Regular Expressions

Nick Maclaren, Computing Service

Most of this is the work of Philip Hazel

1

Beyond the course

• The speaker:

Nick Maclaren, nmm1@cam.ac.uk, ext. 34761

• The foils, some examples etc.:

http://www-uxsup.csx.cam.ac.uk/courses/REs

• Best Email to use for advice:

escience-support@ucs

• A book on the current practice

Mastering Regular Expressions, Third Edition
 Jeffrey E.F. Friedl, O’Reilly

• See also the theory section at the end of the handout
Specifically the Wikipedia reference on BNF

2

Practice makes perfect

• To really learn regular expressions you need practice

• An experimental “exerciser” is available at

http://www-uxsup.csx.cam.ac.uk/...
 .../courses/REs/phreex

• This is a Perl script that does line-by-line interaction
It is not a web-based application
You need to download it in order to run it

• You are asked to write expressions which are then tested

3

What is a regular expression?

A regular expression is a Pattern or Template

for matching a set of text strings

4

Humans are good at recognizing shape patterns

Which includes reading meaningful text

Even when thoroughly obfuscated!

5

But it’s not always obvious...

6

Aside: a fascinating book

• If you want to learn more about this, read

Francis Crick
 The Astonishing Hypothesis: the scientific
 search for the soul

• The title is complete and utter codswallop
The blurb blithers on about consciousness

• It is entirely about visual perception
Based on studying the visual cortex

• It explains the effect in the previous slide
You can scan on colour or shape, but not both
You have to search for a combination

7

Matching text is hard for humans

• Humans are not good at matching random text

CAGTACGGGTCACTAGAAAATGAGTATCCTCGAATTGCTATCCG

• Can you spot ACGT above?
(In fact, it is not present)

• Can you spot the the typo in this sentence?
(It’s easier than some)

• Computers can do a much better job at matching text
If you give them the right instructions...

• Regular expressions are powerful matching instructions
They are really little computer programs
There is scope for writing good ones and bad ones

8

Patterns that are not regular expressions

• Some common computing patterns are not regular expressions

/usr/share/*
 myphotos/pict00??.jpg

• Those are examples of filename globs or wildcards

• Regular expressions are much more generalized patterns

• Globs cannot help with requirements such as
Match “grey” or “gray”
Match “foetus” or “fetus”
Match dates like “12-Feb-07” or “12-02-07”
Match HTML tags like “<p>” or “<div class="section">”

9

Origin of Regular Expressions

• Regular expressions come from mathematics
They arose in finite state automata theory in the 1950s

• Used for defining programming languages and data formats
We will return to this aspect at the very end

• They migrated into early text editors such as qed and ed
Unix tools such as grep and awk also used them

• Various flavours started to evolve

• The “Cambrian Explosion” of regex features came with Perl
Especially Perl 5 in 1994

• No longer “regular expressions” in the mathematical sense
The term has been hijacked in common usage

10

Regular Expression Flavours

• Regular expressions are used in many programs
Various versions of grep
Various text editors
Perl, Python, Java, and other languages

• There are variations in syntax and semantics

• PCRE (Perl-Compatible Regular Expressions) is a library
Used by Apache, Exim, Mathematica, nmap, PHP, tin, ...

• This course concentrates on Perl/PCRE regular expressions
Other flavours may use different syntax
The underlying principles are what matters

• These web sites have some discussion and examples
http://www.regular-expressions.info/examples.html
http://regexlib.com/default.aspx

11

Horrible warning

• Regular expressions are very rarely defined precisely
Modern tendency to conflate specifications and users’ guides

• The extensions are often mathematically inconsistent
So each is different and there are obscure “gotchas”

• They usually make the syntax fairly clear
The semantics (what it actually means) is often ambiguous
So you get no error, but it may misbehave

• This applies to at least POSIX, Perl and Python
As well as the previous Unix egrep etc.

• KISS – Keep It Simple, Stupid
Do that, and you will rarely have much trouble
Start to be clever, and you will shoot yourself in the foot

• This course has some guidelines on how to use them safely

12

Example of issues

• a* matches any number of as, including none
No problem if anchored (i.e. starts at beginning)
But what if it isn’t? And you want all matches?

• Replace each longest match by x in 1aa2aaa3
Is it 1x2x3 or x1x2x3x or x1x2x3 or ...

• So far I have found two of the above
As well as failures due to lack of space
Perl and Java produce x1xx2xx3x - yes, really!

• POSIX specifies 1x2x3 (following early System V?)
But nothing seems to conform to POSIX!

• Please tell me of any other variations ...

13

Matching a pattern within a string

Subject

 Pattern

Subject

 Pattern

Subject

 Pattern

14

Regular expression basics (1)

• Regular expressions deal with characters

• Modern implementations often support Unicode
PCRE supports wide characters using UTF-8 strings

• Most characters in a regex pattern stand for themselves

• However, the following are special metacharacters

* + ? ^ $. ([{ | \

• To make a metacharacter literal, precede it with \

cam\.ac\.uk
 price: \$99.99
 route: A1\(M\) north

• Remember to do that to the metacharacter \, too!
Generally, type \\ to get \

15

Regular expression basics (2)

• Sometimes \ before any non-alphanumeric makes it literal
E.g. \<\> is the same as <>
This is true for PCRE, Python, Perl and Java

• It is not true in some other implementations
For example, \< and \> are metasequences in egrep
(In fact, egrep is eccentric in several ways)

• Perl, PCRE, Java (not Python) have a literal substring facility
\Q...\E quotes the text (i.e. ignores metacharacters)

\Qcam.ac.uk\E
 \Qprice: $99.99\E
 route: \QA1(M)\E north

• Particularly useful if you are matching unknown literal text
For example, the contents of a Perl variable

16

Encoding problem characters (1)

• There is immense variation here
Even between two programs that seem to be the same
Following are most common conventions only

• Generally not part of regular expressions as such
String/character escapes are usually in base language
You must check your program/language for ‘gotchas’

• Escapes converted to characters during initial parse
But may also be accepted in regular expression syntax
Not always compatibly – \b is usually different

• Keep it very simple and you can ignore most of that
Main trick is to double up \ to pass it through
E.g. \\t will usually reach the RE engine as \t

• Python raw strings make this easier
The handout includes some details and examples

17

Summary of Python string literals

• String literals are <prefix>’string’ or <prefix>"string"

• Prefix letter N, u or U says it is a Unicode string

\N{name} is character name in Unicode database
\uxxxx is a 16-bit Unicode character
\Uxxxxxxxx is a 32-bit Unicode character

• Prefix letter r or R says don’t interpret \ escapes
The \t in r’A\tB’ is really \ and t and not tab
Very useful for regular expression patterns!

