

SuSELinux EnterpriseServer8

Administration

for both x86 and AMD64 systems

Edition 2004

Copyright ©

This publication is intellectual property of SuSE Linux AG.

Its contents can be duplicated, either in part or in whole, provided that a copyright label is visibly located on each copy.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SuSE Linux AG, the authors, nor the translators shall be held liable for possible errors or the consequences thereof.

Many of the software and hardware descriptions cited in this book are registered trademarks. All trade names are subject to copyright restrictions and may be registered trade marks. SuSE Linux AG essentially adheres to the manufacturer's spelling. Names of products and trademarks appearing in this book (with or without specific notation) are likewise subject to trademark and trade protection laws and may thus fall under copyright restrictions.

Please direct suggestions and comments to documentation@suse.de

Authors:	Frank Bodammer, Stefan Dirsch, Roman Drahtmüller, Karl Eichwalder,
	Werner Fink, Dennis Geider, Carsten Groß, Olaf Hering, Andreas
	Jaeger, Jana Jaeger, Klaus Kämpf, Olaf Kirch, Hubert Mantel, Michael
	Matz, Johannes Meixner, Lars Müller, Anas Nashif, Susanne Ober-
	hauser, Edith Parzefall, Peter Poeml, Marc Rührschneck, Marcus
	Schaefer, Klaus Singvogel, Andreas Schwab, Martin Sommer, Klaus
	G. Wagner, Christian Zoz
Translators:	Olaf Niepolt Daniel Pisano, Tino Tanner
Editors:	Antje Faber, Dennis Geider, Berthold Gunreben, Roland Haidl,
	Jana Jaeger, Edith Parzefall, Peter Reinhart, Marc Rührschneck,
	Thomas Schraitle, Martin Sommer, Rebecca Walter
Layout:	Manuela Piotrowski, Thomas Schraitle
Setting:	ĿŦĘX

This book has been printed on 100% chlorine-free bleached paper.

Introduction

About this Manual

This book helps you administer your SuSE Linux Enterprise Server on either x86 or AMD64 systems. You will be provided with information needed to configure the system in detail and some basic information about networking principles.

YaST2, the central administration tool of SuSE Linux Enterprise Server, provides a full set of modules to make administration available at one point in your system. This manual will cover the YaST2 modules necessary to configure and control the system.

Another part of this manual will cover the configuration of additional hardware, such as printers.

Finally, the network configuration and several important network services are discussed. This part also includes some useful information about network security and the integration of SuSE Linux Enterprise Server into heterogenous networks.

Required Background

We have made several assumptions concerning your background knowledge when designing this document.

- You are familiar with either x86 or AMD64 terminology
- You already have a basic understanding of Linux system administration.
- You have a good knowledge of Linux and UNIX systems.

Typographical Conventions

Text layout Meaning YaST programs /etc/passwd file or directory names *(parameter)* when entering a command, parameter should be replaced by the actual value, excluding the angle brackets. the environment variable PATH PATH the value of a variable. 192.168.1.2 In this case, 192.168.1.2 the command ls ls news the user news earth:~ # ls Input of 1s in the command shell of the user root in his home directory of the host "Earth" newbie@earth:~ > 1s Input of 1s in the command shell of user newbie in his home directory on the host "Earth" C:\> fdisk DOS prompt with the command input fdisk (Alt) A key to press. Keys to press sequentially are separated by spaces. Keys to press simultaneously are grouped (Ctrl) + (Alt) + (Del)with the `+' sign. "Permission denied" System messages 'System Update' Menu items, buttons, labels

The following typographical conventions are used in this book:

Acknowledgments

An assembled list of all people who have contributed to the completion of this version would fill a book all by itself. Because of this, we would like to comprehensively thank everyone who has ensured with his unrelenting effort that you can yet again hold a unique product in your hands.

The Linux developers promote the becoming of Linux with higly dedicated voluntary contribution and worldwide cooperation. We thank them for their commitment. This distribution would not exist without them.

And last but not least, we would like to especially thank Linus Torvalds.

Nuremberg, 26th January 2004

Your SuSE team

Contents

	Introduction	iii
I	Configuration	1
1	YaST2 in Text Mode (ncurses)	3
	Invocation and Usage	4
	Module Operation	5
	Invoking the Various Modules	6
	YaST Online Update	6
2	YaST2 in Graphics Mode	9
	Starting YaST2	10
	Software	10
	Change Installation Source	11
	YaST Online Update (YOU)	11
	Install and Remove Software	12
	System Update	14
	Patch CD Update	15
	Hardware	15
	Printer	15
	Display and Input devices (SaX2)	15
	Hardware Information	15
	Partitioning	16

Network/Basic	16
Network Card Configuration	16
DSL	17
ISDN	17
E-Mail	19
Network/Advanced	21
Configuring an NFS Server	21
Configuring NIS	21
Host Name and DNS Configuration	22
Configuring Routing	22
Security and Users	22
User Administration	22
Group Administration	22
Security Settings	23
Firewall	25
System	26
Creating a System Backup	26
Restore	27
Sysconfig Editor	28
Runlevel Editor	29
Expert Partitioning	29
Logical Volume Manager (LVM)	30
Soft RAID	31
Time Zone Selection	32
Language Selection	32
Miscellaneous	32
Start Protocol	32
System Protocol	33
Loading a Vendor's Driver CD	33

3	The X Window System	35
	Historical Background	35
	Version 4.x of XFree86	36
	Configuration with SaX2	38
	SaX2— Main Window	38
	Display	39
	Graphics Card	40
	Colors and Resolutions	41
	3D Acceleration	41
	Image Position and Size	42
	Multihead	42
	Input Devices	43
	AccessX	44
	Optimizing the Installation of the X Window System	44
	Integrating Additional (True Type) Fonts	50
	OpenGL — 3D Configuration	53
4	Printer Operation	59
	Printing Basics	60
	Making the Printer Work	63
	Configuring a Printer with YaST2	67
	Print Queues and Configurations	67
	Printer Configuration with YaST2: The Basics	68
	Automatic Configuration	70
	Manual Configuration	71
	Printer Configuration in Application Programs	74
	Printing from the Command Line	74
	Using the LPRng and lpdfilter System	74
	Using the CUPS System	75
	Manual Configuration of Local Printer Ports	75
	Parallel Ports	75
	USB Ports	79

The IrDA Printer Interface 80
Serial Ports
Manual Configuration of the LPRng and lpdfilter Printing System 81
The LPRng and lpdfilter Print Spooler 82
Command-Line Tools for LPRng 83
Managing Local Queues
Managing Remote Queues
The Print Filter of the LPRng and lpdfilter Printing System
Custom Print Filters for the LPRng Spooler
The CUPS Printing System 101
Naming Conventions
IPP and Server
Configuration of a CUPS Server
Network Printers
Internal CUPS Print Job Processing
Tips and Tricks
Command-Line Tools for the CUPS Printing System 107
Managing Local Queues
Managing Remote Queues
Working with Ghostscript
Working with a2ps
Reformatting PostScript with psutils 117
psnup
pstops
psselect
Using Ghostscript to View the Output 122
ASCII Text Encoding
Printing in a TCP/IP Network 124
Terminology 124
Remote Printer Troubleshooting
Print Servers Supporting Both LPD and IPP

II System

5	Booting and Boot Managers	139
	Booting a PC	140
	Boot Concepts	141
	Map Files, LILO, and GRUB	142
	An Overview of LILO	143
	Configuring LILO	145
	Structure of lilo.conf	146
	Other LILO Configuration Options	149
	Installing and Uninstalling LILO	152
	Sample Configurations	155
	DOS/Windows 95/98 and Linux	155
	Windows NT or Windows 2000 and Linux	156
	LILO Problems	157
	Booting with GRUB	158
	The Menu	158
	Names for BIOS devices	159
	Installation Using the GRUB Shell	160
	Creating Boot CDs	160
	Procedure	161
	Boot CD with ISOLINUX	161
	Configuring the Boot Mechanism with loadlin	162
6	The Kernel	171
	Kernel Sources	171
	Kernel Modules	171

7	Special Features of SuSE Linux Enterprise Server	175
	Linux Standards	176
	File System Hierarchy Standard (FHS)	176
	Linux Standard Base (LSB)	176
	teTeX — T _E X in SuSE Linux \ldots	176
	Example Environments for FTP and HTTP	176
	Hints on Special Software Packages	177
	Package bash and /etc/profile	177
	cron Package	177
	Log Files — the Package logrotate	178
	Man Pages	179
	The Command ulimit	180
	The free Command	181
	The File /etc/resolv.conf	181
	Virtual Consoles	181
	Keyboard Mapping	182
	Local Adjustments — I18N/L10N	183
8	Support for 32-bit and 64-bit Programs in an AMD64 Environment	187
	Introduction	188
	Runtime Support	188
	Software Development	189
	Kernel Issues	190
9	The SuSE Linux Enterprise Server Boot Concept	191
	The init Program	192
	Runlevels	192
	Changing Runlevels	193
	Init Scripts	195
	The YaST2 Runlevel Editor	197
	SuSEconfig, /etc/sysconfig, and /etc/rc.config	198
	Using the YaST2 sysconfig Editor	199
	System Configuration: Scripts and Variables	199

III Networking

2	2	n
4	4	7

10 Linux in the Network	231
TCP/IP — The Protocol Used by Linux	232
Layer Model	233
IP Addresses and Routing	235
Domain Name System	238
IPv6 — The Next Generation's Internet	240
A New Internet Protocol	240
Structure of an IPv6 Address	241
IPv6 Netmasks	244
For More Information About IPv6	244
Network Integration	245
Preparing	245
Configuration Assisted by YaST2	245
Configuring IPv6	247
Manual Network Configuration	247
Configuration Files	247
Start-Up Scripts	253
Routing in SuSE Linux Enterprise Server	254
DNS — Domain Name Service	256
Starting the Name Server BIND	256
The Configuration File /etc/named.conf	257
For More Information	265
NIS — Network Information Service	266
NIS Master and Slave Server	266
The NIS Client Module of YaST2	268
Manual Installation of an NIS Client	268
NFS — Shared File Systems	270
Importing File Systems with YaST2	270
Importing File Systems Manually	270
Exporting File Systems with YaST2	271

В	The GNU General Public License	321
Α	Manual Page of e2fsck	317
	More Information on Squid	315
	Squid and Other Programs	
	Transparent Proxy Configuration	307
	The Configuration File /etc/squid.conf	302
	Starting Squid	301
	System Requirements	300
	Some Facts About Cache Proxying	298
	About Proxy Caches	297
	Proxy Server: Squid	297
	DSL Connection by Dial-on-Demand	296
	Default Configuration	296
	Configuring an ADSL or T-DSL Connection	296
12	Internet	295
	Starting the Server	292
	Configuring the Print Server	292
	Configuring the File Server	288
	Netatalk	287
	Optimization	287
	Installing Clients	286
	Samba as Login Server	285
	Installing and Configuring the Server	281
	Samba	280
11	Heterogenous Networks	279
	The Finer Points	278
	Assigning Fixed IP Addresses to Hosts	277
	The DHCP Server dhcpd	
	DHCP Software Packages	
	The DHCP Protocol	
	DHCP	
	Exporting File Systems Manually	

Part I

Configuration

YaST2 in Text Mode (ncurses)

This chapter addresses above all system administrators and experts who do not run an X server on their systems and who have to rely on the text-based installation tool.

This chapter provides basic information on starting and operating YaST2 in text mode (ncurses). It furthermore explains how you can perform an automatic online update of your system in order to always keep it at the newest level.

Invocation and Usage	. 4
Module Operation	. 5
Invoking the Various Modules	. 6
YaST Online Update	. 6

Invocation and Usage

To start YaST2 in text mode, enter yast as root in a terminal.

The usage may be unfamiliar, but is very simple. The whole program can be operated with (Tab), (Alt) + (Tab), (Space), the arrow keys (() and ()), and (Enter) as well as with shortcuts. When YaST2 is started in text mode, the YaST2 Control Center appears first, as shown in Figure 1.1.

Figure 1.1: Main Window of the YaST2 Control Center

The window is divided into three areas: The box on the left hand side shows the categories to which the various modules belong. When activated, this category selection is highlighted by a broad white frame. The selected, active category is color-highlighted. The corresponding modules of the active category are listed in a white-framed box on the right hand side of the window. At the bottom, find the buttons for 'Help' and 'Quit'.

After the first start of the YaST2 Control center, the uppermost category 'Software' is automatically selected. Change between categories using \bigcirc and \bigcirc . Start a module belonging to the selected category by pressing \bigcirc . The module selection then appears highlighted by a broad white line. Select a module using \bigcirc or \bigcirc . Scroll through the module selection by pressing either key continuously. When a module is selected, the title is color-highlighted. A short text describing this module is displayed in the bottom part of the window.

Start the desired module by pressing (Enter) when it is selected. Different buttons or selection fields of the module contain a differently-colored letter (yellow with the standard settings). The combination (Alt) + (yellow letter) selects the corresponding button directly.

Leave the YaST2 Control Center either using the 'Quit' button at the bottom part of the window or by choosing the 'Quit' menu item in the category selection and pressing (Enter).

Restriction of Key Combinations

It is possible that the (Alt) combinations in YaST2 do not work if system-wide (Alt) key combinations are set by a running X server. It is also possible that keys like (Alt) or () Shift) are captured for the terminal used.

- **Replacing** (Alt) with (Esc): (Alt) shortcuts can be executed with (Esc) instead of (Alt). For example, (Esc) + (H) replaces (Alt) + (H).
- **Replacement of backward and forward navigation by** (Ctrl) + (F) and (Ctrl) + (B): If the (Alt) and (f) Shift) combinations are occupied by the window manager or the terminal, the combinations (Ctrl) + (F) (forward) and (Ctrl) + (F)(backward) can be used instead.

Module Operation

In the following, it is assumed that the (Alt) key combinations are functional. Make appropriate substitutions or switch to a pure text console, if needed.

- **Navigation between buttons and selection lists** (Tob) and (Alt) + (Tob) navigates back and forth between buttons and frames containing selection lists and among the frames.
- Navigation in selection lists ① and ① always navigate among the single items within an activated frame containing a selection list. These can, for instance, be the single modules of a module group in the control center.
- **Checking radio buttons and check boxes** The selection of buttons with empty square brackets (check boxes) or parentheses (radio buttons) can be done with the <u>Space</u> or <u>Enter</u>) keys. The buttons at the bottom of the various modules or of the control center are activated with <u>Enter</u>) when selected (colored green) or with the combination <u>Alt</u> + <u>vellow key</u> (cf. fig. 1.2 on the next page).

Name Avail. Vers. Inst. Vers. Summary a+ emacs=info 21.2 Info files for GNU emacs a+ emacs=xill 21.2 GNU Emacs: Emacs binary a+ flex 2.5.4a Fast Lexical Analyzer for a+ gcc-c++ 3.2 GNU C continer a+ gctext 0.11.5 The GNU debugger ilter: Basis=Devel Required diskspace: 0 B gcc - The GNU C compiler and support files Yreston: 3.2 Size: 5.4 MB Providen: c_compiler providen: c_for <feor@colorado.edu>, Alan Modra</feor@colorado.edu>	
a+ a> gdb 3.2 5.2.1 5.2.1 GNU C++ Compiler The GNU debugger Tools for National Langu a+ a+ gettext 0.11.5 5.2.1 The GNU debugger Tools for National Langu ilter: Basis-Devel Required diskspace: 0 B gcc - The GNU C compiler and support files Version: 3.2 Size: 5.4 MB Provider: C.compiler	with enerai
gcc - The GNU C compiler and support files Version: 3.2 Size: 5.4 MB Provide:: c_compiler	
Version: 3.2 Size: 5.4 MB Provides: c_compiler	
salan@spril.levels.unisa.edu.au/>,Allen Briggs &briggs@rrinc.com/>,Andre Schwab <schwab@suse.de></schwab@suse.de> ,Andreas Jaeger <aj@suse.de></aj@suse.de> ,Andrew Cagney	eas

Figure 1.2: The Software Installation Module

Invoking the Various Modules

Each YaST2 module can also be started directly. The modules can simply be started with yast (module name). The network module, for instance, is started with the command yast lan. Access a list of the names of the modules available on a system by running yast -lor yast --list.

The various module descriptions can be found on page on page 15 ff.

YaST Online Update

The YaST Online Update YOU can equally be operated and called from the console. The according manual can be found in chapter **??** on page **??**. As administrator, tt is easy to create a weekly cron job which keeps the system always up to date with YOU.

The cron job for YOU

Since not everyone who needs or wants to use YOU is familiar with the creation of a cron job, here follows a short list of instructions. Basically, there are two different possibilities to set up a cron job, of which the simpler method is goint to be described here. The following steps are necessary:

1. become root.

YaST2 in Text Mode (ncurses)

- 2. start the crontab editor with the command crontab -e.
- 3. Press i for the insertion mode of the called program vi
- 4. Enter the following lines:

```
MAILTO=" "
13 3 * * 0 /sbin/yast2 online_update auto.get
53 3 * * 0 /sbin/yast2 online_update auto.install
```

The first five elements of the last two lines have the following meaning when read from left to right: 13=minutes, 3=hours, *=day of the month is unregarded, *=month of the year is unregarded, 0=Sunday. This therefore means, that the first entry starts the cron job every Sunday at 3:13 a.m. The second job starts 40 minutes later at 3:53 a.m. The line MAILTO" " prevents that root receives the output of YaST2-ncurses as an e-mail and can of course be omitted.

Caution

Enter arbitrary times of the hour for the cron jobs and possibly not necessarily the times from the example above since this would overload the FTP server or respectively the maximum allowable number of concurrent connections would get readily exceeded.

- Caution \square

5. Save the cron job with the key sequence (to be pressed subsequentially) (Esc) : wq, or alternatively (Esc) ZZ.

The cron daemon is automatically being restarted and your cron job is added to the file /var/spool/cron/tabs/root.