• Prefix letter ur (either case) interprets only \u and \U
All other backslashes are left alone

18

Python example

• Try the following in Python:

from re import match
 x = ’A\tB’; y = ’A\\tB’; z = r’A\tB’
 print x
 print y
 print z
 print repr(x), repr(y), repr(z)
 print match(x,x), match(x,y), match(x,z)
 print match(y,x), match(y,y), match(y,z)
 print match(z,x), match(z,y), match(z,z)

• Now, why are all three equivalent as patterns?
But only the decoded string is matched as a subject?

• Because the RE engine interprets \t as TAB
And only the decoded one has a real TAB in it

19

Encoding problem characters (2)

• C-style \t, \n, \r, \f, \v are usually accepted
\a, \e, \b sometimes do what you expect

• \ddd specifies an octal number
A maximum of three octal digits (always provide three)
Example: \133 (= 91) encodes [in ASCII/Unicode

• The null byte (\000 or \0) may be allowed
It may be special in very strange ways

• Octal is not recommended because
People don’t use octal any more (Unicode is defined in hex)
Low numbers (1 to 99) are used for other purposes
E.g. Python groups and Perl/PCRE back references

20

Encoding problem characters (3)

• \xdd specifies a hex number
Often limited to the range \x00 to \xff
Example: \x5B (= 91) encodes [in ASCII/Unicode

• Good programs ignore case, some demand one or other

• Watch out for unexpected concatenation or termination
Is \x5BCD the same as [CD or Unicode 23501?

• Perl and PCRE users should check \x{dd...}
Mainly useful for 16+ bit Unicode characters

• Python Unicode is cleaner but very different (see handout)
Java is different yet again

21

Encoding non-ASCII characters

• Unicode / ISO 10646 is how you do this nowadays
Python, Perl, PCRE and Java all support Unicode
Both in strings and in regular expressions
But in different, very incompatible ways ...

• In some Unices, egrep etc. support Unicode
May well be true in Microsoft systems, too

• You must check with your program/language/system
Unicode may not behave the way you think it does
Single glyphs may have multiple representations
Not covered further in this course

• Ask me for help if you need to internationalise
I.e. to support languages other than USA English
It is not just a matter of changing to Unicode

22

Matching single characters (1)

• The dot metacharacter matches any character except newline

b..k matches buck, bunk, back, bark, ...

• To make it match newline in Python, use the DOTALL flag
To do so in Perl, set single-line mode with \s

• [...] matches one character from the set in [] (a character class)

reali[sz]e matches realise or realize

• Dot and most other metacharacters are not special in classes

[.*] matches . or *

• Hyphens are used for ranges

[0-9a-f] matches a lower case hexadecimal digit
Use only within digits, one case of letters or numerically
[3-7] or [I-N] or [\x20-\x7e]

23

Matching single characters (2)

• If needed as a literal, a hyphen can be given first, or escaped

[-a-zA-Z0-9] or [a-z\-A-Z0-9]

• ^ at the start of a character class inverts it

[^0-9] matches any non-digit

• Note that a negated class still matches one character

b[^u][^c]k matches bark, beak, b34k, ...

But not bok (or bunk, back or buck)

• If needed as a literal, a ^ can be placed later or escaped

[a-z^] or [\^a-z]

24

Character class shorthands (1)

\d any digit \D any non-digit
 \s any whitespace char \S any non-whitespace
 \w any “word” char \W any non-“word” char

• The “word” characters are letters, digits, and underscore

• Let’s match a typical (old) Cambridge postcode

CB\d\s\d[A-Z][A-Z]

• This matches CB4 2DB, CB2 3QH, etc.

• Why use \s instead of an actual space?
It makes it clear how many space characters are being matched
We’ll see later there’s an option for ignoring literal white space

• But note that \s matches more than just the space character
Tab, newline, carriage return, etc. are also matched by \s

• Warning: the categories may be ASCII, locale or Unicode
Check your language, and there may be options, too

25

Character class shorthands (2)

• The shorthands can be used in bracketed character classes

[-+\d] matches a minus, a plus, or a digit
 [\d\s] matches a digit or a whitespace character

• Double negatives can be hard to grasp

[^\W_] matches a letter or a digit, but not an underscore

• Read “... or ...” for a positive character class
Start with an empty set
Each item inside [] adds to the set of characters

• Read “not ... and not ...” for a negative character class
Start with a set containing all possible characters
Each item inside [^] subtracts from the set of characters

26

POSIX character classes (1)

• They originated in HP-UX tr, if I recall
Most utilities for most Unices now support them

• A name inside [: :] can be used within a character class

[01[:alpha:]%] matches 0, 1, any alpha character, or %

• Their availability is still patchy
Some systems/programs may use them incorrectly

• Perl and PCRE support them in their regular expressions
Python does not support them
Java uses the syntax \p{name}

• Stand-alone POSIX classes are not usually recognised

[:alpha:] is equivalent to [:ahlp]

• The categories will generally depend on the locale
But not in Java, apparently ...

27

POSIX character classes (2)

• The available names are

alnum letters and digits lower lower case letters
 alpha letters print printing, including space
 ascii characters 0–127 punct printing, not alphanumeric
 blank space or tab only space white space
 cntrl control characters upper upper case letters
 digit decimal digits word “word” characters
 graph printing, not space xdigit hexadecimal digits

• word is a Perl extension; blank is a GNU extension

• Another Perl extension is negation

[12[:^digit:]] is a complicated version of [^03-9]

• See the handout for Unicode properties
Plus Java’s zoo of property criteria

28

Unicode properties in Perl and PCRE

\p{x} character with Unicode property x
 \P{x} character without Unicode property x

• These are some typical Unicode properties

L Letter Nd Decimal number
 Ll Lower case letter Nl Letter number
 Lt Title case letter P Punctuation
 Lu Upper case letter S Symbol
 M Mark Z Separator
 N Number Zs Space separator

• Script names such as Arabic or Greek can also be used
Perl supports a lot more properties; PCRE just the basics
Braces can be omitted for single-letter properties

• \p and \P can be used in character classes

• \X matches a non-mark character plus following mark(s)
\X just matches X in a character class

29

Unicode and Other Properties in Java

• Java typically uses \p{name} and \P{name}
Whether ASCII/POSIX, Java or Unicode depends on name
Simple categories (\w etc.) are always ASCII

• Bizarrely, the locale seems never to be considered
Which is a serious trap if you use locales in Java

• The Java criterion seems to be an old Unicode

• && stands for intersection in character classes
This is any Unicode letter not in upper case

[\p{L}&&[^\p{Lu}]]

• Mixing category criteria is asking for trouble

[\p{L}&&[^\p{javaUpperCase}]]

30

Repetition (1)

• Curly brackets (aka braces) define quantifiers

x{4} matches xxxx
 x{1,3} matches x, xx, or xxx
 x{2,} matches xx, xxx, xxxx, xxxxx, ... any number
 x{,2} matches nothing, x or xx in Python
 x{,2} matches x{,2} in Perl and PCRE (not recognized)
 x{,2} is an error in Java

• There are shorthands for the common repetitions

x+ means x{1,} (one or more x’s)
 \d* means \d{0,} (zero or more digits)
 [sz]? means [sz]{0,1} (zero or one s or z, i.e. optional)

• Quantifiers are “greedy” – adding ? makes them “ungreedy”

ab[xyz]+ with abzxyycd matches abzxyy
 ab[xyz]+? with abzxyycd matches abz

31

Repetition (2)

• Using the correct greediness can be important when there is
 more than one way to match a pattern

• Comments in the C language are of the form
/* This is a comment */

• The most naive pattern is (each item spaced out)
/ * .* * /

• But it fails on this line
/* First */ a = b; /* Second */

• Ungreediness solves the problem
/ * .*? * /

• Why is this alternative approach also flawed?
/ * [^*]* * /

• It fails on this line
/* This is an *important* comment */

32

Simple assertions (1)

• An assertion does not match any characters in the subject
Instead, it requires a condition to be true

• These are the simple assertions

^ is true at the start of the subject
$ is true at the end (more on this later)

• Match the leading path in a Unix filename such as /a/b/c

^.*/

• Match the trailing component of a Unix filename

[^/]*$

• The above pattern cannot fail, but is inefficient
It backtracks over 40 times for /usr/local/bin/perl
We will come back to this example

33

Simple assertions (2)

• For PCRE, Python, Perl and Java at least:

\b is true at a word boundary
\B is true not at a word boundary

• This \b is different from the C-style escape!

• In some utilities in some Unices, use \<word\>
Check before using it, as it is a bit unreliable

• The start and end of the subject are treated as word boundaries

\bcat\b matches cat and the cat sat
 does not match cattle or scat
 \Bcat\B matches scatter
 does not match cat, cattle or scat
 \bcat\B matches cattle
 does not match cat, scatter or scat

34

Simple assertions (3)

• Pick an Email address out of other text

\b[^@\s]+@[a-z0-9.-]+\b

• This is a very crude solution
It does not do proper checks on the two parts of the address

• But it might be good enough if you know what is in your data
A regex that fully checks an Email address is very long indeed

35

Assertions inside qualifiers etc.

• In PCRE etc., assertions are dynamic
The following will do what you want – nowadays

(^\d+:)? *(\w+) *= *(\S+)
 \S+ *(#.*|$)

• You should avoid such uses when possible

• Mainly because they are tricky to get right
They will not work reliably on pre-POSIX RE engines
And may not work for all POSIX utilities, either

• The above are more cleanly written as
^(\d+:|.*) *(\w+) *= *(\S+)

 \S+ *(#.*)?$

• Note that POSIX itself doesn’t define \b
Utilities will usually treat it as BS (control-H)

36

Text containing newline characters

• Most Unix utilities split the file into lines first
The subject is each line, without its newline

• But, in general, a subject may include newlines
$ is true at the end and before a terminating newline

• Python \A and \Z match absolute start and end
They never recognize any newlines

• In Perl, PCRE and Java, that is \A and \z
\Z in those will also match before terminating newline

• ^ and $ behave differently in “multiline mode”
Multiline mode is set by the MULTILINE flag in Python
Java also uses MULTILINE, but Perl uses /m

• In that case ^ matches after internal newlines
$ matches before internal newlines
^cat$ matches dog\ncat\nrabbit in multiline mode

37

Alternation

• Vertical bar separates alternatives
Any number are permitted

horse|donkey|mule matches horse, donkey, or mule

• Parentheses are used to localize alternation
An empty alternative is permitted

cat(aract|erpillar|)
 matches cataract, caterpillar, or cat

• Parentheses may be nested to any depth

J(anuary|u(ne|ly)) matches January, June, or July

• Parentheses may be followed by quantifiers

M(iss){2}ippi matches Mississippi

38

Further examples (2)

• Match an optionally signed integer or decimal number

[+-]?[0-9]*\.?[0-9]*

• This matches 42, -272.37, and even .999

• But what is wrong with it?

• It is all optional! So it will match . or the null string

• We have to use two alternatives if we want to allow .999

[+-]?(\d+(\.\d*)?|\.\d+)

39

Further examples (3)

• Match an HTML tag embedded in text

<[^>]+>

• This “obvious” pattern fails on tags such as this

<input name=dir value=">">

• HTML allows single or double quotes
But embedded quotes in strings are not permitted

• Thus, we can use this pattern (ignoring white space)

< ("[^"]*" | ’[^’]*’ | [^’"])* >

• The more advanced lecture considers the efficiency of this

40

Anchored patterns (1)

• A pattern is anchored if it can match only at the start
There is as much variation as for problem characters

• For safety, ^ should be at start (and $ at end)
Except in a character class, or if escaped
Best to enclose alternations in parentheses

^In the beginning is anchored
 ^(soup|fish) is anchored

• The following will work in most modern systems
Older (non-POSIX) RE engines may do strange things
The same applies to some of the POSIX utilities

^soup|^fish is anchored
 ^entree|dessert isn’t anchored
 entree|^dessert isn’t anchored
 (^spoom|^buffet) is anchored

41

Anchored patterns (2)

• Is this pattern anchored?

.*something

It is sometimes anchored and sometimes not

• The dot metacharacter does not match a newline by default
This pattern matches other\nor something else
The match is not at the start

• In “dotall mode”, however, it is anchored
Dot matches any character whatsoever in that mode
“Dotall mode” was described earlier

• match forces anchoring in Python – search doesn’t

42

Capturing parts of the subject (1)

• Parentheses also define groups or capturing subpatterns
Opening parentheses are counted from the left starting at 1

• Example
Pattern: the\s((red|white)\s(king|queen))

 Subject: Here is the red king.
 Result: Whole match = the red king
 Group 1 = red king
 Group 2 = red
 Group 3 = king

• Use nested capturing parentheses carefully
It is very easy to confuse yourself
Even simple changes will often change the group numbers

• We can avoid that the changing number problem
• That is covered shortly, but ignore it for now

43

Using the capturing parts

• Python groups are referred to as \n, with n = 1...99

• In sub only, \g<n> is equivalent to \n
\g<0> stands for the whole match

• In Perl, the results of capturing are in $1, $2, etc.
The entire matched string is in $& (not $0)

• Java is entirely different – see the Matcher class

• Other implementations provide similar facilities
Exim, for example, is the same, but uses $0 instead of $&

• Some implementations support named parentheses
PCRE, Python, and Perl 5.10 are examples
Those are covered in the more advanced lecture

44

Extended parenthesis features

• Conflating grouping and capturing can be a nuisance

• Perl/Python introduced an extended parenthesis feature

• An extended parenthesis starts with (?
(?:...) parentheses are simple grouping (non-capturing)
There are also a number of other extensions that use (?