YaST2 in Graphics Mode

YaST2 assists in extending your SuSE Linux Enterprise Server system with additional hardware components, such as a printer, configuring and installing system services, Internet access, and software, or deleting undesired packages.

Starting YaST2	10
Software	10
Hardware	15
Network/Basic	16
Network/Advanced	21
Security and Users	22
System	26
Miscellaneous	32

Starting YaST2

After starting YaST2, the YaST2 Control Center opens. The left window panel is divided into the categories 'Software', 'Hardware', 'Network/Basic', 'Advanced Network', 'Security & Users', 'System', and 'Miscellaneous'. When an icon is clicked, the corresponding modules are displayed to the right as icons. The configuration of the various modules is usually a multistaged process.

YaST2 guides through all the dialogs with 'Next'. A help text listing all possible inputs to each topic is shown in the left-hand part of the window.

Once all the required values have been entered, the process is concluded with 'Finish' in the last configuration dialog. The configuration is then saved.

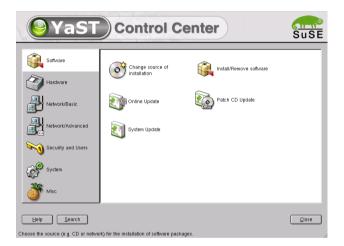


Figure 2.1: YaST2 System Configuration and Administration

Software

Use this module to install or delete software or to change the installation source. There are furthermore two update tools: one for the "normal" system update and one for the online update which is served by our FTP server.

Change Installation Source

The installation source is the medium which provides the software that is to be installed. You can install from CD, from a network server or from hard disk. (More on this can be read in the comprehensive help text for YaST2 and in the SuSE Linux Enterprise Server *Installation Manual*).

When you exit the module (located at 'Software') with 'Save and exit', the settings are saved and applied to the configuration modules 'Install/Remove Software', 'System Update', and 'Boot and kernel configuration'. This module also offers the possibility to proceed with 'Install' to install or remove packages.

YaST					SuSE
Software packages can be	A	Softwa	re Source Media		
installed from the CD, over a network, or from the hard disk.		Status On	Name SuSE-Linux-Professional-INT-i386 ^v	Version 8.1	URL
To install packages from CD, have the SuSE CD set or the DVD available.		On	SuSE-SLES-full-i386 Version 8.1	version o.r	nfs://dist//dist/sles8-i386
The SuSE CDs can be copied to the hard disk. Then use that as the installation source. Insert the path name where the first CD is located, for example, /usr/SuSE/CD1. Only the base path is required if all CDs are copied into one directory.	=				
Network installation requires a working network connection. Configure YaST2's "Network/Base" module first, if required. Specify the directory where the packages from the first CD are located, such as, /usr/SuSE/CD. Only the base path is required if packages are		• bbA		Dawn	Enable/Disable
not divided, for example, /usr/full-i386. The directory must be listed in the file	4	Bac		J <u>Ug</u> wn	<u>Enade/Disable</u>

Figure 2.2: Changing the Installation Source

YaST Online Update (YOU)

YaST Online Update enables the installation of important upgrades or improvements. The corresponding patches are made available for downloading on the SuSE FTP server. The installation of the current packages can proceed completely automatically. 'manual update' allows however also the possibility of personally determining which patches are applied to your SuSE Linux Enterprise Server system. Selecting 'Next' downloads a list of all available patches (in case that 'manual update' was chosen). Here, select the packages for installation or simply accept YQST2's suggestion installation. The online update will be completed by clicking on 'Next' or 'Finish'.

Online Update from the Console

The Online Update can also be started in a shell. As root, load the current patch list and all related RPMs from the first server in the /etc/suseservers list using the command:

```
earth:/root # yast2 online_update .auto.get
```

To load only certain patches, add options to the command. Among these options are security, recommended, document, YaST2, and optional. security retrieves security-related patches, recommended fetches updates recommended by SuSE, document provides you with information on the patches or on the FTP server, YaST2 fetches YaSI2 patches, and optional gets minor updates. Information on these patches is stored in /var/lib/YaST/patches/i386/update/X.Y/patches, where X.Y represents the SuSE Linux version number. This information is only readable for root.

The command for downloading the security patches, for example, is:

earth:/root # yast2 online_update .auto.get security

When you enter .auto.get, by default the SuSE FTP server list is loaded into /etc/suseservers. To disable this, deactivate the function in the /etc/rc.config. To do this, set yes to no in the line YAST2_LOADFTPSERVER="yes".

The patches can now be installed with

earth:/root # yast2 online_update .auto.install

This command installs all fetched patches. To just install a group, use the same options as in .auto.get.

This method can be fully automated. The system administrator is able to download the packages overnight, for example, then install the ones needed the next morning.

Install and Remove Software

This module provides services for installing, updating, and removing software from your system. To install from CD, insert the first CD in the drive.

The Selection Filter

With 'Filter' at the top left of the main window, define the criterion for displaying the package selection. The default setting is 'Package groups'.

These package groups are displayed in a tree structure on the left-hand side. If you click one of the main groups (for example, 'Development' or 'Documentation'), all program packages belonging to this main group are listed at the top of the right frame. If you click one of the subgroups, the right frame only displays the packages of the respective subgroup.

Another interesting filter is the one that displays packages according to 'Selections'. You may have noticed this filter during the installation if you entered the software settings in the suggestion screen. Using the 'Selections' filter, install predefined selections for specific utilization areas with a single click. This is the only filter for which you can activate something in the left frame at this stage. If you click the check boxes of the selections in the left frame, all packages of the respective selection will be installed. If you deselect a package from the standard selection (such as KDE), all related packages will be uninstalled when you confirm. Along with each selection, the right frame displays the packages belonging to this selection together with their current state. Select and deselect individual packages as desired. The predefined selections include 'Development', 'KDE', or 'Web Server'.

The Package Window

The package window to the left displays the following information for each package (from left to right): the status, the package name, a brief description, the size, the version, and the source column, which allows you to install the source code of the package.

The status of the package is indicated by various icons. The following are available:

- is not and will not be installed
- will be installed due to manual selection
- will be installed because it is required by another selected package (dependency)
- will be replaced by a newer version (update)
- will be deleted (uninstalled)
- is "taboo": prevents a package from being selected automatically due to a dependency of other packages (recommended only for experts)

- blocked: prevents a package from being updated or deleted (useful for packages that were compiled manually or originate from other sources)
- has been renamed: this status cannot be selected manually (applies to packages that were replaced by a new package with a different name)

Switch the status by clicking the icon to the left of the package name. Only applicable ones are offered, which means a package that is not installed cannot have the status "uninstall".

Caution

You have the possibility to mark installed packages for deletion. Observe the alerts and do not delete any packages of the Linux base system.

Caution -

The Info Window

The frame at the bottom rights displays several tabs under which to find information about the currently selected package, such as a detailed description, technical data, a list of files installed with this package, the packages this package requires, the packages that require this package, and possible conflicts with other packages already installed or selected for installation.

The Search

'Search' opens a search dialog in which you can search for specific package names or parts of package names. In the search result, determine what to do with the packages found.

System Update

Use this module to keep your system up to date. It can be started at different stages in the process. YaST2 recognizes which packages need to be updated or you can decide on your own which package should be updated.

This function is useful when an important binary file has been accidently removed. The update module will list the appropriate software package and mark it for update. Thus, the timeconsuming search for the appropriate software package is done automatically.

Patch CD Update

Unlike the Online Update, the patches are not downloaded from the FTP server but installed from CD-ROM.

After the patch CD is inserted, all the patches stored on the CD will be read into and displayed in the YaST2 module screen. Select which one to install from the patch list. If you forgot to put the CD into the drive, a warning will appear. Then insert the CD and resume updating the patch CD.

Hardware

New hardware must first be installed and connected according to the vendor's instructions. Connect the external devices such as printer or modem and start the corresponding YaST2 module. The majority of conventional devices will automatically be recognized by YaST2, at which point, the technical information is displayed. If autodetection fails, YaST2 will present a device list (model, manufacturer, etc.) from which to select the appropriate device.

The configuration tools needed for configuring the various devices can be found under 'Hardware'. Refer to the hardware information for data pertaining to the hardware autodetected by YaST2.

Printer

All printers connected to your system can be configured with this module. Local and network printers are supported. This discussed in more detail in chapter *Printer Operation* on page 59.

Display and Input devices (SaX2)

This module handles the configuration of the graphical interface X11 and input devices in systems supporting a graphical interface. This module can also be used for changing an already existing X11 configuration (for instance the color depth). Chapter *The X Window System* on page 35 provides all the necessary details.

Hardware Information

YaST2 performs a hardware detection for the configuration of hardware components. The detected technical data is displayed in this screen.

Figure 2.3: Displaying Hardware Information

Partitioning

Although it is possible to modify the partitions in the installed system, this should only be done by experts who know exactly what they are doing. Otherwise, the risk of data loss is very high. For further information on partitioning, refer to the Installation Manual of SuSE Linux Enterprise Server.

Network/Basic

Under 'Network/Basic', YaST2 provides basic configuration tools to pave your way into the Internet: configuration of ADSL and T-DSL in Germnay, the network card host name, and DNS. Routing is configured here, too.

Network Card Configuration

With it you can configure your network card for connection to the local network as well as the Internet access for your SuSE Linux Enterprise Server. For more information on the configuration of network card and Internet connection, refer to the Chapter *Network Integration* on page 245. Your network card must be properly configured to configure ADSL access. With YaSI2, you can only set up connections based on the Point-to-Pointover-Ethernet protocol (PPPoE). Automatic IP addressing does not occur with the DHCP protocol. You cannot use 'Automatic address setup (with DHCP)'. Instead, use a static "dummy IP address". A good choice might be 192.168.22.1, for example. In 'Subnet mask', enter 255.255.255.0. For a stand-alone system, be certain that you do not make any entries in the 'Default gateway' field. The values for the 'IP address' of your machine and 'Subnet mask' are only placeholders. They do not have anything to do with setting up a connection with ADSL. They are only required for activating the network card.

Enter your user ID and your personal password in the screen. Finally, set the ethernet card to which your modem is connected (usually eth0). Sixty seconds 'Idle time' is recommended — the connection will automatically be terminated if data flow stops. With 'Finish', this procedure is completed.

To use 'Dial on demand' if you have a stand-alone system, you must enter a name server. Most providers today support dynamic DNS assignment, so a current IP address is forwarded to the name server each time the connection is set up. However, a suitable dummy name server IP must be entered in this dialog. 192.168.22.99 is a good choice. If you do not receive a dynamic name server assignment, enter the IP addresses of the name servers of your provider here.

Proceed for T-DSL (German Telekom) as you would for ADSL. To configure your T-DSL, you will need the following data: attachment identification, T-Online number, shared user ID, and your personal password. This information can be obtained from your T-DSL login sheet.

ISDN

If your ISDN card is successfully autodetected, a dialog appears in which to make your 'Selection of ISDN protocol'. 'Euro-ISDN (EDSS1)' is the standard for this (refer to scenarios 1 and 2a below) in Europe. '1TR6' is a protocol used by older and larger phone systems (refer to Scenario 2b below). 'NI1' is the standard in the USA. If this automatic detection fails, choose the correct ISDN card. Then specify the ISDN protocol and click 'Next'.

In the screen that follows, specify your country and provider. The ones listed here are "Call-by-Call" providers. To use a provider not included in this list, click 'New'. This opens the 'ISP parameters' screen in which to make all the

YaST		SuSE
This module is only relevant for providers using PPPOE or PPPOATM. In the US, some providers use PPTP, so you only need to configure your ethernet card in the Network/Base module in YaST2. If you are not sure, ask your provider. Frist, choose your PPP mode. This is either PPPOE (PPP over Ethernet) or PPPACTM (PPP over ATM). Use PPPOE if your DSL modem is connected via ethernet to your computer. If you are not sure which mode to use, ask your provider.		▼ le time 00 ▼
If you are using PPPoE, first configure your ethernet card. Second, enter your access data. You will be asked for your <i>user name</i> and <i>password</i> . For PPPoE enter the device of your ethernet card, for example, etho. If you have two cards, it could also be add. For	Activate firewall Dial on demand Name server 1 Back Abort	<u> </u>

Figure 2.4: ADSL Configuration

necessary settings pertaining to your preferred provider. 'ISDN SyncPPP' is the standard 'ISDN type'. Specify the provider name for the 'Connection Name' then the provider's telephone number.

In the case of an interposed PBX, you might need an additional number in front of the phone number itself to dial out (usually a zero or nine, but it is best to refer to the instructions for your PBX). The entire telephone number may not contain any separators, such as commas or blank spaces. Enter the user name and password received from your provider.

Next, proceed to the ISDN connection parameters. The following scenarios require various specification for your 'Phone Number':

- The ISDN card is connected directly to the phone company's socket. Enter an MSN, Multiple Subscriber Number, if provided by your phone company. Otherwise, leave it blank and the ISDN card should work.
- The ISDN card is connected to a PBX:
 - The telephone system's protocol is Euro-ISDN/EDSS1 (usually for "small" phone systems for households): These phone systems have an internal S0 bus and use internal numbers for the connected devices. In this case, specify the internal number as MSN.

Further information can be obtained from your phone system documentation. One of the MSNs available for your phone system should work as long as this MSN is allowed external access. If all else fails, a single zero might work as well.

▷ The phone system's protocol for the internal ports is 1TR6 (mostly the case for "large" corporate telephone systems): the MSN is known here as "EAZ" and is usually the extension. Usually, you only need to enter the last digit of the EAZ for the Linux configuration. If all else fails, try the digits 1, 2, 3, 4, 5, 6, 7, 8, or 9.

Choose a dial mode of 'Manual', 'Automatic', or 'Off'. It is best to choose 'Manual', so you can establish the connection to the Internet using kinternet and also disconnect without waiting for a time-out. Dial from the command line with /usr/sbin/isdnctrl dial ippp0 and hang up with /usr/sbin/isdnctrl hangup ippp0.

You can also configure after how many seconds the connection should be terminated if data transfer is no longer taking place. Sixty seconds is recommended for this. When enabled, 'ChargeHUP' makes sure that the connection is not terminated until the next payable unit. However, this does not work with every provider.

It is highly recommended to select 'Initialize ISDN system when booting' so the necessary drivers are loaded automatically. This alone will not set up an Internet connection.

If there is only the one local host, you do not need to change anything in 'IP settings'. YaST2 will suggest the most appropriate local and remote IP address to accept.

The preselected items 'Dynamic IP Address' and 'Dynamic DNS' ensure that the IP address and name server assigned by the provider are forwarded during the connection, which is usually necessary. Under 'Callback settings', 'Callback off' should be selected, as the other choices are — at least for private use — irrelevant. 'Next' and 'Finish' complete the configuration.

E-Mail

The e-mail configuration module has been reworked to bring it in line with recent developments. Support for e-mail transfer with postfix has been added and sendmail continues to be supported. Find this configuration module under 'Network/Advanced'. The first dialog lets you select the type of your network connection:

YaST		SuSE
Please select ISDN card from the list.	ISDN low-level configuration for contro	
If you have an old legacy ISA card, you can enter values for IO port or memory addresses and the used interrupt. For the correct values, check with your technical manual or contact your salesman. Start Mode: OnBoot the driver is loaded during system boot. Manual the driver must be started with the rcisdn start command, only the user root can do this. HotPlug is a special case for PCMCIA and USB devices.	ISDN cards Select your ISDN gard Accer P10 Askey PCI + Voice (W6692) Askey PCI (CCD HFC) Askey CI (W6592) AsuSCom ISA ISAC AsusCom ISA ISAC AsusCom PCI (CCD HFC) ASUSCOM PCI (W6692)	Start Mode OnBoot 💌
For some isdncard exist multiple drivers, Please select one from the list.	Selection of ISDN protocol C Euro-ISDN (EDSS1) C TR§ C Lessed line Dialprefix	
ISDN protocol: in must cases, the protocol is Euro-ISDN, especially if your ISDN card is connected directly to the public ISDN network.	Back Abort	<u>O</u> K

Figure 2.5: ISDN Configuration

'Host with permanent network connection'

This is normally a "leased line", as is often found at companies or other institutions that work with the Internet. The Internet connection is always running so no dial-up is necessary. This menu item is also meant for members of a local network where no permanent Internet connection exists, but where a central mail server is used for sending e-mail.

'Host with temporary network connection (Modem or ISDN)'

This is for computers not on a local network that temporary connect to the Internet.

'No network connection'

If you do not have an Internet connection and if the machine does not belong to any other network, sending or receiving e-mails on this machine will (of course) not be possible.

In the following steps, you will be prompted to provide the server name for outgoing messages and to define at least one local user. If you have a dialup connection, you will have the possibility to set individual POP servers for incoming mail on a per-user basis.

The module also allows you to define aliases and address masks and set up virtual domains. Exit the configuration with 'Finish'.

YaST		SuSE
How are you connected to the Internet? With a dial-up connection, mails will not be sent immediately but rather after invoking sendmail -q.	Connection type	
If AMaVIS is not installed and you want to use it, it will be installed automatically.		
	Connection type © Eermanent C Dial-up C No connection	
	Enable virus scanning (AMaVIS)	
	Back Abort	Next

Figure 2.6: Mail Configuration

Network/Advanced

For network administrators, there are modules for starting and stopping system services such as inetd, Sendmail (with expert configuration), NFS client and server, routing, expert networking, and NIS client. 'Network for Experts' offers the same functionality as 'Network card configuration' under 'Network/Basic', so you can still configure other network interfaces, such as a modem, here.

Configuring an NFS Server

A system on your network can very quickly be turned into an NFS server with the help of YaST2. This is a server that makes directories and files available to those clients permitted access. Many applications and files can, for example, be made available to multiple users without installing them locally on each system. Details on the configuration of a system as an NFS server can be found in *NFS* — *Shared File Systems* on page 270.

Configuring NIS

As soon as various Unix systems in a network seek access to common resources, it must be ensured that the user and group IDs are harmonized YaST2 in Graphics Mode

across all systems. The network becomes transparent and the user always encounters the same environment no matter which system is used.