• Compare

the\s((red|white)\s(king|queen))
 the\s((?:red|white)\s(?:king|queen))

• There is only one capturing subpattern in the second version
Using (?:...) is tedious but is strongly recommended
Many examples here use (...) for clarity only

45

Capturing parts of the subject (2)

• Example pattern and subject:

(\w+):\s*(\w+(?:/\w+)*)\s+(\.*)

Joan: jumping/alone Nobody’s with me

Group 1 = Joan:
 Group 2 = jumping/alone
 Group 3 = Nobody’s with me

• And we could extend it without changing that:

(\w+):\s*(\w+(?:/(?:\w+|\.|\.\.))*)\s+(\.*)

46

Capturing parts of the subject (3)

• Avoid capturing within alternations or quantifiers
Exactly what does (\w+|\w+(/\w+)+)* capture?
Or even \w+|\w+(/\w+)+

• You need to know the implementation to even guess
It might vary with the version as changes are made
It will vary with the context in deceptive ways

• Note that I have been sneaky with the latter form
Can you see why it won’t work?

• If you can’t, don’t worry about it - just don’t do it
It is explained in the more advanced lecture
Look for a slide including catastrophe

47

Further examples (4)

• Extract the path and the final component of a Unix filename

^(.*/)([^/]*)$

• This is also the fast way just to extract the final component

• Why would this pattern also work?

^(.*/)(.*)$

• To handle names that do not contain a slash you might try

^(.*/)?([^/]*)$

• But that will also match the empty string

• The extracts end up in different parentheses if you use

^(?: (.*/)([^/]*) | ()([^/]+))$

• The problem can be solved, but we need to learn more
(Use conditionals or named parentheses)

48

Changing processing options in Python

• The main functions or methods have an optional flag argument
compile, search, match, findall, finditer

• The following can be combined by ORing, as in X|I

IGNORECASE (or I) sets case-independent matching
 VERBOSE (or X) ignores literal white space
 DOTALL (or S) . also matches a newline
 MULTILINE (or M) ^ and $ match internal newlines
 LOCALE (or L) char. classes use the current locale
 UNICODE (or U) char. classes use the Unicode database

• Character class default if not L or U is ASCII

• VERBOSE can be used to make a regex pattern more readable
It also treats an unescaped # as introducing a comment

• You can also set them within a RE by (?<letters>...)
For example (?x) allows you to use space as layout

49

Changing processing options in Perl

• These strings change processing options
(?i) sets case-independent matching

 (?x) ignores subsequent literal white space
 (?s) . matches a newline as well as any other character
 (?m) ^ and $ match after/before internal newlines

• Perl uses rather confusing terminology
(?s) sets “single-line mode”) but you can set
(?m) sets “multi-line mode”) both at once!

• Changes last till the end of any enclosing parentheses
(a(?i)b)c matches abc or aBc but nothing else

 (a(?i)b|c) matches ab, aB, c, or C

• A hyphen is used for negation, and options can be combined
(?x-i) ignores white space, sets case-dependence

• (?x) is useful to make a regex pattern more readable

50

Changing processing options in Java

• The compile method has an optional flag argument
Just like Python, but with different meanings

• The following can be combined by ORing

CASE_INSENSITIVE sets case-independent matching
 COMMENTS ignores literal white space
 DOTALL . also matches a newline
 MULTILINE ^ and $ match internal newlines
 LITERAL Metacharacters are not special
 UNICODE_CASE Case independence uses Unicode
 CANON_EQ Use Unicode canonical equivalence
 UNIX_LINES \n is only line terminator recognised

No, I don’t know which characters LITERAL affects
Ask me offline what canonical equivalence means

• (?x) etc. are allowed, exactly as in Python and Perl

51

Optimisation (1)

• There’s more than one way to tackle any problem

• Don’t forget that array operations are much quicker
And the ‘basic’ string ones usually are, too

• But, if you think you need strtok, you need REs
Similarly when you start to write complex logic

• As always, if you have a problem, stand back and think
You may not be using the best tool for the job
Or may be tackling it the wrong way

• And, if you have problems, please ask for help

52

Diversion – multiple stages (1)

• Are you going cross-eyed? I did when editing these slides

• A real expert can write an efficient, complex, REs
My experience is that I am not that good
I know the theory quite well, and use them quite often

• Biggest problem is in reliability of error detection
Complex REs will match some strings that are wrong
And will you spot that? It isn’t easy even in simple ones

• Will this recognise Fortran numeric data and nothing else?

(?:[+-] *)?(?:\d+\.?|\d?\.\d+) ...
 ... (?:[EeDd] *(?:[+-] *)?\d+)?

• Answer: it will, though that fact may surprise you
And those spaces are only spaces – using \s is wrong

• Matching complex text in stages can be a simpler solution
When it helps, it is as fast and much clearer

53

Diversion – multiple stages (2)

• Consider checking for gross errors (e.g. invalid chars)
Either using simple REs or basic string operations

^[\s\x20-\x7e]*$
 ^[\s\w/\.+-]*$

Subsequent regular expressions can then be simplified

• Very often can split into tokens and then unpick those
Words may be separated by white space and punctuation
Data formats are often words, numbers and other chars

• Fortran is statement-based, and so are many data formats
You can split into statements, and then decode each one

• First stage does continuation, strings, escapes and comments
Second stage classifies the statement into classes
Then each class is decoded with its own expression

54

Diversion – multiple stages (3)

• Can often avoid using complex expressions on huge data
The initial splitting can use very simple ones
It is much easier to optimise simpler expressions

• Don’t need to use the advanced features for efficiency
Easier to code and debug, and more portable

• Python users should check findall and split
I have speeded up by 10 times by using findall
I am sure Perl and Java have comparable facilities

• Perl users can avoid embedding code in expressions

• As always, there are cases when it won’t work
Then the above (and following) techniques are needed

• Use whatever you find easiest to work with
Never write ‘clever’ code unless you really need to

55

Optimisation (2)

• Primary objective is to minimise the number of steps
Only secondarily worry about using faster primitives

• Check the most likely possibilities first

• Abandon the check as soon as it is hopeless

• Above all, don’t wander around everywhere deciding
I.e. don’t backtrack more than you have to

• The rest of this course is largely how to avoid this
Assuming the ‘conventional’ order of execution

56

Stopping backtracking (not in Python)

• Consider this pattern for matching an Email domain

^x\d*y\.example\.com$

• Matching engines are not clever; they try every alternative
There is no problem if the match succeeds
Backtracking occurs when the match fails

• Consider: x123456789z.example.com

• Atomic grouping stops backtracking
Available in PCRE, Perl and Java

^x(?>\d*)y\.example\.com$

• Such a group matches what a standalone pattern would match

• For single items, a possessive quantifier does the same thing
Originally from Java; then in PCRE; will be in Perl 5.10

^x\d*+y\.example\.com$

57

Generalized assertions: lookahead (1)

• Forward assertions look ahead

foo(?=bar) matches foo if followed by bar
 foo(?!bar) matches foo if not followed by bar

• Example

^x(?!999)\d{3}

• This matches x123, x456, etc., but not x999

• Another example

(?=Jeffrey)Jeff matches Jeffrey Friedl
 does not match Thomas Jefferson

• Note that Jeff(?=rey) has the same effect

• What does Jeff(?=Jeffrey) match?

Answer: JeffJeffrey

58

Generalized assertions: lookahead (2)

• Lookahead does not “consume” text

• Forward assertions are not backward assertions

(?=bar)foo does not match foo if preceded by bar

• (?=bar)foo cannot succeed: it always fails

• You can force an alternative to fail with (?!)
See later about conditionals – useful in a branch

59

Generalized assertions: lookahead (3)

• Can be used when side-effects are available, as in Perl

• You are advised not to embed code in expressions
Load gun, point at foot, pull trigger ... BANG!
But there are occasions when it can be useful

• Consider the following program

"123" =~ m{ \d+ (?{ print "$‘<$&>$’ " })
 (?!) }x;

• The output is

<123> <12>3 <1>23 1<23> 1<2>3 12<3>

• With an ungreedy quantifier the output is

<1>23 <12>3 <123> 1<2>3 1<23> 12<3>

60

Generalized assertions: lookbehind

• Backward assertions look behind

(?<=bar)foo matches foo if preceded by bar
 (?<!bar)foo matches foo if not preceded by bar

• Backward assertions must be of fixed length
In PCRE only, each branch may be a different length

• We want to match any domain ending in .xxx.com

^.*\.xxx\.com$

• That is usually quite fast, but the following is faster

^(?>.*)(?<=\.xxx\.com)$

• The following is not a good idea
^.*(?<=.xxx.com)$

• It is much better to match in two stages (see later)

61

Conditional subpatterns

• A group id may be followed by one or two alternatives

(?(group)yes-pattern)
 (?(group)yes-pattern|no-pattern)

• The condition matches if the group exists
The id may be a group number or group name

(?x) (\()? [^()]+ (?(1) \))

• This matches an optionally parenthesized string

62

Assertions in conditionals

• This is available in PCRE and Perl
It is not available in Python or Java

• The condition can be an assertion

(?xi) (?(?=[^a-z]*[a-z])
 \d{2}-[a-z]{3}-\d{2} |
 \d{2}-\d{2}-\d{2})

• This matches dates of the form 12-Feb-07 or 12-02-07

• The assertion can be forward or backward, positive or negative

63

Further examples (5)

• Recall the file name matching example

^(?: (.*/)([^/]*) | ()([^/]+))$

• This allows for names with and without slashes
We had to use top-level alternatives with different parentheses
We would like to use the same capturing parentheses

• A conditional test does the trick

^ (.*/)? ((?(1) [^/]* | [^/]+)) $

• There is one subtle difference
The first capturing parentheses can be unset
Use an explicit null alternative to avoid this

^ (.*/|) ((?(2) [^/]* | [^/]+)) $

• The required extracts are now always in $1 and $2

64

Back references

• A back reference matches exactly what the subpattern matched
(woof|miaow),\s\1 matches woof, woof

 or miaow, miaow
 does not match woof, miaow
• How to detect repetition typos such as “the the”

\b([a-z]+)\s\1\b

• See the handout for a Perl program to do this

• In Python, they are like the first form in substitution

• \1 to \9 and\10 to \99 are back references

• \0, \0d... and \ddd are octal escapes

• Both are characters in the [...] of a character class

65

Back references in Perl 5.10 & PCRE 7.0

• Backslash followed by a number can be ambiguous
Confusion with octal character definitions
What if a digit follows?

• \g followed by a number is always a back reference
Braces can be used to delimit the number

(123|456)\g{1}0 matches 1231230 or 4564560

• A negative number can be used for a relative back reference
\g{-1} refers to the most recently started group
\g{-2} refers to the next most recently started group, etc
This is helpful in the middle of long patterns

stuff ... (123|456)\g{-1}0 ...

• Most recently started is not always most recently ended

(A(12|34)B)\g{-1} matches A12B12 or A34B34

66

Back references in Java

\1 through \9 are always interpreted as back
 references, and a larger number is accepted
 as a back reference if at least that many
 subexpressions exist at that point in the
 regular expression, otherwise the parser will
 drop digits until the number is smaller or
 equal to the existing number of groups or it
 is one digit.

• That is a truly revolting specification

• Add some parentheses and a much later digit disappears
I will explain at the end why this is so stupid

• What if there is still no match? I couldn’t see

67

A program to display repeated words

• Jeffrey Friedl’s complete Perl script

$/ = ".\n";
 while (<>) {
 next if
 !s/\b([a-z]+)((?:\s|<[^>]+>)+)(\1\b)
 /\e[7m$1\e[m$2\e[7m$3\e[m/igx;
 s/^(?:[^\e]*\n)+//mg; # Remove unmarked
 s/^/$ARGV: /mg; # Add filename
 print;
 }

• You use it by perl <script> <file>

68

Subroutines and recursion

• “Subroutine” references are possible in PCRE
They will be available in Perl 5.10
They are not available in Python or Java

(woof|miaow),\s(?1) does match woof, miaow

• Recursive use of this mechanism is permitted

(?x) (\(([^()]++ | (?1))* \))

• This matches nested parenthesized strings like (1*(2+3)-4)
Note the use of a possessive quantifier for efficiency

• The following pattern matches palindromes!