NIS — *Network Information Service* on page 266 describes how NIS can be configured as a client and as a server.

Host Name and DNS Configuration

The host name and the DNS data are set here. A later modification of these settings should be avoided as these parameters are necessary for the proper operation of the network. Refer to *Network Integration* on page 245 and *DNS* — *Domain Name Service* on page 256.

Configuring Routing

Routing equally represents an important parameter for the configuration of a network. *Network Integration* on page 245 contains a complete explanation of routing under Linux.

Security and Users

User Administration

First, verify that 'User Administration' is marked. YaST2 provides a list of all users, which greatly facilitates the user administration. To delete a user, select it from the list (the line will be highlighted dark blue) and click 'Delete'. To 'Add' a user, simply fill in the required fields. Subsequently, the new user can log in to the computer with the login name and password. Edit details under 'Edit' \rightarrow 'Details'.

Group Administration

First, verify that 'Group administration' is marked. YaST2 provides a list of all groups, which greatly facilitates the group administration. To delete a group, select it from the list (the line will be highlighted dark blue) and click 'Delete'. It is also easy to 'Add' and 'Edit' groups. Simply proceed as described in "Create a new group".

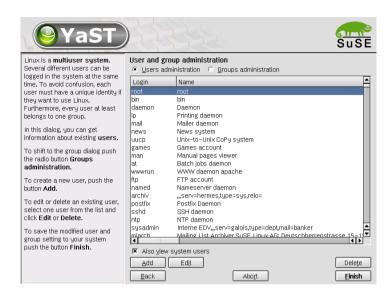


Figure 2.7: User Administration

Security Settings

In the start screen 'Local security configuration', which can be accessed under 'Security&Users', there are four selection items: Level 1 is for standalone computers (preconfigured). Level 2 is for workstations with a network (preconfigured). Level 3 is for a server with a network (preconfigured). Use 'Custom Settings' for your own configuration.

If you click one of the three items, have the option of incorporating one of the levels of preconfigured system security options. To do this, simply click 'Finish'. Under 'Details', access the individual settings that can be modified. If you choose 'Custom settings', proceed to the different dialogs with 'Next'. Here, find the default installation values.

'Password settings' Define how long the password should be for future users (minimum and maximum length). Five to eight characters is an acceptable value. Specify for how long a password should be valid, when it will expire, and how many days in advance an expiration warning should be issued (the warning is issued when logging in to the text console).

'Boot settings' This screen involves two things. First, it sets how the key

YaST		2 j			SuSE
Linux is a multiuser system. Several different users can be			ministration tion	inistration	
logged in the system at the same	Croup par	ol Croup I	ID Group members		
time. To avoid confusion, each	root				
user must have a unique identity if	hin	1	root daemon.bin	•	
they want to use Linux. Furthermore, every user at least	daemon	2	daemon		
belongs to one group.	sys	3	ademon		
belongs to one group.	ttu	5			
In this dialog, you can get	disk	6			
information about existing	lp	7	lp		
groups.	www	8			
To shift to the user dialog, push	kmem	9			
the radio button Users	wheel	10			
administration.	mail	12	mail		
	news	13	news		
To create a new group, push the	uucp	14	tuxlin,uucp		
button Add.	shadow dialout	15 16	tuxlin		
To edit or delete an existing	audio	16	tuxin		
group, select one group from the	floppy	19	CUXIII1		
list and push the button Edit or	cdrom	20			
Delete.	console	21			•
To save the modified user and	utmn	22			-
	🕱 Also vie	w system	n groups		
group setting to your system push the button Finish.	Add	Edi	t		Delete
page and backet in the in] <u> </u>			
	<u>B</u> ack		Abc	<u>ort</u>	<u>F</u> inish

Figure 2.8: Group administration

combination (Ctrl) + (Alt) + (Del) should be interpreted. Usually, this combination, entered in the text console, causes the system to restart. Leave it at that unless your machine or server is publicly accessible and you are afraid someone could carry out this action without authorization. If you select 'Stop', this key combination will cause the system to shut down. With 'Ignore', this key combination is ignored. Second, it sets who is permitted to shut down the system from KDM (KDE Display Manager — the graphical login). The options are 'Only root' (the system administrator), 'All users', 'Nobody', or 'Local users'. If 'Nobody' is selected, the system can only be shut down via the text console.

- **'Login settings'** Typically, following a failed login attempt, there is a waiting period lasting a few seconds before another login is possible. The purpose of this is to make it more difficult for "password sniffers". In addition, you have the option of activating 'Record failed login attempts' and 'Record successful login attempts'. If you suspect someone is trying to find out your password, check the entries in the system log files in /var/log.
- 'Add user settings' Every user has a numerical and an alphabetical user ID. The correlation between these is established via the file /etc/passwd

and should be as unique as possible.

Using the data in this screen, define the range of numbers assigned to the numerical part of the user ID when a new user is added. A minimum of 500 is reasonable for users.

'**Miscellaneous settings'** For 'Setting of file permissions', there are three selection options: 'Easy', 'Secure', and 'Paranoid'. The first one should be sufficient for most users. The YaST2 help text provides information about the three security levels.

The 'Paranoid' setting is extremely restrictive and should serve as the basic level of operation for system administrator settings. If you select 'Paranoid', take into account possible disturbances and malfunctions when using certain programs, because you will no longer have the permissions to access various files.

Also in this dialog, define which users can start the updatedb program. This program, which automatically runs either on a daily basis or after booting, generates a database (locatedb) where the location of each file on your computer is stored (locatedb can be searched by running the locate command). If you select 'Nobody', any user can find only the paths in the database that can be seen by any other (unprivileged) user. If root is selected, all local files are indexed, because the user root, as superuser, may access all directories.

Another option is to activate 'Omit current directory from the path of user root', a reasonable selection.

Press 'Finish' to complete your security configuration.

Firewall

This module can be used to activate and configure the SuSE Firewall. If you are connected to the Internet, you should make use of this protective measure. The SuSE Firewall protects you efficiently.

When the module is started, four dialogs appear consecutively. In the first dialog, select the interface you want to protect (see Figure 2.10 on page 27). 'External interface' is the interface for the Internet. 'Internal interface' is only required if you are located in an internal network and intend to use the fire-wall to protect your computer against internal attacks. In this case, your computer would be in a "demilitarized zone" (DMZ). Normally, a configuration with DMZ is only used for company networks.

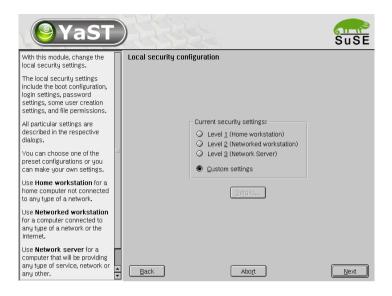


Figure 2.9: YaST2: Security Settings

After selecting your interface, selectively activate the services of your computer for which to allow access from the Internet (see Figure 2.11 on page 28). If you do not operate a server with one of these services but only want to surf the Internet and send and receive e-mail, do not activate any of these services (the more "doors" to the outside are closed, the fewer possibilities an attacker will have to intrude).

If you are not familiar with the terms masquerading and traceroute, simply accept the third dialog without any modifications. You can also accept the final dialog, as the default log options are usually sufficient.

When you click 'Next', a small window asks for confirmation. Then the new configuration is saved to your hard disk. The next time your Internet connection is started, your computer is protected effectively against attacks.

System

Creating a System Backup

The YaST2 backup module enables you to create a backup of your system. The backup created by the module does not comprise the entire system, but

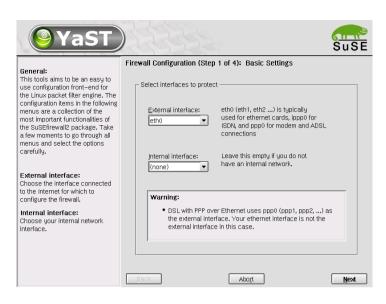


Figure 2.10: YaST2: SuSE Firewall: Selecting the Interfaces to Protect

only saves information about changed packages and copies of critical storage areas and configuration files.

Define the kind of data to save in the backup. By default, the backup includes information about any packages changed since the last installation run. In addition, it may include data that does not belong to packages themselves, such as many of the configuration files in /etc or in the directories under /home. Apart from that, the backup can include important storage areas on your hard disk that may be crucial when trying to restore a system, such as the partition table or the master boot record (MBR).

Restore

This module enables you to restore your system from a backup archive. Follow the instructions in YaST2. Press 'Next' to proceed to the individual dialogs. First, specify where the archives are located (removable media, local hard disks, or network file systems). As you continue, a description and the contents of the individual archives is displayed, so you can decide what to restore from the archives.

Additionally, there are two dialogs for uninstalling packages that were added since the last backup and for the renewed installation of packages that were

YaST		SuSE
Choose the services that should be available from the Internet.		Firewall Configuration (Step 2 of 4): Services Configure the services that should be available on your server
If you are not running a server of some kind, you should not need any of the services.		Web server └── <u>h</u> ttp ぼ http <u>w</u> ith ssl (https)
Attention: Even correctly configured packet filtering rules cannot save you from vulnerabilities that may be present in the services to which you allow access from the Internet. Use YOU (YaST2 Online Update) to keep your system up-to-date with the latest update packages from the SuSE FTP servers.		Mail server smtp pop3 F pop3 with ssl (pop3s) imap with ssl (imaps) Other services I telnet F Segure Shell (ssh) F rsunc
http: Service to run a web server, such as Apache.		Additional services:
smtp Service used by mail servers	^	Back Abort Next

Figure 2.11: YoST2: SuSE Firewall: Externally Accessible Services

deleted since the last backup. These two steps enable you to restore the exact system state at the time of the last backup.

Caution

As this module normally installs, replaces, or uninstalls many packages and files, you should use it only if you have experience with backups, as otherwise you may lose data.

Caution -

Sysconfig Editor

The directory /etc/sysconfig contains the files with the most important settings for SuSE Linux Enterprise Server (formerly centrally administered in the file /etc/rc.config). The sysconfig editor displays all settings in a transparent form. The values can be modified and saved to the individual configuration files.

The Section *SuSEconfig*, */etc/sysconfig*, *and /etc/rc.config* on page 198 ff. contains detailed information about the sysconfig editor along with the sysconfig variables,

Runlevel Editor

The runlevel of the system, its "operation mode", starts after your system boots. In SuSE Linux Enterprise Server this is usually runlevel 5 (full multiuser operation with network and KDM, the graphical login). The standard runlevel can be adjusted with this module. Also adjust which services are started in which runlevel. See Table 9.1 on page 193. Runlevels in Linux are described in more detail in *Runlevels* on page 192.

Expert Partitioning

The partitioning module for professionals enables editing and deletion of existing partitions, as well as the creation of new ones. Access Soft RAID and LVM configuration from here.

- Note

Lots of background information and partitioning tips can be found in SuSE Linux Enterprise Server *Installation Manual*.

In normal circumstances, partitions are specified during installation. However, it is possible to integrate a second hard disk in an already existing Linux system. First, the new hard disk must be partitioned. Then it must be mounted and entered into the /etc/fstab file. It may be necessary to copy some of the data to move an /opt partition from the old hard disk to the new one.

Use caution if you want to repartition the hard disk you are working on — this is essentially possible, but you will have to reboot the system right afterwards. It is a bit safer to boot from CD then repartition it.

The 'Experts...' button reveals a pop-up menu containing the following commands:

- **Reread Partition Table** Rereads the partitioning from disk. For example, you will need this for manual partitioning in the text console.
- Adopt Mount Points from Existing /etc/fstab This will only be relevant during installation. Reading the old fstab is useful for completely reinstalling your system rather than just updating it. In this case, it is not necessary to enter the mount points by hand.

Delete Partition Table and Disk Label This completely overwrites the old partition table. For example, this can be helpful if you have problems with unconventional disk labels. Using this method, all data on the hard disk will be lost.

Logical Volume Manager (LVM)

The Logical Volume Manager (LVM) enables flexible distribution of hard disk space over several file systems. As it is difficult to modify partitions on a running system, LVM was developed: it provides a virtual "pool" (Volume Group — VG for short) of memory space, from which logical volumes (LV) can be generated if needed. The operating system will access these instead of the physical partitions.

Features:

- Several hard disks or partitions can be combined into a large logical partition.
- If a LV (e.g., /usr) is full, it can be enlarged with the appropriate configuration.
- With the LVM, even append hard disks or LVs in a running system. However, "hot–swappable" hardware, designed for these types of interventions, is required for this.

Implementing LVM already makes sense for heavily used home PCs or small servers. If you have a growing data stock, as in the case of databases, MP3 archives, or user directories, the Logical Volume Manager is just the right thing for you. This would allow you file systems that are larger than physical hard disk. Another advantage of the LVM is up to 256 LVs can be added. Keep in mind that working with the LVM is very different than working with conventional partitions.

The annex of the SuSE Linux Enterprise Server *Installation Manual* contains detailed instructions on the configuration and management of LVM.

Instructions and further information on configuring the "Logical Volume Manager" (LVM) can be found in the official LVM HOWTO and the SuSE documentation:

- http://www.sistina.com/lvm/Pages/howto.html
- http://www.suse.com/us/support/oracle/.

Soft RAID

The purpose of RAID (Redundant Array of Inexpensive Disks) is to combine several hard disk partitions into one large "virtual" hard disk for the optimization of performance and data security. Using this method, however, one advantage is sacrificed for another. "RAID level" defines the pool and common triggering device of the all hard disks, known as the RAID controller. A RAID controller mostly uses the SCSI protocol, because it can drive more hard disks better than the IDE protocol. It is also better able to process parallel running commands.

Instead of a RAID controller, which can often be quite expensive, the Soft RAID is also able to take on these tasks. SuSE Linux Enterprise Server offers the option of combining several hard disks into one Soft RAID system with the help of YaST2 — a very reasonable alternative to Hardware RAID.

Customary RAID Levels

- **RAID 0** This level improves the performance of your data access. Actually, this is not really a RAID, because it does not provide data backup, but the name "RAID 0" for this type of system has become the norm. With RAID 0, two hard disks are pooled together. The performance is very good although the RAID system will be destroyed and your data lost, even if just one of the many remaining hard disks fails.
- **RAID 1** This level provides more than adequate backup for your data, since the data is copied to another hard disk 1:1. This is known as "hard disk mirroring" if a disk is destroyed, a copy of its contents is located on another one. All of them except one could be damaged without endangering your data. The writing performance suffers a little in the copying process when using RAID 1 (ten to twenty percent slower), but read access is significantly faster in comparison to any one of the normal physical hard disks, because the data is duplicated so can be parallel scanned.
- **RAID 5** RAID 5 is an optimized compromise between the two other levels in terms of performance and redundancy. The hard disk potential equals the number of disks used minus one. The data is distributed over the hard disks as with RAID 0. "Parity blocks", created on one of the partitions, are there for security reasons. They are linked to each other with XOR thus enabling the contents, via XDR, to be reconstructed by the corresponding parity block in case of system failure. With RAID 5, no more than one hard disk can fail at the same time.

If one is destroyed, it must be replaced as soon as possible to save the data.

Instructions and further information on the configuration of Soft RAID can be found in the following HOWTOs:

- /usr/share/doc/packages/raidtools/Software-RAID-HOWTO. html
- http://www.LinuxDoc.org/HOWTO/Software-RAID-HOWTO.html

or in the Linux RAID mailinglist at:

http://www.mail-archive.com/linux-raid@vger.rutgers. edu

There you will also find assistance should you unexpectedly encounter any serious difficulty.

Time Zone Selection

The time zone was already set during the installation, but you can make changes here. Click your country or region in the list and select 'Local time' or 'GMT' (Greenwich Mean Time). 'GMT' is often used in Linux systems. Machines with additional operating systems, such as Microsoft Windows, mostly use the local time.

Language Selection

Here, set the language for your Linux system. The language can be changed at any time. The language selected in YaST2 applies to the entire system, including YaST2 and the desktop environment KDE 3.

Miscellaneous

Start Protocol

The start protocol contains the screen messages displayed when the computer is started. The start protocol is logged to /var/log/boot.msg. Use this YaST2 module to view the protocol, for example, to check if all services and functions were started as expected.

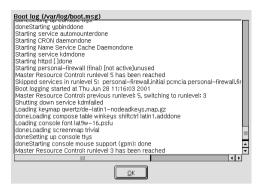


Figure 2.12: Display Start Protocol

System Protocol

The system protocol logs the operations of your computer to /var/log/ messsages. Kernel messages are recorded here, sorted according to date and time.

System log (/var/log/messages)
Aug 7 12:51:47 uhlenbeck kernel: ppa: Version 2.07 (for Linux 2.4.x)
Aug 7 12:51:47 uhlenbeck kernel: WARNING – no ppa compatible devices found.
Aug 7 12:51:47 uhlenbeck kernel: As of 31/Aug/1998 Iomega started shipping pa
Aug 7 12:51:47 uhlenbeck kernel: port ZIP drives with a different interface which
Aug 7 12:51:47 uhlenbeck kernel: supported by the imm (ZIP Plus) driver. If the
Aug 7 12:51:47 uhlenbeck kernel: cable is marked with "AutoDetect", this is what
Aug 7 12:51:47 uhlenbeck kernel: happened.
Aug 7 12:51:51 uhlenbeck modprobe: modprobe: Can't locate module block-major
Aug 7 12:51:52 uhlenbeck last message repeated 15 times
Aug 7 12:51:52 uhlenbeck modprobe: modprobe: Can't locate module block-major
Aug 7 12:51:53 uhlenbeck last message repeated 7 times
Aug 7 12:51:53 uhlenbeck modprobe: modprobe: Can't locate module block-major
Aug 7 12:51:54 uhlenbeck last message repeated 7 times
Aug 7 12:51:54 uhlenbeck kernel: VFS: Disk change detected on device fd(2.0)
Aug 7 12:51:54 uhlenbeck kernel: end_request: I/O error, dev 02:00 (floppy), secto
Aug 7 12:51:54 uhlenbeck kernel: VFS: Disk change detected on device fd(2.0)
Aug 7 12:51:54 uhlenbeck kernel: end_request: I/O error, dev 02:00 (floppy), secto
Aug 7 12:51:54 uhlenbeck kernel: cdrom: open failed.
Aug 7 12:51:54 uhlenbeck kernel: VFS: Disk change detected on device ide1(22,0 💌
• •
<u>O</u> K

Figure 2.13: Display System Protocol

Loading a Vendor's Driver CD

With this module, automatically install device drivers from a Linux driver CD that contains drivers for SuSE Linux Enterprise Server. When installing

SuSE Linux Enterprise Server from scratch, use this YaST2 module to load the required drivers from the vendor CD after the installation.