(?i)^\W*(?:((.)\W*(?1)\W*\2|)|
 ((.)\W*(?3)\W*\4|\W*.\W*))\W*$

69

Recursion support in Perl before 5.10

• The “subroutine” features of PCRE are not available

• Interpolated code can be used to achieve the same effects

• Load gun, point at foot, pull trigger ... BANG!

• The following Perl pattern matches a parenthesized group

$re = qr{
 \(Opening parenthesis
 (?: Non-capturing group
 (?> [^()]+) Non-parentheses without backtracking
 | Or
 (??{ $re }) Parenthesized group
)* Any number of either
 \) Closing parenthesis
 }x;

$subject = "(1*(2+3)-4)";
 if ($subject =~ /$re/) { ... }

70

Matching a pattern the Perl way (1)

Pattern:
 ^([1-9]|[12]\d|3[01])(J(an|u(n|l))|Feb|...)

Subject: 18Jul

[1-9] [12] 3

[01]J F M A

\d

J F M A

a u

n

OK

n

OK

l

OK

[1-9]

18Jul

J

18Jul

J FF MM AA

[1-9] [12]

18Jul

\d

18Jul

J

18Jul

a

18Jul

a u

n

18Jul

n l

OK

18Jul

71

Matching a pattern the Perl way (2)

• A Perl-like engine returns the first leftmost match
It searches the tree depth first ; Friedl calls this a

“Nondeterministic Finite Automaton” (NFA) method

• See the end of the handout about the proper theory
Friedl and this course are entirely about actual practice

• The order in which branches are checked depends on

(1) The ordering of any alternatives) these are controlled
 (2) The greediness of any quantifiers) by the pattern writer

• Depth first is used by GNU Emacs, Java, grep (most versions),
 less, more, the .NET languages, PCRE, Perl, PHP, Apache,
 Python, Ruby, sed (most versions), vi

72

Matching a pattern the Perl way (3)

• Some patterns are nonsensical

(cat|catastrophe) does not work as expected

• Why not?

• In Python (as in Perl), the following statement:

print re.sub(r’(cat|catastrophe)’, \
 r’fiasco’, ’catastrophe’)

• Produces the following result:

fiascoastrophe

• A depth-first algorithm can capture substrings easily
It identifies just one path through the tree
The order is mostly what you expect, if not always

• Full access to both pattern and subject is needed throughout

73

POSIX Regular Expressions

• POSIX mandates that the longest leftmost match is found
It does not say how it is to be found

• A “traditional” NFA engine might not find the longest match

• A POSIX-compliant NFA engine must continue searching
All possible branches must be explored
This can soak up resources

• But:

(cat|catastrophe) works as you might expect

• A POSIX NFA engine is used by mawk and can be requested
 in GNU Emacs

74

Matching a pattern another way (1)

Pattern:
 ^([1-9]|[12]\d|3[01])(J(an|u(n|l))|Feb|...)

Subject: 18Jul

[1-9] [12] 3

[01]J F M A

\d

J F M A

a u

n

OK

n

OK

l

OK

[1-9] [12] 3[1-9] [12] 3

18Jul

J F M A \d

3

J F M A \d

18Jul

[1-9]

J F M A

J F M A

[1-9]

J F M A

J F M A

18Jul

F M

a u

M A

a u

18Jul

a

n l

a

n

18Jul

n

18Jul

OK

75

Matching a pattern another way (2)

• The breadth-first way of searching never backtracks
Friedl calls this kind of algorithm a

“Deterministic Finite Automaton” (DFA) method
Each subject character is inspected only once

• Neither greediness nor order of alternation matters
All matches are found (usually the longest is reported)

• Atomic grouping/possessive quantifiers may not be supported

• There is no capturing of substrings

• Breadth-first engines are used by awk (most versions), egrep
 (most versions), flex, lex, MySQL, Procmail

• Hybrid engines are used by GNU awk, GNU grep/egrep, Tcl

• PCRE contains an alternate breadth-first matching function
It is somewhat unlike other implementations
PH called it pcre_dfa_exec before he understood that

76

The C comment problem for breadth-first engines

• Ungreediness is useless because all matches are found
/* First */ a = b; /* Second */

• A breadth-first engine finds both these strings
/* First */

 /* First */ a = b; /* Second */

• In most applications, the longest match is preferred

• Why are there not three matches?
Answer: matches are only ever reported at one position

• This is true for depth-first engines as well, of course
Some applications have “global” options to continue matching

• For a breadth-first engine, the pattern has to be rewritten
/ * ([^*]+ | *[^/])* * /

• Would this also work for a depth-first engine?
Answer: no, try it on /***/

77

Performance of depth-first matching engines

• Think about non-matches as well as matches
For a non-match, all possible alternatives are tried
(With a breadth-first engine, they are always tried)

• Nested unlimited repeats are killers

(?x) ([^"\d]+ | "[^"]+")* \d

• This string is matched very quickly

some "quoted stuff" and a digit 4

• But it will take a very long time if you try

quite a lot of "quoted stuff" and no digit

Though not in Perl, for some reason!

• We describe how to tackle this problem later

78

The combinatorial explosion

• The pattern ^(a+)* can match aaa in 8 different ways

0 outer repeats matches an empty string
 1 outer repeat (a+) matches a, aa, or aaa
 2 outer repeats (a+)(a+) matches a a, aa a, a aa
 3 outer repeats (a+)(a+)(a+) matches a a a

• Each additional letter doubles the number of possibilities
For aaaaaaaa (8 letters) there are 256 possibilities

• How can we avoid such disasters?

• Greediness/ungreediness does not help – why not?
Answer: For a non-match, all possibilities are always tried

• Rewrite as ^(a+)? when possible, as here

• Or use an atomic group or possessive quantifiers
(?x) (?> ([^"\d]+ | "[^"]+")*) \d

 (?x) ([^"\d]++ | "[^"]++")* \d

79

Nesting isn’t just parentheses

• K levels of nesting on a sequence of length N

• Requires up to N^K backtracks on failure

• ((.*)*)*Z obviously has K = 3

• Alternation can cause nesting

(.*|.*|.*)Z also has K = 3

• Concatenation can cause nesting

(.*.*.*)Z also has K = 3

• Generally, concatenation is handled best
Then alternation, then parentheses

• But that is a question of how the code is optimised
Each implementation may be different

80

Concatenation inside repeats

• We are talking about patterns like
(pat1 ? pat2 + pat3 *) *

• (.*.*.*)*Z is catastrophic on a mismatch

• (?x) ([^’"]* "[^"]*"+)* is fine (see later)

• Try to avoid patterns that can overlap
No possible overlap means minimal backtracking

• Remember that null matches count for overlaps!
?, * and (...|) can all be null

• In general, unambiguous patterns work well
Avoiding ambiguity is always worthwhile
Remember the CATastrophe?