The X Window System

Historical Background

The X Window System is the de facto standard GUI for UNIX. Yet the X Window System is far more than this — X11 is a network-based system. Applications running on the machine earth can display their results on the machine sun, provided the two machines are connected via a network. The network could be a local one (LAN) or a connection between computers thousands of miles away via the Internet.

X11 was first developed as an enterprise of DEC (Digital Equipment Corporation) and the project Athena at MIT (Massachusetts Institute of Technology). The first release of X11R1 was in September 1987. Since release 6, the X Consortium, Inc. has been responsible for the development of the X Window System.

XFree86 TM is a freely available implementation of X servers for PC systems. It was developed by a handful of ambitious programmers who founded the XFree86 team in 1992. In 1994, this team went on to found The XFree86 Project, whose aim is to continue research and development on X11 and to provide it to the public. Since March 2000, the completely revised major release XFree86-4.0 has been available for download from http://www.XFree86.org. By default, SuSE Linux Enterprise Server installs XFree86-4.0. Below, take a closer look at the features of this version.

SuSE would like to thank the XFree86 team for their help and for their permission to include beta servers on our CD's¹, without which their production would have been much more difficult, if at all possible.

¹Parts of this documentation are taken from chapter *XFree86 Konfigurieren* from [HHMK96] which was kindly given to us by Dirk Hohndel

The next sections are about configuring the X server. For this purpose $SaX2^2$ and xf86config will be discussed, simple tools for configuring the X Window System.

In contrast to the text-based xf86config, SaX2 works directly with the X server and can be operated with the mouse.

To make optimal use of the hardware available (graphics card, monitor, keyboard), optimize the configuration manually. Certain aspects of this optimization will be explained. Even more detailed information on configuring the X Window System can be found in the directory /usr/share/ doc/packages/xf86 as well as in the the man page for XF86Config (man XF86Config).

Caution

Be very careful when configuring your X Window System. Never start the X Window System until the configuration is finished. A wrongly configured system can cause irreparable damage to your hardware (this applies especially to fixed-frequency monitors). The authors of this book and SuSE cannot be held responsible for damage. This information has been carefully researched, but this does not guarantee that all methods presented here are correct and will not damage your hardware.

Caution -

Version 4.x of XFree86

This version of SuSE Linux Enterprise Server comes with version 4.x of XFree86 which differs from the previously used version 3.3 in a number of ways. Overall there are hardly any differences for the user when operating the graphical desktop. Applications, such as the graphical desktops KDE or GNOME, behave with the new version in the same way as version 3.3.6 included in earlier distributions.

Advantages

The new X server is no longer a monolithic program, but just a relatively small basic scaffolding to which the necessary program modules can be later

 $^{^{2}}SaX:$ SuSE Advanced X Configuration Tool The configuration program SaX2 (sax2) to configure XFree86-4.0 makes XF86Setup (package xfsetup) obsolete.

added, if and when required. For example, there are no longer many different X servers for different graphics cards as in the previous version, but just one executable program called XFree86, which can be found in the directory /usr/X11R6/bin. This is also the actual X server. The graphics driver, which then takes on the task of controlling the graphics card, is a loadable module.

A similar method is used to support the various input devices, fonts, or X protocols. This again consists of individual modules that can be later loaded by the X server. As a rule, you do not need to worry about these modules. The configuration of the modules to operate the graphical desktop on your computer is managed as far as possible by SoX2.

Through this module concept, it is easy for a vendor to implement a driver for exotic hardware, such as touch screens or new graphics cards. The developers have even ensured that the necessary modules for various operating systems only need to be made available once, which means that a graphics driver module compiled in FreeBSD, for example, can also be used in Linux and vice versa. This portability, however, is limited to the same hardware platform: a module compiled for Linux on PowerPCs cannot be used on an Intel PC.

Support for the mouse has also been significantly improved. Especially under heavy loads, the reaction of the mouse to mouse movements is considerably faster and more direct than with the previous XFree86 X server. Overall, the output speed has also been improved, so graphics operations are generally performed more quickly than on the old X server due to the completely revised XAA (*XFree86 Acceleration Architecture*).

Compared to XFree86 3.3.x, the configuration file has a slightly different format and is now located in /etc/X11/XF86Config. For fine-tuning your X configuration, details on the structure of the configuration file and how it functions can be found in Section *Optimizing the Installation of the X Window System* on page 44.

Error logging has also been improved. The X server creates a very detailed log file, which you can always find after the X server has started in the file /var/log/XFree86.0.log. One of the further features of this version is the support of special options, such as True Type fonts. Other features also include the provision of the 3D protocol extension, glx, gamma correction of the screen, and the support of multiple graphics cards for Multihead configurations. More information on this can be found in Section *Optimizing the Installation of the X Window System* on page 44.

Configuration with SaX2

Normally, the graphical interface is set up during the installation. To improve the values or connect a different monitor in the running system, use this YaST2 module. The current configuration is saved before any changes are made.

Configuration uses the same dialog as during the installation of SuSE Linux Enterprise Server. Choose between 'Text mode only' and the graphical interface. The current values are displayed for the latter: the screen resolution, the color depth, the refresh rate, and the vendor and type of your monitor, if it was autodetected. If you are in the process of installing your system or have just installed a new graphics card that you want to initialize, a small dialog appears, asking whether to activate 3D acceleration for your graphics card.

Click 'Edit'. SaX2, the configuration tool for the input and display devices, is started in a separate window.

SaX2— Main Window

In the left navigation bar, there are four main items: 'Display', 'Input devices', 'Multihead', and 'AccessX'. Configure your monitor, graphics card, color depth, resolution, and the position and size of the screen under 'Display'. The keyboard, mouse, touchscreen monitor, and graphics tablet can be configured under 'Input devices'. Use 'Multihead' to configure multiple screen operation (see *Multihead* on page 42). Here, set the multihead display mode and the layout of the screens on your desk. 'AccessX' is a useful tool for controlling the mouse pointer with the number pad. Adjust the speed of the mouse pointer controlled with the number pad.

Select your monitor and your graphics card. Usually, these are automatically detected by the system. In this case, you do not need to modify anything. If your monitor is not autodetected, automatically continue to the monitor selection dialog. Most likely, you can find your monitor in the comprehensive vendor and device list. You can also manually enter the values specified in the monitor documentation or select one of the preconfigured VESA modes.

After you click 'Finish' in the main window following the completion of the settings for your monitor and your graphics card, test your settings. Thus, ensure that your configuration is suitable for your devices. If the image is not steady, terminate the test immediately by pressing (Esc) and reduce the refresh rate or the resolution and color depth. Regardless of whether you run a test, all modifications are only activated when you restart the X server.

Display

If you go to 'Edit configuration' \rightarrow 'Properties', a window with the tabs 'Monitor', 'Frequencies', and 'Expert' appears.

• 'Monitor' – In the left part of the window, select the vendor. In the right part, select your model. If you have floppy disks with Linux drivers for your monitor, install these by clicking 'Driver disk'.

KAGA KDS KOREA LACIE LEO SYSTEMS LG LG ELECTRONICS LION M MACOM	VISION MASTER PRO 410 VISION MASTER PRO 450 VISION MASTER PRO 451 (A302MT VISION MASTER PRO 452 (MA901L VISION MASTER PRO 500 VISION MASTER PRO 501 VISION MASTER PRO 502 VISION MASTER PRO 510 (A201HT VISION MASTER PRO 511 (MA201E VISION MASTER PRO 511 (MA201E)
--	--	---

Figure 3.1: SaX2: Monitor Selection

- 'Frequencies' Here, enter the horizontal and vertical frequencies for your screen. The vertical frequency is another designation for the image refresh rate. Normally, the acceptable value ranges are read from the model and entered here. Usually, they do not need to be changed.
- 'Expert' Here, enter some options for your screen. In the upper selection field, define the method to use for the calculation of the screen resolution and screen geometry. Do not change anything unless the monitor is addressed incorrectly and the display is not stable. Furthermore, you can change the size of the displayed image and activate the power saving mode DPMS.

Graphics Card

The graphics card dialog has two tabs – 'General' and 'Expert'. In 'General' as in the monitor configuration, select the vendor of your graphics card on the left side and the model on the right.

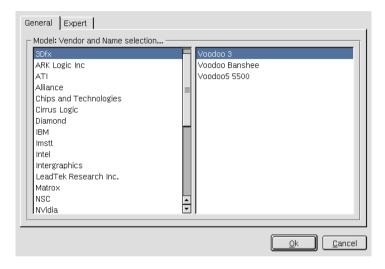


Figure 3.2: SaX2: Selecting the Graphics Cards

'Expert' offers more advanced configuration possibilites. On the right side, turn your screen to the left or to a vertical position (useful for some turnable TFT screens). The entries for the BusID are only relevant if you operate several screens. Normally, nothing needs to be changed here. You should not modify the card options unless you have experience in this field and know what the options mean. If necessary, check the documentation of your graphics card.

Note

The configuration of graphics cards exclusively supported by XFree86 3.3.6 is no longer included in the installation. This affects cards like older S3 PCI cards. Instead, depending on the graphics card, YaST2 configures the framebuffer without acceleration or the generic 16-color VGA driver for these graphics cards. If your card is affected, repeat the configuration with XFree86 3.3.6 using SaX 1. For this purpose, enter the command sax on the command line.

Note -

Colors and Resolutions

Here, see three tabs - 'Colors', 'Resolution', and 'Expert'.

- 'Colors' Depending on the hardware used, select a color depth of 16, 256, 32768, 65536, or 16.7 million colors (4, 8, 15, 16, or 24 bit). For a reasonable display quality, set at least 256 colors.
- 'Resolution' When the hardware is detected, the resolution is queried. Therefore, the module usually only offers resolution and color depth combinations that your hardware can display correctly. This keeps the danger of damaging your hardware with wrong settings very low in SuSE Linux Enterprise Server. If you change the resolution manually, consult the documentation of your hardware to make sure the value set can be displayed.

Colors Resolution Expert	
Select resolutions 1600x1200 1600x1024 1600x1050 1280x1024 1280x2060 1152x864 1024x768 800x600 800x600 640x480	
Graphics engine starts with resolution: 1280x960	
	<u>Ok</u> <u>C</u> ancel

Figure 3.3: SaX2: Configuring the Resolution

• 'Expert' – In addition to the resolutions offered in the previous tab, this tab enables you to add your own resolutions, which will subsequently be included for selection in the tab.

3D Acceleration

Optionally activate the 3D acceleration of your graphics card. A dialog is displayed in which to activate the 3D properties of your graphics card.

Image Position and Size

Under these two tabs, precisely adjust the size and the position of the image with the arrows (see Figure 3.4). If you have a multihead environment (more than one screen), use the 'Next screen' button to move to the other monitors to adjust their size and position. Press 'Save' to save your settings.

Step size		
Change Position	Change Size	
-		⇒
aX	➡	
CO Screen [0] : 128	0x960 @ 86 Khz : 85 Hz	li
Cancel	Next Screen	Save

Figure 3.4: Adjusting the Image Geometry

Multihead

If you have installed more than one graphics card in your computer or a graphics card with multiple outputs, you can connect more than one screen to your system. If you operate two screens, this is referred to as "dualhead." More than two is referred to as "multihead." SoX2 automatically detects multiple graphics cards in the system and prepares the configuration accordingly. Set the multihead mode and the arrangement of the screens in the multihead dialog. Three modes are offered: 'Traditional' (default), 'One screen (Xinerama)', and 'Clone mode':

- 'Traditional multihead' Each monitor represents an individual unit. The mouse pointer can switch between the screens.
- 'Cloned multihead' In this mode, all monitors display the same contents. The mouse is only visible on the main screen.
- 'Xinerama multihead' All screens combine to form a single large screen. Program windows can be positioned freely on all screens or scaled to a size that fills more than one monitor.

The layout of a multihead environment describes the arrangement of and the relationship between the individual screens. By default, SOX2 configures a standard layout that follows the sequence of the detected graphics cards, arranging all screens in a row from left to right. In the 'Layout' dialog of the multihead tool, determine the way the monitors are arranged on your screen by using the mouse to move the screen symbols in the grid. After you have completed the layout dialog, verify the new configuration by clicking 'Test'.

Linux currently does not offer 3D support for Xinerama multihead environments. In this case, SaX2 deactivates the 3D support.

Input Devices

Mouse If the mouse already works, you do not need to do anything. However, if the mouse does not work, control it with the number pad of the keyboard as described in *AccessX* on the next page.

If the automatic detection fails, use this dialog to configure your mouse manually. Refer to the documentation of your mouse for a description of the model. Select your model from the list of supported mouse types and confirm by pressing (5) on the number pad.

Keyboard The selection field at the top of this dialog enables you to specify the kind of keyboard to use. Then select the language for the keyboard layout (the country-specific position of the keys). Use the test field to check if special characters are displayed correctly.

The status of the check box used for activating and deactivating the entry of accented letters depends on the respective language and does not need to be changed. Click 'Finish' to apply the new settings to your system.

- **Graphics Tablet** Currently XFree86 only supports a limited number of graphics tablets. SaX2 enables the configuration of graphics tablets connected to the USB port or the serial port. From the configuration perspective, a graphics tablet is like a mouse as an input device. The following procedure is recommended:
 - 1. Start SaX2 and select 'Input devices' \rightarrow 'Graphics tablet'.
 - 2. Click 'Add', select the vendor from the following dialog, and add a graphics tablet from the selection list.
 - 3. Mark the check boxes to the right if you have connected a pen or eraser.

- If your tablet is connected to the serial port, verify the port. /dev/ttyS0 refers to the first serial port. /dev/ttyS1 refers to the second. Additional ports use similar notation.
- 5. Save the configuration by clicking 'Finish'.
- **Touchscreen** Currently XFree86 only supports Microtouch and Elo Touch-Systems touchscreens. SaX2 can only autodetect the monitor, not the toucher. The toucher is treated as an input device. Configure the toucher as follows:
 - 1. Start SoX2 and select 'Input devices' \rightarrow 'Touchscreens'.
 - 2. Click 'Add' and add a touchscreen.
 - 3. Save the configuration by clicking 'Finish'. You do not need to test the configuration.

Touchscreens feature a variety of options and usually have to be calibrated first. Unfortunately, there is no general tool for this purpose in Linux. The standard configuration contains suitable default values for the dimensions of the touchscreen. Normally, no additional configuration is required.

AccessX

If you operate your computer without a mouse and activate AccessX in SoX2, you can control the mouse pointer on your screen with the number pad of your keyboard. Use (%) as the left mouse button. (X) works as the middle mouse button. Use (-) as the right mouse button. Press one of those keys to select a button. Then release it and use (5), (+), and (0) to click, double-click, or lock the button. Locking is a way of simulating keeping a button pressed. (De) releases the button locked by (0). Move the cursor using the number pad keys (1), (2), (3), (4), (6), (7), (8), and (9). Use the slider to determine the speed of the mouse pointer when the respective keys are pressed.

Optimizing the Installation of the X Window System

This section describes the configuration file, /etc/X11/XF86Config. Each *section* starts with the keyword Section <name of section> and ends with EndSection. Below is a rough outline of the most important sections.

Afterwards, learn how to integrate additional fonts, how to configure input devices, and how 3D acceleration is implemented. This is also managed in certain sections of the XF86Config file, of course, although integrating an additional font requires the help of external programs, which are included with SuSE Linux Enterprise Server or are part of the default installation. The methods discussed here aim to illustrate the possibilities available and serve as an incentive, but they do not claim to cover all eventualities.

The programs SGX2 and xf86COnfig (for XFree86-4.0) create the file XF86Config, by default in /etc/X11. This is the primary configuration file for the X Window System. Find all the settings here concerning your graphics card, mouse, and monitor.

XF86Config is divided into several sections, each one dealing with a certain aspect of the configuration. A section always has the same form:

```
Section (name of section)
entry 1
entry 2
entry n
EndSection
```

The following types of sections exist:

Files	This section describes the paths used for fonts and the RGB color table.
ServerFlags InputDevice	General switches are set here. Input devices are configured in this section. In con-
	trast to XFree86-3.3, keyboards, mice, and special input devices (touch pad, joysticks, etc.) are configured via this section. Important terms here are Driver and the options defined by Protocol and Device.
Monitor	Describes the monitor used. The individual elements of this are the name, which is referred to later in the Screen definition, the bandwidth, and the allowed sync frequencies (HorizSync and VertRefresh). Set- tings are given in MHz, kHz, and Hz. Normally, the server refuses any mode line that does not correspond with the specification of the monitor. This is to prevent too high frequencies from being sent to the monitor by accident.

Table 3.1: continued overleaf...

Modes	The mode line parameters are stored here for the spe- cific screen resolutions. These parameters can be cal- culated by SGX2 on the basis of the values given by the user and normally do not need to be changed. You can intervene manually at this point, however, if, for example, you want to connect a fixed frequency monitor. An exact explanation of the individual pa- rameters would be too much for this book. Find de- tails on the meaning of individual number values in the HOWTO file /usr/share/doc/howto/en/
	XFree86-Video-Timings-HOWTO.gz.
Device	This section defines a specific graphics card. It is refer- enced by its descriptive name.
Screen	This section puts together a Driver (e.g., vga2), a monitor, and a Device to form all the necessary set- tings for XFree86. In the Display subsection, specify the size of the virtual screen (Virtual, the ViewPort, and the Modes) used with this virtual screen.
ServerLayout	This section defines the layout of a single or multihead configuration. The input devices InputDevice and the display devices Screen are combined into one section.