81

Further examples (6)

• Recall the HTML tag matching example

< ("[^"]*" | ’[^’]*’ | [^’"])* >

• Each non-quoted character requires a group repeat
However, this modification can be disastrous

< ("[^"]*" | ’[^’]*’ | [^’"]+)* >

• This is the fastest Pythonic version I can find

< ([^’"]* |
 ([^’"]* ("[^"]*" | ’[^’]*’))+
 [^’"]*) >

• It’s not pretty, and rarely worth the effort
In Python, you should approach the problem differently
Only when this is a performance bottleneck, of course

• There are some hints of how in the handout

82

Further examples (7)

• Or you can use atomic grouping or possessive quantifiers
They are not available in Python

• Atomic grouping

< ("(?>[^"]*)" | ’(?>[^’]*)’ |
 (?>[^’">]+))* >

• Possessive quantifiers in PCRE, Perl 5.10 and Java
< ("[^"]*+" | ’[^’]*+’ | [^’">]++)* >

• And none of the above expressions work on this:

This "<" and this ">" are not a HTML tag

• Extending them to do so is left as an exercise ...

83

Some example performance figures (1)

• pcretest (see later), Python, Perl and Java

<("[^"]*" | ’[^’]*’ | [^’"])*>
 <("[^"]*" | ’[^’]*’ | [^’"]+)*>
 <([^"’]* |
 ([^"’]* ("[^"]*" | ’[^’]*’))+
 [^"’]*)>
 <("(?>[^"]*)" | ’(?>[^’]*)’| (?>[^’"]+))*>
 <("[^"]*+" | ’[^’]*+’ | [^’"]++)*>

• How long to report “no match” for a 20-character subject?
All times in milliseconds

pcre Python Perl Java
 Original 0.004 0.007 0.009 0.003
 With the ’+’ 32.2 55.9 0.040 30.6
 Concatenation 0.004 0.006 0.006 0.004
 Atomic group 0.001 0.003 0.002
 Poss. quants 0.001 0.002

84

Can we do better in Python?

• Yes, but only slightly and it gets a bit messy

pcre Python Perl Java
 Original 0.004 0.007 0.009 0.003
 Concatenation 0.004 0.006 0.006 0.004
 These tweaks 0.004
 Atomic group 0.001 0.003 0.002
 Poss. quants 0.001 0.002

• However, the HTML example is a bit deceptive
Finding the next a HTML tag may be a bottleneck
Decoding it when you have found one rarely is

• Generally, use multiple stages in Python
Concentrate on the bulk data operations

• Python is not suitable for all RE tasks
Well, actually, nor are PCRE, Perl or Java ...

85

Using split and sub"/ in Python

• If you need the subpatterns, anyway, try this

pat1 = re.compile(r’^[^<]*<’)
 pat2 = re.compile(\
 ’("[^"]*"|\’[^\’]*\’|[^"\’>]+|.*)’)
 temp = pat1.match(text)
 temp = pat2.split(text[temp.end():])
 result = "".join(temp[0:-1])

• This is a bit perverse, but is quite fast

pat1 = re.compile(r’^[^<]*<’)
 pat2 = re.compile(\
 ’"[^"]*"|\’[^\’]*\’|[^"\’>]+’)
 temp1 = pat1.match(text)
 temp1 = text[temp1.end():]
 temp2 = pat2.sub("",temp1)
 result = temp1[0:-len(temp2)]

86

Some example performance figures (2)

(?x) ([^"\d]+ | "[^"]+")* \d
 (?x) (?x) ([^"\d]* |
 ([^"\d]* "[^"]+")+ [^"\d]*) \d
 (?x) (?> ([^"\d]+ | "[^"]+")*) \d
 (?x) ([^"\d]++ | "[^"]++")* \d

• How long to report “no match” for a 14-character subject?
All times in milliseconds

pcre pcre[*] Python Perl
 Original 13 0.90 23.4 0.042
 Concatenation 0.018 0.027 0.032 0.030
 Atomic group 0.007 0.038 0.016
 Poss. quants 0.010 0.022

• [*] PCRE’s breadth-first engine (option -dfa)
This is not particularly fast
It is not a traditional finite state machine (DFA)

87

Testing PCRE regular expressions

• Using pcretest to debug and time regular expressions

$ pcretest -t
 PCRE version 7.0 18-Dec-2006
 re> /(?x) ([^"\d]+ | "[^"]+")* \d/
 Compile time 0.0026 milliseconds
 data> the quick brown fox jumps over 42
 Execute time 0.0007 milliseconds
 0: the quick brown fox jumps over 4
 1: the quick brown fox jumps over
 data> the quick
 Execute time 0.2953 milliseconds
 No match
 re> /(?x) (?> ([^"\d]+ | "[^"]+")*) \d/
 Compile time 0.0031 milliseconds
 data> the quick
 Execute time 0.0052 milliseconds
 No match

88

Timing in other languages

• Writing one makes a good second practical
Harder than “Hello, world!” but not very hard

• Please ask if you have difficulties

• Java 1.6 documentation on REs has some suitable code
It’s not hard to hack it to work under 1.5

• I wrote a fairly clean harness for Python
It is on the Web pages mentioned at the start

• My Perl test harness is too revolting to publish
I do not like Perl and avoid it if I can

89

Named parentheses (1)

• First made available in Python and PCRE using this syntax

(?x) (?P<day>\d\d)-
 (?P<month>[[:alpha:]]{3})-
 (?P<year>\d{4})

• The names are in addition to the numbers

• Back references use (?P=
These two patterns are the same

(woof|miaow),\s\1
 (?P<noise>woof|miaow),\s(?P=noise)

• A condition test can use a name in parentheses
These two patterns are the same

(?x) (\()? [^()]+ (?(1) \))
 (?x) (?P<OPEN> \()? [^()]+ (?(OPEN) \))

90

Named parentheses (2)

• Perl 5.10 uses a different syntax, which PCRE also supports
Python does not support this

• No P is used; the name may be in <> or single quotes
(?x) (?<day>\d\d)-

 (?<month>[[:alpha:]]{3})-
 (?’year’\d{4})

• Back references use \k<name> or \k’name’
(?<noise>woof|miaow),\s\k<noise>

• Conditionals use (?(<name>)... or
 (?(’name’)...

(?x) (?’OPEN’ \()? [^()]+ (?(’OPEN’) \))

91

Named parentheses (3)

• In PCRE/Perl 5.10, recursive/subroutine calls can use names

(?x) (\(((?>[^()]+) | (?1))* \))

(?x) (?<pn> \(((?>[^()]+) | (?&pn))* \))

• You can use a name more than once
In PCRE, the feature must be enabled with the J option

(?x)
 (?<DN>Mon|Fri|Sun)(?:day)?|
 (?<DN>Tue)(?:sday)?|
 (?<DN>Wed)(?:nesday)?|
 (?<DN>Thu)(?:rsday)?|
 (?<DN>Sat)(?:urday)?

• DN contains the 3-letter name, whichever alternative matches
This facility could be confusing if not correctly used

• The above is probably the only safe way to use it!

92

Named parentheses (4)

• Named parentheses are also available in .NET languages
The Perl <> is syntax used

(?x) (?<day>\d\d)-
 (?<month>[[:alpha:]]{3})-
 (?<year>\d{4})

• Numbers are also assigned, but not like Python/PCRE/Perl
Non-named parentheses are numbered first
(\w) (?<num>\d+) (\s+)

 1..1 3.........3 2...2

• Back references use \k, as in Perl

(?<noise>woof|miaow),\s\k<noise>

• Syntax for conditionals is as for Python

(?x) (?<OPEN> \()? [^()]+ (?(OPEN) \))

93

True regular expressions and their theory

• Don’t panic
I am not going mathematical on you! – Well, not much

• It’s worth knowing what true regular expressions are
Roughly why the difference can be important
And, most of all, when you need to use them!

• Most common use is for data input designs
Including passing formatted data between programs

• True REs greatly help debugging and reliability
You are more likely to spot accidental ambiguities
If an editor mangles a file, your code may detect it

94

Why do true regular expressions help?

• The mathematical key is context independence
That enables the streaming feature of breadth-first
One construct doesn’t change the meaning of another

• Remember Java back references? Now consider

((lots\)(of\)(opaque))\(re)\(code)) ... \10

Is that group 1 and digit 0 or group 10 and nothing?

• Parsing context-dependent code (old Fortran, C) is a pain
Which is why modern programming languages use REs

• They are closely related to Backus-Naur form (BNF)
The following is an easy-to-understand reference

http://en.wikipedia.org/wiki/Backus-Naur_form

• BNF is very useful when defining data formats

95

A very simple example

• Consider a vector input statement, accepting:

values = (1.23, 4.56e7,-89, ...
 ... 0.12e-3) Optional comment ;

• A reasonable format for a number is:

[+-]?\d+(\.\d+)(?:[EeDd][+-]?\d+)?

• Similarly the whole format is:

(?x) (\w+) \s* = \s*
 \(\s* <number>
 (?: \s* , \s* <number> \s*)? \)
 \s* \(\.\S \)? \s* ;

• Design formats like that, however you parse them
I can assure you that it really does help

96

Original regular expressions

• You can use only the following:
Characters and character classes
Quantifiers
Alternation
Parenthesis grouping

• That’s not how the textbooks describe them
The notation accepted by software and authors varies
Quantifiers are often only ?, + and *

• These can be converted to an efficient form
Stick to these when defining data formats
Except when you really can’t, of course

• There is a minimal summary of the theory in the handout

97

The theory in four slides (1)

• Regular automata arose out of language theory
Which is not about programming languages!

• A language is the set of matchable strings
They are about matching only – yes or no
Greediness and capturing are irrelevant

• All patterns are independent of their context
No backtracking control, atomicity, testing etc.

• NFAs and DFAs are functionally identical
Unlike in the extended expressions described above

• They have many desirable properties
Not always shared by extended ones, as above

98

The theory in four slides (2)

• A regular expression is the text notation for a NFA
So-called Nondeterministic Finite Automaton
There is nothing non-deterministic about them

• True non-deterministic automata are very different
Nothing to do with regular expressions at all
Few computer scientists even know they exist!

• As we saw, REs/NFAs are usually interpreted as written
With some variation in the details of how

• In theory, they could be optimised, like code
Several implementations do a little of that
Aggressive optimisation would change their behaviour

• Exactly as with expressions in compiled code
If you want just the results, that is fine
But if you want predictable side-effects, it isn’t

99

The theory in four slides (3)

• A true NFA can be transformed to a unique DFA
So-called Deterministic Finite Automaton
The details are in many Computer Science books

• Regard this as a form of compilation – it is

• A string of length N is matched in N steps
Irrespective of complexity of the original NFA

• Each character is inspected just once per match
So can be used to match or reject a stream of input

• Unix egrep works like this, and so do some others

• Why don’t more utilities use that approach?
It is incompatible with most of the above extensions
Extended regular expressions are much more powerful

100

The theory in four slides (4)

• Why were original regular expressions so restrictive?

• Because that form has an efficient (small) DFA
I.e. guaranteed to be efficient in space and time

• But regular languages are much more general
The union of two (alternation) is regular
Intersection (i.e. a string matches both A and B)
Difference (i.e. a string matches A but not B)
Concatenation, repetitions (quantifiers) and so on

• The DFA may be super-exponentially larger than the NFA
Which doesn’t matter if you are not generating the DFA
The time does not go up super-exponentially

• You can use a general RE when designing data formats

101

Theory beyond the above

• It’s actually quite easy – for mathematicians!
Non-mathematicians may find it heavy going

• The following is one book of hundreds

Introduction to automata theory, languages,
 and computation by John E. Hopcroft,
 Rajeev Motwani and Jeffrey D. Ullman,
 3rd ed. (2007), Pearson Addison Wesley

• You may also like to look at:

http://www.cl.cam.ac.uk/teaching/current/...
 ...RLFA/reglfa.pdf

• Or, of course, contact the speaker for help

102

The reserved word problem

• You often want any word except for fred or bert
alfred, frederick, alberta are fine

• This is very common when matching program code

• Original REs don’t allow this, but it remains regular
So is perfectly good when defining data formats

• Best way to match this in PCRE etc. is something like:

((?:fred|bert)\w+|(?!fred|bert)\w+)
 ((?!(?:fred|bert)\b)\w+)
 (\w+(?!\b(?:fred|bert)))

• Watch out – \b can introduce context dependence
In this case, it doesn’t, and the above is OK

• The lookahead/behind mustn’t go outside the match

103

The general problem

• In full generality, what we want is:
A|B matches either A or B (i.e. alternation)

 A&B matches both A and B
 A-B matches A but not B

• I have implemented it, but not seen anyone else do so
See the theoretical background for more detail

• You can easily categorise into A&B and A-B
Using the two stage approach to complicated matches

• Step one: find the matches for A
• Step two: separate by whether they match B or not

• That’s how many compilers separate classes of number

104

The end

Whew!

105