Table 3.1: Sections in /etc/X11/XF86Config

We will now take a closer look at Monitor, Device, and Screen. Further information on the other sections can be found in the man page for XFree86 (man XFree86) and the man page for XF86Config (man XF86Config).

There can be several different Monitor sections in XF86Config. Even multiple Screen sections are possible. Which one is started depends on the server started.

Screen Section

First, we will take a closer look at the screen section. As mentioned above, this combines a monitor with a device section and determines which resolution using which color depth should be used.

A screen section might look like the example in File 1 on the facing page.

```
Section "Screen"
 DefaultDepth 16
 SubSection "Display"
   Depth 16
   Modes
             "1152x864" "1024x768" "800x600"
   Virtual 1152x864
 EndSubSection
 SubSection "Display"
   Depth 24
Modes "1280x1024"
 EndSubSection
 SubSection "Display"
   Depth 32
             "640x480"
   Modes
 EndSubSection
 SubSection "Display"
   Depth 8
   Modes
             "1280x1024"
 EndSubSection
        "Device[0]"
 Device
 Identifier
              "Screen[0]"
             "Monitor[0]"
 Monitor
EndSection
```

File 1: The Screen Section of the File /etc/X11/XF86Config

The line Identifier (here Screen[0]) gives this section a defined name with which it can be uniquely referenced in the following ServerLayout section.

The lines Device and Monitor specify the graphics card and the monitor that belong to this definition. These are just links to the Device and Monitor sections with their corresponding names or "identifiers". These sections are discussed later in more detail.

Using DefaultColorDepth, select which color depth mode the server will use if this is not explicitly stated. There is a Display subsection for each color depth. Depth assigns the color depth valid for this subsection. Possible values for Depth are 8, 16, 24, and 32. Not every X server supports all these modes. For most cards, 24 and 32 are basically the same. Some take 24 for packed pixel 24bpp mode, whereas others choose 32 for padded pixel mode.

After the color depth, a list of resolutions is set (Modes). This list is checked by the server from left to right. For each resolution, a suitable Modeline is searched, which has to correspond to one of the given clock rates or a clock rate to program the card.

The first resolution found is the Default mode. With (Ctrl) + (Att) + (+) (on the number pad), switch to the next resolution in the list to the right. With

(Ctrl) + (Alt) + (-) (on the number pad), switch to the left. This enables you to vary the resolution while X is running.

The last line of the Display subsection with Depth 16 refers to the size of the virtual screen. The maximum possible size of a virtual screen depends on the amount of memory installed on the graphics card and the desired color depth, not on the maximum resolution of the monitor. Since modern graphics cards have a large amount of video memory, you can create very large virtual desktops. You should note, however, that you may no longer be able to use 3D functionality if you fill most of the video memory with a virtual desktop. If the card has 16 MB video RAM, for example, the virtual screen can be up to 4096x4096 pixels in size at 8-bit color depth. Especially for accelerated cards, however, it is not recommended to use up all your memory for the virtual screen, since this memory on the card is also used for several font and graphics caches.

Device Section

A device section describes a specific graphics card. You can have as many device entries in XF86Config as you like, as long as their names are differentiated, using the keyword Identifier. As a rule — if you have more than one graphics card installed — the sections are simply numbered in order the first one is called Device[0], the second one Device[1], and so on. In the following file, you can see the section from the Device section of a computer in which a Matrox Millenium PCI graphics card is installed.

```
Section "Device"
BoardName "MGA2064W"
BusID "0:19:0"
Driver "mga"
Identifier "Device[0]"
VendorName "Matrox"
Option "sw_cursor"
EndSection
```

If you use SQX2 for configuring, the device section should look something like the above diagram. Both the Driver and BusID are dependent on the hardware installed in your computer and are detected by SQX2 automatically. The BusID defines the PCI or AGP slot in which the graphics card is installed. This matches the ID displayed by the command lspci. Note here that the X server wants details in decimal form, but lspci displays these in hexadecimal form.

Via the Driver parameter, specify the driver to use for this graphics card. If the card is a Matrox Millenium, the driver module is called mga. The X

server then searches through the ModulePath defined in the Files section in the drivers subdirectory. In a standard installation, this is the directory /usr/X11R6/lib/modules/drivers. For this purpose, simply _drv.o is added to the name, so, in the case of the mga driver, the driver file mga_drv.o is loaded.

The behavior of the X server or of the driver can also be influenced through additional options. An example of this is the option sw_cursor, which is set in the device section. This deactivates the hardware mouse cursor and depicts the mouse cursor using software. Depending on the driver module, there are various options available, which can be found in the description files of the driver modules in the directory /usr/X11R6/lib/X11/doc. Generally valid options can also be found in the man page for XF86Config (man XF86Config) and the man page for XFree86 (man XFree86).

Monitor Section

Monitor sections each describe, in the same way as the device sections, one monitor. The configuration file /etc/X11/XF86Config can again contain as many Monitor sections as you want. The server layout section specifies which monitor section is relevant.

Monitor definitions should only be set by experienced users. A critical part of the monitor section is the mode lines, which set horizontal and vertical timings for the appropriate resolution. The monitor properties, especially the allowed frequencies, are stored in the monitor section.

Caution

Unless you have an in-depth knowledge of monitor and graphics card functions, nothing should be changed in the mode lines, since this could cause severe damage to your monitor.

For those who want to develop their own monitor descriptions, the documentation in /usr/X11/lib/X11/doc might come in handy. The section [FCR93] deserves a special mention. It describes, in detail, how the hardware functions and how mode lines are created.

Luckily a "manual" setting of the mode lines is hardly ever needed nowadays. If you are using a modern multisync monitor, the allowed frequencies and optimal resolutions can, as a rule, be read directly from the monitor by the X server via DDC, as described in the SaX2 configuration section. If this is not possible for some reason, you can also use one of the VESA modes included in the X server. This will function with practically all graphics card and monitor combinations.

Integrating Additional (True Type) Fonts

A standard X11R6 X server installation also includes a large number of fonts. These can be found in the directory /usr/X11R6/lib/X11/fonts, each divided into logically connected groups in subdirectories. Make sure that only subdirectories of the X server are used that:

- are entered in the files section, Files of the file /etc/X11/ XF86Config as FontPath.
- contain a valid fonts.dir file.
- were not closed while the X server was running using the command xset -fp or were started while the X server was running using the command xset +fp.

Since version 4.0, XFree86 can use not only its own format Type1 (a Postscript format) for scalable fonts and pcf for bitmap ones, but also the ttf (True Type font) fonts. As described in Section *Version 4.x of XFree86* on page 36, this support is provided via loadable modules of the X server. Thus, you can also use directories containing True Type fonts together with the X server. To do this, hardly any preparation is needed.

A big advantage of most True Type fonts, apart from their very good scalability, is that these fonts almost always contain more than the normal 255 characters of the font for western Europe coded in "iso-8859-1". With these fonts, you can display Cyrillic, Greek, or eastern European languages without any problem and, with special software, even Asian languages.

This description is essentially about the use of fonts as 8-bit character sets. If you want to use characters of Asian languages (Japanese, Chinese, etc.), use special editors, which are also available in SuSE Linux Enterprise Server.

An 8-bit character set contains 255 characters and basically consists of the US-ASCII character set, which defines only the first 128 of 255 possible characters, and expands it with further characters. One text character occupies 8-bits in the computer memory. As 127 characters are certainly not enough to record the special characters, for example, of all European languages, the various languages are combined into groups and this group is then given a short name. The relevant character set is named according to the appropriate

norm as the "iso-8859-x" character set, where the x stands for a number from 1 to 15. The exact order of characters in the iso-8859-1 character set can be found in the man page for iso-8859-1 (man iso-8859-1).

The more well-known codings are listed in Table 3.2 : further ones can be taken from the above-mentioned manual page.

Font	Supported regions, contains special characters
iso-8859-1	West European languages: Spanish, German, French,
	Swedish, Finnish, Danish, and others
iso-8859-2	Central and Eastern Europe: Czech, Rumanian, Polish,
	German, and others
iso-8859-5	Cyrillic characters for Russian
iso-8859-7	Greek characters for Greek
iso-8859-9	Turkish characters
iso-8859-15	As iso-8859-1, but with characters for Turkish and the
	Euro sign.

Table 3.2: Important Font Codings

The user must then — depending on the language used — select the matching encoding. Especially when transferring texts between different computers, the encoding used must also be transferred. The advantage of this procedure is obvious: To receive support for regional special characters, you only need to select the correct encoding and immediately most programs will be able to portray these special characters, since almost all programs use an 8bit value (one byte) to represent a text character. If the wrong encoding is chosen, the special characters will be wrongly depicted. With most X applications, as well as with the KDE desktop, you can usually select the coding of the character set when you are configuring the font to use. In X applications, the encoding is usually referred to as Encoding.

The disadvantage of this method is that some language combinations are impossible: You cannot, for example, easily write a German text with umlauts in which you mention Russian place names in Cyrillic.

This dilemma can only be solved using a different approach — with the use of Unicode. Unicode codes characters, unlike ASCII, with two or even more bytes, allowing considerably more characters to be represented. Only if you use Unicode can you depict Asian languages with more than 127 characters, such as Chinese, Japanese, or Korean, on the computer. The disadvantage

of this method is that most existing software cannot handle these characters and that you can only read or write texts yourself with Unicode characters using special software. For more information on using Unicode fonts in Linux, see http://www.unicode.org. It is expected that, in the future, more and more programs will support Unicode characters. SuSE Linux Enterprise Server offers the program yudit to enter texts in Unicode. The program yudit can be found in the package yudit and, after installation, via the SuSE menu, under Office \rightarrow Editors.

After these observations, we now have a step-by-step description of the installation of additional fonts, using the example here of True Type fonts.

Locate the fonts to install in your X Window System. If you have licensed True Type fonts, you can simply use these on your system. Mount the partition containing these fonts.

You should create a font directory — if this does not yet exist — and change to it. SuSE Linux Enterprise Server already has a directory called /usr/X11R6/lib/X11/fonts/truetype. You can copy the relevant fonts to this directory.

earth:/root # cd /usr/X11R6/lib/X11/fonts/truetype

Create links to the ttf files and create the font directory. For True Type fonts, you will additionally need a special program called ttmkfdir, package ttmkfdir, to create the file fonts.dir. Traditional X fonts are only included using the command mkfontdir. Instead of the path (/path/to/the/fonts), set the corresponding path in which these fonts are located.

```
earth:/usr/X11R6/lib/X11/fonts/truetype #
    ln -s (/pfad/zu/den/fonts)/*.ttf .
earth:/usr/X11R6/lib/X11/fonts/truetype #
    ttmkfdir | sed s/^[0-9]*// >fonts.scale.myfonts
earth:/usr/X11R6/lib/X11/fonts/truetype #
    /sbin/conf.d/SuSEconfig.fonts
```

If the X server is already running, you can now make the fonts dynamically available. To do this enter:

earth:~ # xset +fp /usr/X11R6/lib/X11/fonts/truetype

Tip

The xset command accesses the X server via the X protocol. It must therefore have access permissions for the X server currently running. You can find more on this in the man page for xauth (man xauth)

Tip -

To set up the fonts permanently, add this search path to the file XF86Config. You can use SaX2 to do this. To change the fonts path, you must select the 'Custom' configuration mode of SaX2. In 'Path dialog', add the directory, with 'Add', to the directories already listed.

Test if the fonts were set up correctly. To do this, use the command xlsfonts. If the fonts are correctly installed, the list of all installed fonts, including the newly installed True Type Fonts, is displayed. You can also use the KDE font manager, which displays the installed fonts with an sample text. This can be started in the KDE Control Center.

earth:~ # **xlsfonts**

These newly installed fonts can then be used in all X applications.

OpenGL — 3D Configuration

OpenGL and GLIDE are 3D interfaces for 3Dfx Voodoo cards in Linux. Almost all modern 3D applications use the OpenGL interface, so 3D hardware acceleration can only be implemented over the OpenGL interface, even in the case of 3Dfx Voodoo cards. Only older applications still use the GLIDE interface directly. The OpenGL driver for 3DfxVoodoo cards also uses the GLIDE interface. Direct3D from Microsoft is not available in Linux.

Hardware Support

SuSE Linux Enterprise Server includes several OpenGL drivers for 3D hardware support. Table 3.3 on the next page provides an overview.

If you are installing with YaST2 for the first time, activate 3D support during installation, if the related YaST2 support is recognized. nVidia graphics chips are the only exception. For these, the "dummy" driver included must be replaced by the official nVidia driver. Use YaST Online Update (YOU) to update the NVIDIA_GLX and NVIDIA_kernel packages. If updating with YOU is not an option, download the appropriate RPM packages NVIDIA_GLX and NVIDIA_kernel from the nVidia web server (http://www.nvidia.com) and install them with YaST2. Because of licensing stipulations, we can only offer the "dummy" nVidia driver packages. Please note furthermore that the graphics aperture needs to be set to at least 32 MB in the BIOS setup for SiS grpahics chips and that the generic framebuffer support of the kernel should be deactivated.

OpenGL driver Mesa software rendering (very slow)	Supported hardware for all cards supported by XFree86
nVidia GLX / XFree86 4.x	nVidia Chips: all except for Riva 128(ZX)
DRI / XFree86 4.x	3Dfx Voodoo Banshee 3Dfx Voodoo 3/4/5 Intel i810/i815 Matrox G200/G400/G450 FireGL 1/2/3/4 ATI Rage 128(Pro)/Radeon 3Dlabs Glint MX/Gamma
Utah GLX / XFree86 3.3	ATI Rage Pro nVidia Riva 128
Mesa/Glide	3Dfx Voodoo Graphics 3Dfx Voodoo II

Table 3.3: Supported 3D Hardware

The support for 3D hardware has to be installed with a different method after the application of an update or if a 3Dfx add-on graphics adapter (Voodoo Graphics/Voodoo-2) is supposed to be set up. The approach to doing this depends on the OpenGL driver used and is described in further detail in the section below.

OpenGL Driver

Mesa Software Rendering

This OpenGL driver will always be implemented if no 3D support was configured during installation or if no 3D support is available for the particular card in Linux.

Mesa software rendering should also be used if the 3D driver causes any problems (representation errors or system instability). Make sure the package mesasoft is installed then run the script switch2mesasoft. If you have an nVidia card, also run the switch2nv script so the nv driver will be used for XFree86 instead of the nvidia driver. With the command 3Ddiag --mesasoft, check to see if the Mesa software rendering has been properly configured.

nVidia-GLX and DRI

This OpenGL driver can be quite easily configured using SaX2. Please note that in case of nVidia adapters, SaX2 needs to replace the SuSE dummy packages of the driver with the official driver packages from the nVidia server with the aid of online update if this had not been done previously. The command 3Ddiag tests whether nVidia-GLX and DRI have been configured properly.

For security reasons, only users belonging to the group video may access the 3D hardware. Verify that all users working locally on the machine are members of this group. The quite resource-intensive *Software Rendering Fallback* of the OpenGL driver otherwise will be used (DRI). Use the command id to check whether the active user belongs to the group video. If this is not the case, use YaST2 to add the user to the group.

Mesa/Glide

This OpenGL driver needs to be manually configured with the help of the information provided by the command 3Ddiag -mesaglide. Details can be found in section *Diagnosis Tool 3Ddiag* on the following page.

If you have a Meso/Glide driver, start OpenGL applications as root, because only root can access the hardware. To allow this, the user currently logged in will have to enable $\langle DISPLAY \rangle$ for root. This can be done with the command xhost localhost. The resolution used by the OpenGL application requires GLIDE support (resolutions supported are 640×480 and 800×600). Otherwise the very slow "Software rendering fallback" of the OpenGL driver will be used.

Diagnosis Tool 3Ddiag

The diagnosis tool 3Ddiag is available for the purpose of verifying the 3D configuration in SuSE Linux Enterprise Server. This is a command line tool that must be invoked inside a terminal.

The application reviews, for example, the XFree86 configuration to verify that 3D support packages are installed and the proper OpenGL library is used with the GLX extension. Follow the directions in 3Ddlag if "failed" messages appear. Ideally, you will only see "done" messages on the screen.

Unless 3D support was already activated during installation, the 3D configuration of the Mesa/Glide OpenGL driver using this diagnosis can be relatively intensive.

3Ddiag -h provides information about options for 3Ddiag.

OpenGL Test Applications

Games such as tuxracer and armagetron (from the equally-named packages) are suitable applications for testing OpenGL along with gears. If 3D support has been activated, they can be played well on a somewhat up-todate computer. These games, however, are not recommended in conjunction with Mesa software rendering because of the resulting slide show effect.

Troubleshooting

If the OpenGL 3D test results are negative (the games cannot be effectively played), use 3Ddiag to make sure no errors exist in the configuration ("failed" messages). If correcting these does not help or if failed messages have not appeared, take a look at the XFree86 log files. Often, you will find the line "DRI is disabled" in the XFree86 4.x file /var/log/XFree86.0.log. The exact cause can only be discovered by closely examining the log file — a task requiring some experience.

In such cases, it is common that no configuration error exists, as this would have already been detected by 3Ddiag. Consequently, at this point, your best bet is the Mesa software rendering OpenGL driver, which does not feature 3D hardware support. Take advantage of Mesa software rendering and forego 3D hardware acceleration to avoid OpenGL representation errors or instability.

Additional Online Documentation

- nVidia GLX: /usr/share/doc/packages/nv_glx/, /usr/src/kernel-modules/nv_glx/README NVIDIA_GLX and NVIDIA_kernel from the nVidia server)
- DRI: /usr/X11R6/lib/X11/doc/README.DRI (package xf86, series x)
- Utah GLX: /usr/share/doc/packages/glx/ (package glx, series x3d)
- Mesa/Glide: /usr/share/doc/packages/mesa3dfx/ (package mesa3dfx, series x3d)
- Mesa general: /usr/share/doc/packages/mesa/ (package mesa, series x3d)

Printer Operation

This chapter provides some background about the inner workings of the printing system. The numerous examples show how the different parts of the printing system are related to each other. The chapter should help you find solutions for possible problems and point you in the right direction whenever your printer does not work as expected. Both the LPRng and lpdfilter print system and the CUPS print system are discussed in detail.

Printing Basics	60					
Making the Printer Work	63					
Configuring a Printer with YaST2						
Printer Configuration in Application Programs						
Manual Configuration of Local Printer Ports						
Manual Configuration of the LPRng and lpdfilter Printing						
System	81					
The LPRng and lpdfilter Print Spooler	82					
Command-Line Tools for LPRng	83					
The Print Filter of the LPRng and lpdfilter Printing System						
Custom Print Filters for the LPRng Spooler	97					
The CUPS Printing System	101					
Command-Line Tools for the CUPS Printing System	107					
Working with Ghostscript	111					
Working with a2ps	115					
Reformatting PostScript with psutils	117					
ASCII Text Encoding	122					
Printing in a TCP/IP Network	124					

Printing Basics

On a Linux system, printers are managed via *print queues*. Before any data is printed, it is sent to the print queue for temporary storage. From there, it is retrieved by a *print spooler*, which sends it to the printing device in the required order.

However, this data is predominantly not available in a form that can be processed by the printer. A graphical image, for example, first needs to be converted into a format which the printer is able to understand. This conversion into a *printer language* is achieved with a *print filter*, a program which is called by the print spooler to translate data as needed, such that the printer can handle them.

Tip

Prinitng with SuSE Linux Enterprise Server

This chapter describes the configuration and use of printers on all SuSE Linux Enterprise Server platforms. Some functions, especially hardware issues, may not be available on your platform.

Tip —

Important Standard Printer Languages

- **ASCII text** Most printers are at least able to print ASCII text. The few devices that cannot print ASCII text directly should be able to understand one of the other standard printer languages mentioned below.
- **PostScript** PostScript is the established printer language under Unix and Linux. PostScript output can be printed directly by PostScript-capable printers, but these are relatively expensive. PostScript is a powerful yet complex language that requires the printer itself to perform very CPU-intensive operations before actually putting something on paper. Adding to the price of PostScript printers are licensing costs.
- PCL3, PCL4, PCL5e, PCL6, ESC/P, ESC/P2, and ESC/P raster If a PostScript printer is not available, the print filter uses the program Ghostscript to convert PostScript data into one of these other standard languages. Ghostscript uses different drivers for different printers to make use of specific features offered by the various models, such as color settings, as much as possible.

Processing Print Jobs

- 1. A print job is started by the user either from the command line or from within an application.
- 2. The corresponding print data is temporarily stored in the print queue, from which it is retrieved by the print spooler, which in turn sends it to the print filter.
- 3. The print filter will perform the following steps:
 - (a) The filter determines the format of print data.
 - (b) Print data is converted into PostScript (if not in PostScript format already). ASCII text, for instance, is converted into PostScript using the filter program a2ps.
 - (c) The PostScript data is converted into another printer language, if necessary.
 - If the printer is a PostScript model, the data is sent to it with no further processing.
 - If the printer is not a PostScript printer, the program Ghostscript is run and uses one of its drivers to convert data into the language of the printer model. This generates the data that is finally sent to the printer.
- 4. As soon as all the data of the print job has been sent to the printer, the print spooler deletes it from the print queue.

Available Printing Systems

SuSE Linux Enterprise Server supports two different printing systems:

LPRng and lpdfilter — This is a traditional printing system consisting of the print spooler LPRng and the print filter lpdfilter. The configuration of this system must be entirely defined by the system administrator. Normal users can only choose between different print queues that have already been set up. To allow users to choose between different options for a given printer, a number of print queues need to be defined beforehand — each for a different printer configuration. For plain blackand-white printers, such as most laser printers, it is sufficient to define just one configuration (the standard queue). For modern color inkjet printers, define several configurations, for example, one for black-andwhite printing, one for color printing, and maybe another one for highresolution photograph printing. Setting up the printer with predefined configurations has the advantage that the system administrator has a lot of control over the way in which the device is used. On the other hand, there is the disadvantage that users cannot set up the printer according to the job at hand, so maybe they will not be able to make use of the many options offered by modern printers unless the administrator has defined the corresponding print queues beforehand.

CUPS — CUPS allows users to set different options for each print job and does not require that the entire configuration of the print queue is predefined by the system administrator. With CUPS, printer options are stored in a PPD (PostScript printer description) file for each queue and can be made available to users in printer configuration dialogs. By default, the PPD file gives users control over all printer options, but the system administrator may also limit printer functionality by editing the file.

Both printing systems cannot be installed at the same time, because there are conflicts between them. However, YaST2 allows you to choose either and to switch between them. See *Configuring a Printer with YaST2* on page 67.

General Troubleshooting Hints

The documentation included with SuSE Linux Enterprise Server mostly describes general printing problems and ways to solve them. Many of the more specific issues are covered by articles in the support database. The support database be accessed as part of the SuSE help system, but the most up-todate version of this database is available online at http://sdb.suse.de/ en/sdb/html/.

A good starting point to deal with printer problems are the support database articles *Installing a Printer* and *Printer Configuration with SuSE Linux 8.0*, which you can find by searching for the keyword "printer", or online at http://sdb.suse.de/en/sdb/html/jsmeix_print-einrichten.html and http://sdb.suse.de/en/sdb/html/jsmeix_print-einrichten.80. html. You may also want to read the general support database articles that describe the most important known problems and issues of each SuSE Linux Enterprise Server version in one central place: *Known Problems and Special Features in SuSE Linux 8.1* at

http://sdb.suse.de/en/sdb/html/bugs81.html

Known Problems and Special Features in SuSE Linux 8.0 at http://sdb.suse.de/en/sdb/html/bugs80.html

If you do not find your problem described in the documentation or in the support database, we are glad to provide help through our support services. Information about these can be found at http://www.suse.de/en/services/support/index.html.

Making the Printer Work

General Requirements

• Your printer must be supported by SuSE Linux Enterprise Server. To see whether this is the case, consult the following sources:

```
SuSE printer database — http://cdb.suse.de or http://
hardwaredb.suse.de/ (click 'Englisch' to get the English ver-
sion.) The Ghostscript drivers listed on these pages correspond to
the ones that can be selected for the corresponding printer model
in the printer configuration dialog of YaST2.
```

The linuxprinting.org printer database — http://www. linuxprinting.org/ → 'The Database' (http://www. linuxprinting.org/database.html) or http://www.linuxprinting.org/printer_list.cgi

Ghostscript — http://www.cs.wisc.edu/~ghost/

- The SuSE Linux Enterprise Server Ghostscript driver list /usr/ share/doc/packages/ghostscript/catalog.devices This file lists the Ghostscript drivers included with the current version of SuSE Linux Enterprise Server. This is an important detail because sometimes you find Ghostscript drivers mentioned on the Internet that require Aladdin Ghostscript, while SuSE Linux Enterprise Server comes with GNU Ghostscript (due to licensing reasons). In most cases, GNU Ghostscript already includes a driver suitable for your printer.
- The printer has been properly connected to the interface over which it will communicate. For details, read *Manual Configuration of Local Printer Ports* on page 75 and *Manual Configuration* on page 71.
- You should be using one of the standard kernels included on CD, *not* a custom kernel built yourself. If you have problems with your printer,

install one of the SuSE standard kernels first and reboot before looking further into the problem.

You should have installed the 'Default System' to make sure that all required packages are there. As long as you have not deselected (uninstalled) any of the packages of the standard system after installation, you are set to continue. Otherwise, install the 'Default System' with YaST2. None of the 'Minimum System' installs fulfill all the requirements to make the printing system work.

Finding the Right Printer Driver

You do not need any particular driver if your printer is a PostScript model. If that is not the case, you need a Ghostscript driver to produce the data for your specific printer. For non-PostScript devices, the Ghostscript driver is the determining factor as far as printer output is concerned. Choosing the right driver and the right options for it has a big influence on its quality. The Ghostscript drivers available for specific models are listed in the sources mentioned in *General Requirements* on the preceding page.

If you cannot find a specific Ghostscript driver for your printer, it may be possible to use another driver already available. Also, some manufacturers support Linux, so your manufacturer might be able to provide specific Ghostscript driver information. If not, they may be able to provide other information to assist in selection:

• Find out whether your printer is compatible with a model supported by Linux. You may then be able to use the driver for the compatible model.

For printers to be *compatible*, they should be able to work correctly using the same binary control sequences. Both printers must understand the same language on the hardware level without relying on additional driver software to emulate it.

A similar model name does not always mean the hardware is really compatible. Printers that appear very similar on the outside sometimes do not use the same printer language at all.

• Check if your printer supports a standard printing language by asking the manufacturer or checking the technical specifications in the printer manual.

- **PCL5e or PCL6** Printers that understand the PCL5e or PCL6 language natively should work with the ljet4 Ghostscript driver and produce output at a resolution of 600x600 dpi. Often, PCL5e is mistaken for PCL5.
- **PCL4 or PCL5** Printers that understand the PCL4 or PCL5 language natively should work with one of the following Ghostscript drivers: laserjet, ljetplus, ljet2p, or ljet3. Output resolution is limited to 300x300 dpi, however.
- **PCL3** Printers that understand the PCL3 language natively should work with one of these Ghostscript drivers: deskjet, hpdj, pcl3, cdjmono, cdj500, or cdj550.
- ESC/P2, ESC/P or ESC/P raster Printers that understand ESC/P2, ESC/P, or ESC/P raster natively should work with the stcolor Ghostscript driver or with the uniprint driver in combination with a suitable *.upp parameter file (e.g., stcany.upp).

The Issue with GDI Printers

Given that most Linux printer drivers are not written by the maker of the hardware, it is crucial that the printer can be driven through one of the generally known languages, such as PostScript, PCL, or ESC/P. Normal printers understand at least one of the common languages. In the case of a GDI printer, the manufacturer has decided to build a device that relies on its own special control sequences. Such a printer only runs under the operating system versions for which the manufacturer has included a driver. Because it cannot be operated through one of the known languages, it must be considered nonstandard and cannot be used with Linux or can only be used with difficulty.

GDI is a programming interface developed by Microsoft for graphical devices. There is not much of a problem with the interface itself, but the fact that GDI printers can *only* be controlled through the proprietary language they use *is* an issue. A better name for them would be "proprietary-language-only printers."

On the other hand, there are printers that can be operated both in GDI mode and in a standard language mode, but they need to be switched accordingly. If you use Linux together with another operating system, it may be possible that the driver set the printer to GDI mode when you last used it. As a result, the printer will not work under Linux. There are two solutions for this: switch the printer back to standard mode under the other operating system before using it under Linux or use only the standard mode, even under the other operating system. In the latter case, it may turn out that printing functionality is limited, such as to a lower resolution.

There are also some very special printers that implement a rudimentary set of a standard printer language, for example, only the operations necessary for the printing of raster images. Sometimes these printers can be used in a normal way, as many Ghostscript drivers only use the printer as a raster image device anyway. On the negative side, you may be unable to print ASCII text directly. This should not be too much of a problem, however, as ASCII text is mostly printed through Ghostscript and not directly. The only problem occurs when some of these printers need to be explicitly switched before they can print raster images. This requires sending a special control sequence to them — something that can only be achieved with a special driver, but not through Ghostscript.

For some GDI printers, you may be able to obtain Linux drivers directly from the manufacturer. There is no guarantee that such vendor-made drivers will work with other or future Linux versions.

In any case, the above is only true for GDI models. By contrast, printers that understand one of the standard languages do not depend on a particular operating system nor do they require a particular Linux version. However, they often produce the highest quality of output when used with a vendor-made driver.

To sum all this up, SuSE Linux Enterprise Server does support the GDI printers listed below. They can be configured using the printer configuration module of YaST2. Be aware that their use will always be rather problematic. Some models might refuse to work at all or their functionality might be limited, for example, to low-resolution black-and-white printing. SuSE does not test GDI printers, so cannot guarantee that this list is correct:

- Brother HL 720/730/820/1020/1040, MFC 4650/6550MC/9050, and compatible models.
- HP DeskJet 710/712/720/722/820/1000, and compatible models.
- Lexmark 1000/1020/1100/2030/2050/2070/3200/5000/5700/7000/7200, Z11/42/43/51/52, and compatible models. Lexmark makes its own Linux drivers available at: http://www.lexmark.com/printers/linuxprinters.html
- Oki Okipage 4w/4w+/6w/8w/8wLite/8z/400w and compatible models.

 Samsung ML-200/210/1000/1010/1020/1200/1210/1220/4500/5080/6040 and compatible models.

To our knowledge, the following GDI printers are *not supported* by SuSE Linux Enterprise Server (this list is not complete by any means):

- Brother DCP-1000, MP-21C, WL-660
- Canon BJC 5000/5100/8000/8500, LBP 460/600/660/800, MultiPASS L6000
- Epson AcuLaser C1000, EPL 5500W/5700L/5800L
- HP LaserJet 1000/3100/3150
- Lexmark Z12/22/23/31/32/33/82, Winwriter 100/150c/200
- Minolta PagePro 6L/1100L/18L, Color PagePro L, Magicolor 6100DeskLaser, Magicolor 2 DeskLaser Plus/Duplex
- Nec SuperScript 610plus/660/660plus
- Oki Okijet 2010
- Samsung ML 85G/5050G, QL 85G
- Sharp AJ 2100, AL 1000/800/840/F880/121

Configuring a Printer with YaST2

Print Queues and Configurations

In most cases, you will want to set up more than one print queue for the following reasons:

- If you have more than one printer, you need at least one queue for each of them.
- The print filter can be configured differently for each print queue. By having different queues for one printer, operate it with different configurations.

If your model is a plain black-and-white printer, such as most laser printers, it will be sufficient to configure just one standard queue. Color inkjets, on the other hand, require at least two different queues (configurations):

- A standard lp configuration for quick black-and-white printouts at low cost. An lp queue should always be defined, because this is also the traditional name of the default queue under Linux.
- A color configuration or queue used for color printing.

Printer Configuration with YaST2: The Basics

Start the YaST2 printer configuration by selecting it from the YaST2 Control Center or by entering yast2 printer in a command line as root. Enter yast2 printer .nodetection to suppress printer autodetection. For more details about autodetection, see *Parallel Ports* on page 75.

The YaST2 printer configuration always defines settings for *both* printing systems *at the same time*. With each change, a configuration is written for both CUPS and LPRng and lpdfilter. This configuration data is stored in the YaST2 printer database /usr/lib/YaST2/data/printerdb/suse.prdb. However, not every option is available for both printing systems. Certain options are only supported by either CUPS or LPRng and lpdfilter. YaST2 provides information about this whenever necessary.

Easily switch back and forth between CUPS and LPRng using the YaST2 printer configuration dialog. Configurations that are supported by both printing systems are available for use immediately after switching from one system to another. However, not every configuration is completely identical under both systems even if it valid for both systems, because of their different capabilities.

The YaST2 printer configuration module allows you to select from and to switch between printing systems as described below.

CUPS as a server If you have a printer connected locally to the computer, CUPS needs to run as a server. This requires a number of packages be installed:

- package cups-libs
- package cups-client
- package cups

- package cups-drivers
- package cups-drivers-stp
- **CUPS in client-only mode** CUPS may be installed as a client only, provided that there is a CUPS network server running within your local network and you want to use its queues for printing. With this setup, only specify the CUPS network server. Only the following packages are needed:
 - package cups-libs
 - package cups-client
- **LPRng** The LPRng and lpdfilter printing system should be installed if the local network only offers an lpd network server, not a CUPS one, (see *The LPRng and lpdfilter Print Spooler* on page 82) and if you want to use the queues for printing. The following packages are required for this setup:
 - package lprng
 - package lpdfilter

The package cups-client and the package lprng are mutually exclusive — they must not be installed at the same time. The package cups-libs must always be installed because certain programs, such as Samba, are linked against these libraries.

The printing system as a whole requires a number of additional packages, although the 'Default system' should have installed them for you already. The most important ones are:

- package ghostscript-library
- package ghostscript-fonts-std
- package ghostscript-x11
- package a2ps
- package file

You can run the YaST2 printer configuration even without any of the printing systems installed. YaST2 saves all configuration data to /var/lib/YaST2/ printers. When you install a printing system later, or when changing from one system to another one, YaST2 relies on this data to create the actual printer configuration.

The YaST2 printer configuration modules display all configurations that could be created without errors. However, as the actual configurations are only written upon finishing the YaST2 printer configuration module, it is a good idea to restart the module afterwards to check for any errors.

The YaST2 printer configuration also strictly distinguishes between queues created through YaST2 itself (YaST2 queues) and queues created through other means (non-YaST2 gueues). Non-YaST2 will never be touched by YaST2. Conflicts may arise if queues have identical names. For instance, you may first create a YaST2 queue named color for one of the printing systems then change to another printing system manually (not using YaST2). If you created another color gueue manually at this point and started the YaST2 printer configuration after that, the manually-created queue would be overwritten by the YaST2 queue of the same name.

When editing a queue, you can tell YaST2 whether it shall be in charge of it. For instance, you could turn a YaST2 queue into a non-YaST2 queue to prevent it from being overwritten in the way assumed above. Conversely, you could also use this to turn a non-YaST2 queue into a YaST2 queue to deliberately overwrite an existing configuration with YaST2.

Automatic Configuration

Depending on how much of your hardware can be autodetected and on whether your printer model is included in the printer database, YaST2 will either autoconfigure your printer or offer a reasonable selection of settings that then need to be adjusted manually.

YaST2 can configure your printer automatically if these conditions are fulfilled:

- The parallel port or USB interface was set up automatically in the correct way and the printer model connected to it was autodetected.
- Your printer's ID, as supplied to YaST2 during hardware autodetection, is included in the printer database. Given that this ID may be different from the actual name of the model, you may need to select the model manually.
- The printer database includes at least one configuration for your model, which is assumed to be fully working and valid for both CUPS and LPRng.

Each configuration should be tested with the print test function of YaST2 to see whether it works as expected. For many configurations included in the printer database, there is no absolute guarantee that they will work as they had to be written without any direct help from printer makers. The YaST2 test page also provides important information about the printer configuration selected.

Manual Configuration

If one of the conditions for automatic configuration is not fulfilled or if you want your own customized setup, configure the printer manually, at least to some extent. The following is an overview of the options to set during manual configuration:

Hardware port (interface)

- If YaST2 was able to autodetect the printer model, you may safely assume that the printer connection works as far as the hardware is concerned. You may then leave this part untouched.
- If YaST2 has not autodetected the printer model, there may have been some problem on the hardware level. Some manual intervention is needed to configure the physical connection. Manual configuration requires specification of the port to which the printer is connected. /dev/lp0 is the first parallel port. /dev/usb/lp0 is the port for a USB printer. Always test this setting from within YaST2 to see whether the printer is actually responding at the selected interface.

A printer connected to the first parallel port is a fairly safe bet. In this case, the BIOS settings for this port should look like this:

- ▷ IO address: 378 (hexadecimal)
- ▷ Interrupt: (not relevant)
- ▷ Mode: Normal, SPP, or Output-Only.
- ▷ DMA: Disabled

If the printer does not respond at the first parallel port with these settings, you may need to change the IO address to have the explicit form of 0x378 under the BIOS menu item that lets you configure the advanced settings for parallel ports. If your machine has two parallel ports with IO addresses 378 and 278 (hexadecimal), change them to read 0x378 and 0x278, respectively. For further details on the topic, see *Parallel Ports* on page 75.

- **Queue name** The name of the queue is used frequently when issuing print commands. The name should be rather short and consist of lowercase letters (and maybe numbers) only. The following additional options may be defined for the LPRng and lpdfilter printing system:
 - Define a queue named raw to use for special cases where print data shall not be converted by a print filter, but sent to the printer in raw form. Accordingly, when printing through the raw queue, print data must already be available in a format (language) your printer model can understand.
 - For each queue, define whether an explicit form feed is needed. If enabled, the spooler sends a form feed command at the end of each print job to eject the last page. Normally, the Ghostscript driver takes care of this and you can leave this disabled.
- Ghostscript driver and printer language The Ghostscript driver and the printer language depend on your printer model. Select a default configuration suitable for your model then change it in an additional dialog as needed.

For non-PostScript models, all printer-specific data is produced by the Ghostscript driver. Therefore, the driver configuration (both choosing the right driver and the correct options for it) is the single most important factor determining the output quality. Your settings affect the printer output on a queue-by-queue basis.

If your printer was autodetected, which means the model is included in the printer database, you will be presented with a choice of possible Ghostscript drivers and with several output options, for example:

- black-and-white at 300 dpi
- LPRng only: grayscale at 300 dpi
- color at 300 dpi
- CUPS only: color at 600 dpi
- photo at 600 dpi

YaST2 indicates whether these options are supported by each printing system. Each default configuration includes a suitable Ghostscript driver and, if available, a number of options for the driver related to output quality. If there are specific options for the driver, use the extra dialog to change these as needed. Click the respective value. If there are further configuration options, the subitems are indented in the list.

Not all combinations of driver options work with every printer model. This is especially true for higher resolutions.

Always check whether your settings work as expected by printing the YaST2 test page. If the output is garbled (for example, with several pages almost empty), you should be able to stop the printer by first removing all sheets then stopping the test print from within YaST2. However, in some cases the printer will refuse to resume work if you do so. It may be better to stop the test print first and wait for the printer to eject all pages by itself.

If your model was not found in the printer database, YaST2 allows you to choose from a number of generic Ghostscript drivers for the standard printing languages. To use a Ghostscript driver not included in the default configuration offered by YaST2, try to find it under the manufacturer name. For the CUPS printing system, the following special configuration options are available:

- With the CUPS system, normally PPD files are stored in /usr/ lib/YaST2/data/printerdb. These must exactly match the entries in the YaST2 printer database. The YaST2 PPD files are based on the PPD files that come with package cups-drivers and package cups-drivers-stp. Selecting a printer manually means selecting any other PPD file (instead of a YaST2 PPD file), such as one of the files included with package cups-drivers and package cups-drivers-stp, which are stored in /usr/share/ cups/model/. However, as there is no entry for such a PPD file in the YaST2 database, the default configuration provided by the file cannot be changed with YaST2. Change the default settings in a different way, as described in *Specifying Options for Queues* on page 109.
- **Other special settings** These special settings can be accessed through an extra submenu. Unless you are sure what these options mean, do not change the defaults.

For the CUPS printing system, the following special settings are available:

- Restricting printer use for certain users.
- Queue status: whether the queue is started or stopped and whether it is ready to accept new print jobs.
- Banner page: whether to print out a banner (cover) page at the beginning of each print job and which one. Similarly, whether to add a banner page at the end of each print job and which one.

For the LPRng and lpdfilter printing system, change the following hardware-independent settings:

- The page layout can be changed for ASCII text printouts (but not for graphics or documents created with special application programs).
- You can define an ascii print queue for special cases. The ascii queue forces the print filter to produce ASCII text output, which may be necessary for some text files that the print filter does not automatically recognize as such, for example, PostScript source code.
- Country-specific settings can be changed to ensure the correct character encoding when sending ASCII text to the printer and when printing plain text in HTML pages from Netscape.

Printer Configuration in Application Programs

Application programs rely on the existing print queues in a way that is very similar to how they are used on the command line. In an application, printer options are not configured directly, but rather through the existing queues of the system.

Printing from the Command Line

Print from the command line using the command lpr -Plp filename, where filename is the name of the file to send to the printer. In this example, the default print queue used is lp, but the -P option allows specification another queue. For instance, the command lpr -Pcolor filename tells the printing system to use the color queue.

Using the LPRng and Ipdfilter System

With this printing system, applications can use the lpr command for printing. To make this work, use the application's printer configuration to select one of the existing queues (e.g., lp or color) or use the application's print dialog to directly enter the corresponding command (e.g., lpr -Plp or lpr -Pcolor).

Using the CUPS System

The package cups-client includes some command-line tools to print with CUPS. One of them is the lpr command, which enables use of the commands described above under CUPS, too.

In addition, there are several graphical tools for CUPS, such as xpp or the KDE program kprinter, which allow you to choose among queues and to change both CUPS standard options and printer-specific options as made available through the PPD file.

Manual Configuration of Local Printer Ports

Parallel Ports

For the most part, printers are connected to a Linux system through a parallel port. Printers on parallel ports are handled by the parport subsystem of the Linux kernel. The basics of parallel port configuration with YaST2 are described in *Manual Configuration* on page 71. The paragraphs below provide more in-depth information on the topic.

The parport subsystem manages parallel ports only through the corresponding architecture-specific kernel modules after these are loaded. Among other things, this allows for several devices, such as a parallel port ZIP drive and a printer, to be linked to one parallel port at the *same* time. Device files for parallel printers are counted beginning with /dev/lp0. With a SuSE Linux Enterprise Server standard kernel, printing over the parallel port requires that the modules parport, parport_pc, and lp are loaded. This is achieved by kmod (the kernel module loader). Normally, these modules are loaded automatically as soon as some process requests access to the device file.

If the kernel module parport_pc is loaded without any parameters, it tries to autodetect and autoconfigure all available parallel ports. This may not work in some very rare cases and cause a system lock-up. If that should happen, configure it manually by explicitly providing the correct parameters for the parport_pc module. This is also the reason why printer autodetection can be disabled for YaST2 as described in *Configuring a Printer with YaST2* on page 67.

Manual Configuration of Parallel Ports

The first parallel port (/dev/lp0) is configured with an entry in /etc/ modules.conf, as shown in File 2.

alias parport_lowlevel parport_pc options parport_pc io=0x378 irq=none

File 2: /etc/modules.conf: First Parallel Port

Under io, fill in the IO address of the parallel port. Under irq, keep the default none for polling mode. Otherwise, provide the IRQ number for the parallel port. Polling mode is less problematic than interrupt mode as it helps to avoid interrupt conflicts. However, there are combinations of motherboards and printers that only function well if this is set to interrupt mode. Apart from that, interrupt mode ensures a continuous data flow to the printer even when the system is under very high load.

To make the above configuration work, you may still need to change the parallel port settings made available through the menus of your machine's BIOS or firmware:

- IO address: 378 (hexadecimal)
- Interrupt: 7 (not relevant for polling mode)
- Mode: Normal, SPP, or Output-Only (other modes will not always work)
- DMA: Disabled (should be disabled as long as the mode is set to Normal)

If interrupt 7 is still free, enable it with:

alias parport_lowlevel parport_pc options parport_pc io=0x378 irq=7

File 3: /etc/modules.conf: Interrupt Mode for the First Parallel Port

However, before enabling interrupt mode, enter the command cat /proc/interrupts to see which interrupts are already in use on your system. The output of this command will only list interrupts that are being used at the given moment, something which may change according to the hardware components active. In any case, the interrupt used for a parallel port must not be occupied by any other device. You are probably best off using polling mode if you are not sure about this.

Configuring Additional Parallel Ports

Configure a second parallel port (/dev/lpl) by adding the corresponding entries to /etc/modules.conf, as shown in File 4. In this case, the default IO address should be set to 278 (hexadecimal). This may be changeable on the hardware level, for example, by setting a jumper on an ISA expansion card.

alias parport_lowlevel parport_pc
options parport_pc io=0x378,0x278 irq=none,none

File 4: /etc/modules.conf: Two Parallel Ports

Special ISA PnP and PCI Expansion Cards

If you do not know the IO address of an additional parallel port, find it first.

ISA PnP Cards If the card has a means to set the IO address and the interrupt to a fixed value (by setting a jumper, for instance), do so before proceeding with the configuration.

If that is not the case, the values for IO address, interrupt, and mode are set for the card by the system on boot. To find out which values have been set for your ISA PnP card, look for them in the boot messages, as stored in /var/log/boot.msg, or with pnpdump (included in package isapnp).

PCI Cards Find possible IO addresses and interrupts for PCI cards by entering the command /sbin/lspci -v. The output should be similar to Output 1.

> 00:0a.0 Parallel controller: IRQ 10 I/O ports at b400 I/O ports at b000 I/O ports at a800 I/O ports at a400

Output 1: Partial Output of lspci -v for a PCI Interface Card

Each parallel port is assigned a pair of IO addresses set off by 400 (hexadecimal). In our example, one IO port corresponds to b000 and b400. The other one is at a400 and a800. You may need to experiment a bit to see which of the two IO addresses is the right one. The final configuration entry in /etc/modules.conf looks like the one shown in File 5.

```
alias parport_lowlevel parport_pc
options parport_pc io=0x378,0xb400,0xa800\\
irq=none,none
```

File 5: /etc/modules.conf: PCI Card with Two Parallel Ports

Enabling and Testing a Parallel Port

After configuration, the parallel port is enabled when you reboot the machine.

If you do not want to reboot, run the following commands as root to update the module dependency list and to unload all kernel modules related to parallel ports.

```
earth:~ # depmod -a 2>/dev/null
earth:~ # rmmod lp
earth:~ # rmmod parport_pc
earth:~ # rmmod parport
```

After this, reload the modules with:

earth:~ # modprobe parport
earth:~ # modprobe parport_pc
earth:~ # modprobe lp

If the printer is capable of direct ASCII text printing, the command

earth:~ # echo -en "\rHello\r\f" >/dev/lp0

as root should print a single page with the word Hello on it.

In the above command, the word Hello is enclosed in two r ASCII characters to produce carriage returns. The closing ASCII character f is included to produce a form feed. To test a second or third parallel port in the same way, use /dev/lpl or /dev/lp2, respectively.

USB Ports

First, make sure interrupt is enabled for USB in your machine's BIOS. In an Award BIOS, for example, go to the menu 'PNP AND PCI SETUP' and set the entry 'USB IRQ' to Enabled. The wording of these menus and entries may vary depending on the BIOS type and version.

Test whether the USB printer is responding by entering the command echo -en "\rHello\r\f" >/dev/usb/lp0 as root. If there is only one USB printer connected to the machine and this printer is able to print ASCII text directly, this should print a single page with the word Hello on it.

Some USB printers may need a special control sequence before accepting data over a USB line. The following command, entered as one line without spaces or line breaks, sends a control sequence for an Epson Stylus Color USB printer:

```
echo -en "\x0\x0\x1b\x01\x40\x45\x4a\x4c
\x20\x31\x32\x38\x34\x2e\x34\x0a\x40\x45\x4a\x4c
\x20\x20\x20\x20\x0a" >/dev/usb/lp0
```

In most cases, you should be able to get information about the printer manufacturer and the product name by entering cat /proc/bus/usb/devices. If this does not display any information, it will usually be for one of these reasons:

- The USB system has not detected the device (yet), maybe even because it is disconnected from power, so there is no communication between the system and the printer.
- The USB system has detected the device, but neither the manufacturer or the product name are known to it. Accordingly, nothing is displayed, but the system can communicate with the printer.

Sometimes it may happen that the USB printer does not respond anymore, for instance, after unplugging it in the middle of a print job. In such a case, the following commands should be sufficient to restart the USB system:

earth:~ # rchotplug stop
earth:~ # rchotplug start

If you are not successful with these commands, terminate all processes that use /dev/usb/lp0, unload all USB printer-related kernel modules, and reload these modules. Before doing so, use lsmod to check which USB modules are loaded (usb-uhci, usb-ohci, or uhci) and how they depend on each other. For instance, the entry usbcore ... [printer usb-uhci]

in the output of lsmod shows that the module usbcore is being used by modules printer and usb-uhci. Accordingly, modules printer and usb-uhci need to be unloaded before unloading usbcore.

As root, enter the following commands (replace usb-uhci with uhci or usb-ohci depending on your USB system):

```
earth:~ # fuser -k /dev/usb/lp0
earth:~ # rchotplug stop
earth:~ # rmmod printer
earth:~ # rmmod usb-uhci
earth:~ # umount usbdevfs
earth:~ # rmmod usbcore
earth:~ # modprobe usbcore
earth:~ # modprobe usb-uhci
earth:~ # modprobe printer
earth:~ # rchotplug start
```

If you have more than one USB printer connected to the system, there is a special issue to consider: All connected devices are autodetected by the USB subsystem with the first USB printer being addressed as device /dev/usb/lp0 and the second one as /dev/usb/lp1. Depending on the model, USB printers can be detected even when they are powerless. Some have the builtin capability to be queried by the system even when powered off. Therefore, to avoid that the system confuses different printers, switch on all printers before booting and try to leave them connected to power all the time.

The IrDA Printer Interface

With IrDA, the system uses an infrared interface to emulate a parallel port. To do so, the Linux drivers provide a simulated parallel port under the device name of /dev/irlpt0. A printer connected through infrared is handled in the same way as any other parallel printer except it is made available to the system under the name of /dev/irlpt0 instead of /dev/lp0.

Test the connection to an IrDA printer by entering the command echo -en "\rHello\r\f" >/dev/irlpt0 as root. If the printer is able to print ASCII text directly, this should print a single page with the word Hello on it.

Regardless of the outcome of the above test, the printer should appear in the output of irdadump. If this does not list your printer, there may be some kind of connection problem or the device is powered off. If the above command does not produce any output at all, you have probably not started the IrDA service yet (it is not started automatically upon booting). The IrDA service can be started and stopped with the commands:

earth:~ # rcirda start earth:~ # rcirda stop

Serial Ports

To use a printer connected to a serial port in combination with the LPRng printing system, read the document /usr/share/doc/packages/lprng/ LPRng-HOWTO.html, in particular, the section file:/usr/share/doc/ packages/lprng/LPRng-HOWTO.html#SECSERIAL. More information can be obtained from the man page for printcap (man printcap) as well as in the support database by searching for the keyword "serial".

Manual Configuration of the LPRng and Ipdfilter Printing System

Normally, the printing system is configured with YaST2 as described in *Configuring a Printer with YaST2* on page 67. SuSE Linux Enterprise Server also includes the program lprsetup, which is a bare-bones command-line tool for the configuration of the LPRng and lpdfilter printing system. When setting up a printer with YaST2, it collects all necessary data then runs lprsetup internally with all the necessary options to write the actual LPRng and lpdfilter configuration.

lprsetup is intended as an expert tool. As such, it will not provide any help to find the correct values for printer options. To see a brief list of the available command line options for lprsetup, enter lprsetup -help, or look up the man page for lprsetup (man lprsetup) and the man page for lpdfilter (man lpdfilter) for further details.

For information regarding Ghostscript drivers and driver-specific options, read *Finding the Right Printer Driver* on page 64 and *Working with Ghostscript* on page 111.

The LPRng and Ipdfilter Print Spooler

The print spooler used by the LPRng/lpd printing system is LPRng (package lprng). The print spooler lpd, or line printer daemon, is usually started automatically on boot. More specifically, the script /etc/init.d/lpd is run as part of the boot procedure. After this, the print spooler runs as a daemon in the background. Start and stop it manually with rclpd start and rclpd stop.

These are the configuration files of LPRng:

/etc/printcap definitions of the system's print queues

/etc/lpd.conf global print spooler configuration

/etc/lpd.perms permission settings

According to the script /etc/init.d/lpd, the command rclpd start also runs the command checkpc -f as a subprocess, which in turn creates spool directories with the appropriate permissions in /var/spool/lpd according to the queues defined in /etc/printcap. When started, the print spooler first reads the entries in /etc/printcap to see which print queues have been defined. The spooler's task is then to manage any jobs queued for printing. In particular, the spooler:

- manages local queues by passing the print data of each job to a print filter (if necessary) and sending it to the printer or to another queue afterwards
- handles jobs in the order in which they have been queued
- monitors the status of queues and printers and provides status information when requested
- listens on port 515 to accept or rejects print jobs from remote hosts destined for local queues, depending on the configuration
- forwards print jobs to remote print spoolers (listening on port 515 on other hosts) for printing through remote queues.

To learn more about the details of this mechanism, read the *LPRng Howto* (file:/usr/share/doc/packages/lprng/LPRng-HOWTO.html) or consult the man page for printcap (man printcap) and the man page for lpd (man lpd).

82

Printer Operation

Command-Line Tools for LPRng

This section only provide a short overview of the available tools. For details, consult the *LPRng Howto*, in particular, section file:/usr/share/doc/packages/lprng/LPRng-HOWTO.html#LPRNGCLIENTS.

Managing Local Queues

Printing Files

Details on how to use the lpr command can be found in the *LPRng Howto* (file:/usr/share/doc/packages/lprng/LPRng-HOWTO.html#LPR). The following only covers some basic operations.

To print a file, you normally must enter $lpr -P\langle queuename \rangle \langle filename \rangle$. If you leave out the $-P\langle queuename \rangle$ parameter, the printing system defaults to the value of the environment variable PRINTER. The same is true for the commands lpq and lprm. See the man page for lpr (man lpr), the man page for lpq (man lpq), and the man page for lprm (man lprm) for more information. The environment variable PRINTER is set automatically on login. Display its current value with echo \$PRINTER. Change it to expand to another queue by entering:

newbie@earth:~ > export PRINTER=(queuename)

Checking the Status

By entering lpq -P(queuename), check the status of print jobs handled by the specified queue. If you specify all as the queue name, lpq displays information for all jobs in all queues.

With lpq -s $-P\langle queuename \rangle$, tell lpq to display only a minimum of information. lpq -l $-P\langle queuename \rangle$ tells lpq to be more verbose. With lpq -L $-P\langle queuename \rangle$, lpq displays a detailed status report, which will come in handy when trying to track down errors.

For further information, see *Managing Remote Queues* on page 85, the man page for lpq (man lpq), and section file:/usr/share/doc/packages/lprng/LPRng-HOWTO.html#LPQ of the *LPRng Howto*.

Removing Jobs from the Queue

The command lprm $-P(queuename) \langle jobnumber \rangle$ removes the print job with the specified number from the specified queue, provided that you own

the job. A print job is owned by the user who started it. Display both the ownership and the job number of print jobs with lpg.

The command lprm -Pall all removes all print jobs from all queues for which you have the required permissions. root may remove any jobs in any queues regardless of permissions.

More information can be obtained in the man page for lprm (man lprm) and in the LPRng Howto (file:/usr/share/doc/packages/lprng/ LPRng-HOWTO.html#LPRM).

Controlling the Queues

The command lpc option (queuename) displays the status of the specified queue and allows changing it. The most important options are:

help Display a short overview of the available options.

status (queuename) Display status information.

- disable (queuename) Do not accept new jobs for the specified queue.
- enable (queuename) Accept new jobs for the specified queue.
- stop (queuename) Stop printing from the specified queue. If a job is being printed, it will be completed.
- start (queuename) Enable printing from the specified queue.
- down (queuename) Has the effect of disable and stop combined.
- up (queuename) Has the effect of enable and start combined.
- abort $\langle queuename \rangle$ Has the effect of down, but aborts all current print jobs immediately. Aborted jobs are preserved, however, and can be resumed after restarting the queue with up.

root permissions are required to control printer queues with the above commands. Options can be supplied to lpc directly on the command line (as in lpc status all). You can also run the program without any options, which starts it in dialog mode — it opens the lpc> command prompt. Then enter the options at the prompt. To leave the program, enter either quit or exit.

If you were to enter lpc status all, the output could look like this:

Printer	Printing	Spooling	Jobs	Server	Subserver
lp@earth	enabled	enabled	2	123	456
color@earth	disabled	disabled	0	none	none
laser@earth	disabled	enabled	8	none	none

This gives the following information: Queue lp is completely enabled and holds two print jobs, one of which is being printed at the moment. Queue color, on the other hand, is completely stopped. Finally, the laser queue does not print at the moment, but jobs (there are currently eight of them) are still accepted for the queue and are accumulating in the spooler.

Further information can be obtained from the man page for lpc (man lpc) and the LPRng Howto (file:/usr/share/doc/packages/lprng/LPRng-HOWTO.html#LPC).

Managing Remote Queues

For each of the commands explained below, replace the printserver parameter with the name or IP address of your print server. For *(queuename)*, supply the name of the queue to use on that print server.

Printing Files

With the LPRng printing system installed, the lpr command allows you to send files straight to a remote queue. The command syntax is lpr -P(queuename)@printserver (file). As a prerequisite, the print server must be configured to accept remote print jobs on its queues. This is enabled by default with LPRng.

Checking the Status

You can check the status of a queue on a remote host by entering:

```
newbie@earth:~ > lpq -P(queuename)@printserver
newbie@earth:~ > lpq -s -P(queuename)@printserver
newbie@earth:~ > lpq -l -P(queuename)@printserver
newbie@earth:~ > lpq -L -P(queuename)@printserver
or use
newbie@earth:~ > lpc status (queuename)@printserver
newbie@earth:~ > lpc status all@printserver
```

To list the names of and display status information on all queues of a print server, use either lpq -s -Pall@printserver or lpc status all@printserver, provided that LPRng is used on the print server, too.

If printing over a remote queue does not work, querying the status of the queues helps determine the cause of the problem. If LPRng is installed on the print server, enter lpq -L -P(queuename)@printserver to get a detailed status report for troubleshooting.

Removing Jobs from the Queue

The commands

newbie@earth:~ > lprm -P(queuename)@printserver (jobnumber)
newbie@earth:~ > lprm -P(queuename)@printserver all
newbie@earth:~ > lprm -Pall@printserver all

delete all print jobs in remote queues that have been issued under your user name. root has no special privileges on remote queues. The parameter all only works if LPRng is used on the print server host as well.

Using Command-Line Tools for LPRng Troubleshooting

Print jobs are kept in the queue even if you shut down a machine during a printout, and thus they are still there after rebooting. To remove a faulty print job, use the commands described above. Rebooting will not remove them.

For example, it sometimes happens that the host to printer connection suffers some kind of fault, after which the printer is unable to interpret data correctly. This can cause it to spit out large amounts of paper with meaningless babble on it.

- 1. In the case of an inkjet model, remove all paper from the trays. Open the paper tray if you have a laser model.
- 2. In most cases, the print job is still in the queue after that. Print jobs are removed from the queue only after all data has been sent to the printer. Check with lpq or lpc status to see which queue is printing then delete the job in question with lprm.

86

- 3. The printer may produce some output even after deleting the job from the queue. To stop this, use the commands fuser -k /dev/lp0 for a printer on the first parallel port or fuser -k /dev/usb/lp0 for the first USB printer to terminate all processes still using the printer device.
- 4. Do a complete reset of the printer by switching it off. Wait a few seconds before putting the paper back into the trays and switching the device back on.

The Print Filter of the LPRng and Ipdfilter Printing System

The print filter used in conjunction with LPRng is lpdfilter, which is installed as a package with the same name. The following is a detailed description of the steps involved in processing a print job. If you need to know about the inner workings of the print filter, read the scripts powering it (in particular, /usr/lib/lpdfilter/bin/if) and probably also follow the steps described in *Troubleshooting Hints for lpdfilter* on page 96.

- The print filter (/usr/lib/lpdfilter/bin/if) determines which options to use as passed to it by the print spooler and specified by the print job's control file. Options for the queue to use are also gathered from /etc/printcap and /etc/lpdfilter/(queuename)/conf (where (queuename) is the name of the actual queue).
- The filter determines the file type using the script /usr/lib/ lpdfilter/bin/guess to run file on each file in question. The output of file is used to determine the type according to the entries in the file /etc/lpdfilter/types.
 - If the ascii queue has been specified, the print filter is forced to treat the file as ASCII text.
 - If a queue other than ascii has been specified, the printer filter tries to autodetect the file type.
- 3. The file is converted into a printer-specific data stream according to the file type and the type of queue to use:

- If the raw queue has been specified, print data is usually sent straight to the printer or forwarded to another queue. However, data may also undergo a simple conversion through recode, if so specified in /etc/lpdfilter/(queuename)/conf. To have an "absolute" raw filter — one that bypasses lpdfilter entirely remove the line :if=/usr/lib/lpdfilter/bin/if:\ for the corresponding queue in /etc/printcap.
- If the queue specified is not a raw queue:
 - (a) If the data is not in PostScript format, it is first converted into PostScript by running /usr/lib/lpdfilter/filter/ type2ps on it (where type is the actual file type determined for the data in question). For example, ASCII text is converted into PostScript with /usr/lib/lpdfilter/filter/ ascii2ps, which in turn relies on Q2ps to obtain the correct character encoding defined for the queue. This ensures that country-specific special characters are printed correctly in plain text files. For details, see the man page for a2ps (man a2ps).
 - (b) If necessary, PostScript data can be converted again if a suitable script is placed in /etc/lpdfilter/(queuename)/pre (where (queuename) is the name of the actual queue to use).
 - (c) PostScript data is converted into another printer language, as needed.
 - If the printer is PostScript capable, the data is sent directly to the printer (or forwarded to another queue). However, data can be further processed using the Bash functions "duplex" and "tray", which are defined in /usr/lib/lpdfilter/global/functions, to enable duplex printing and paper tray selection through PostScript commands (which requires that the PostScript printer has this functionality).
 - If the printer is not PostScript capable, Ghostscript uses a driver suitable for the native printer language of the model to produce the printer-specific data that is finally sent to the printer (or forwarded to another queue). Ghostscript-relevant parameters are stored either in the cm line of /etc/printcap or in the file /etc/lpdfilter/(queuename)/upp (where (queuename) is the name of the actual queue to use). If so desired, the Ghostscript output can be reformatted again, if a suitable script is placed in /etc/lpdfilter/(queuename)/post

(where $\langle queuename \rangle$ is the name of the actual queue to use).

(d) The printer-specific data is transferred to the printer (or to another queue). Control sequences for a specific printer can be sent to the printer both before and after the data stream. These must be specified in /etc/ lpdfilter/(queuename)/conf.

Configuration of Ipdfilter

Normally, the printing system is configured with YaST2 (as described in *Configuring a Printer with YaST2* on page 67), which includes the setup of lpdfilter. Some of the more special settings, however, can only be changed by editing the configuration files of the print filter by hand. For each queue, a dedicated configuration file is written to /etc/ lpdfilter/(queuename)/conf (where (queuename) is the name of the actual queue to be used).

Customization of Ipdfilter

- By default, files not in PostScript format are converted into that format with /usr/lib/lpdfilter/filter/type2ps (where type is the actual type of the file in question). If a suitable script is placed in /etc/lpdfilter/(queuename)/type2ps, it will be used for the PostScript conversion of the file. The script must be able to accept data on stdin and to output data in PostScript format on stdout.
- 2. If so desired, an additional step can be performed to reformat PostScript data, which requires a suitable script be placed in /etc/ lpdfilter/(queuename)/pre. This may be a script to add custom PostScript preloads, for example. The script must be able to accept data on stdin and to output data in PostScript format on stdout. Some programs to reformat PostScript are included in the package psutils. In particular, the program pstops is capable of performing extensive transformations. See the man page for pstops (man pstops) for details.
- 3. Special Ghostscript parameters: When writing the configuration with YaST2, Ghostscript parameters are stored in /etc/ lpdfilter/(queuename)/upp (where (queuename) is the name of the actual queue to use), but custom Ghostscript parameters can also be

added to this file manually. For details on Ghostscript parameters, read *Working with Ghostscript* on page 111.

4. If so desired, data can be reformatted again after conversion by Ghostscript. This requires a suitable script be placed in /etc/ lpdfilter/(queuename)/post (where (queuename) is the name of the actual queue to use). This script must be able to accept data on stdin and to output a data stream suitable for the specific printer model on stdout.

A Hardware-Independent Example

For the purposes of this example, suppose there is a queue called testqueue, which we want to configure so ASCII text is printed with line numbers along the left margin. Apart from that, we want to print all files with two pages scaled to fit on one sheet. The scripts /etc/lpdfilter/testqueue/ascii2ps and /etc/lpdfilter/testqueue/pre, as shown below, would achieve that:

#!/bin/bash cat -n - | a2ps -1 --stdin=' ' -o -

File 6: /etc/lpdfilter/testqueue/ascii2ps: ASCII to PostScript Conversion

#!/bin/bash
pstops -q '2:0L@0.6(20cm,2cm)+1L@0.6(20cm,15cm)'

File 7: /etc/lpdfilter/test/pre: PostScript Reformatting

These scripts need to be made executable for all users, which can be achieved with the chmod command:

```
earth:~ # chmod -v a+rx /etc/lpdfilter/testqueue/ascii2ps
earth:~ # chmod -v a+rx /etc/lpdfilter/testqueue/pre
```

Reformatting files with pstops only works with PostScript files created to allow such transformations, as is usually the case.

Printer Operation

Using Custom PostScript Preloads

PostScript preloads are small PostScript files containing commands that are prepended to the print data stream to initialize the printer or the Ghostscript program in the desired way. PostScript preloads are mostly used to enable duplex printing on PostScript printers or to activate a special paper tray. They can also be used for margin and gamma adjustments.

To use preloads, the (PostScript capable) printer or Ghostscript must be able to interpret the special commands. Ghostscript, for instance, does not interpret commands related to duplex printing or paper trays.

For this example, the queue testqueue is again used:

Duplex printing To enable or disable duplex printing, create the files /etc/ lpdfilter/testqueue/duplexon.ps and /etc/lpdfilter/ testqueue/duplexoff.ps with the following contents:

%!PS
statusdict /setduplexmode known
{statusdict begin true setduplexmode end} if {} pop

File 8: /etc/lpdfilter/testqueue/duplexon.ps: Enabling Duplex Printing

%!PS
statusdict /setduplexmode known
{statusdict begin false setduplexmode end} if {} pop

File 9: /etc/lpdfilter/testqueue/duplexoff.ps: Disabling Duplex Printing

Paper tray selection To enable the default paper tray 0 or tray number 2, create the files /etc/lpdfilter/testqueue/tray0.ps and /etc/ lpdfilter/testqueue/tray2.ps:

%!PS
statusdict /setpapertray known
{statusdict begin 0 setpapertray end} if {} pop

```
%!PS
statusdict /setpapertray known
{statusdict begin 2 setpapertray end} if {} pop
```

File 11: /etc/lpdfilter/testqueue/tray2.ps: Enabling Tray 2

Margin settings To adjust margin settings, create a file like /etc/ lpdfilter/testqueue/margin.ps.

```
%!PS
<<
/.HWMargins [left bottom right top]
/PageSize [width height]
/Margins [left-offset top-offset]
>>
setpagedevice
```

File 12: /etc/lpdfilter/testqueue/margin.ps: Margin Adjustments

The margin settings left, bottom, right, and top, as well as the paper size measures width and height, are specified in points (with one point equaling 1/72 inches or about 0.35 mm). The margin offsets left-offset and top-offset are specified in pixels, so depend on the resolution of the output device.

If you only want to change the position of the printed area, it is sufficient to create a file like /etc/lpdfilter/testqueue/offset.ps.

```
%!PS
<< /Margins [left-offset top-offset] >> setpagedevice
```

File 13: /etc/lpdfilter/testqueue/offset.ps: Changing the Position of the Printed Area Gamma correction To adjust the gamma distribution between colors, use a file like /etc/lpdfilter/testqueue/cmyk.ps or /etc/ lpdfilter/testqueue/rgb.ps:

```
%!PS
{cyan exp} {magenta exp} {yellow exp} {black exp}
setcolortransfer
```

File 14: /etc/lpdfilter/testqueue/cmyk.ps: CMYK Gamma Correction

```
%!PS
\{red exp\} \{green exp\} \{blue exp\} currenttransfer
setcolortransfer
```

File 15: /etc/lpdfilter/testqueue/rgb.ps: RGB Gamma Correction

You need to know which color model is used by your printer (either CMYK or RGB) to make this work. The values to use for cyan, magenta, yellow, and black or for red, green, and blue should be determined through testing. Normally, these should be in the range between 0.001 and 9.999.

To get a rough idea of the effect of the above filtering actions on the output, display them on screen. To see how a sample file looks without gamma correction, enter:

```
earth:~ # gs -r60 \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps
```

To see how it looks with gamma correction according to the above sample filters:

```
earth:~ # gs -r60 /etc/lpdfilter/testqueue/cmyk.ps \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps
earth:~ # gs -r60 /etc/lpdfilter/testqueue/rgb.ps \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps
```

The above commands must be entered as a single line without the backslash $(` \)$.

End the test by pressing $\overline{(Ctrl)} + \overline{(C)}$.

Resetting the Printer To reset the printer to its original state each time, use a file like /etc/lpdfilter/testqueue/reset.ps:

> %!PS serverdict begin 0 exitserver

> > File 16: /etc/lpdfilter/testqueue/reset.ps: Printer Reset

To activate one of the above PostScript preloads, create a file similar to /etc/lpdfilter/testqueue/pre:

```
#!/bin/bash
cat /etc/lpdfilter/testqueue/preload.ps -
```

File 17: /etc/lpdfilter/testqueue/pre: Activating a PostScript Preload

In this file, replace preload.ps with the name of your custom preload file. In addition, make this script executable and readable for all users, which can be achieved with chmod in the following way:

```
earth:~ # chmod -v a+rx /etc/lpdfilter/testqueue/pre
earth:~ # chmod -v a+r /etc/lpdfilter/testqueue/preload.ps
```

Use the mechanism described above to insert PostScript commands not only before the print data, but also after it. For instance, with a script like /etc/ lpdfilter/testqueue/pre, reset the printer to its original state after each print job is finished:

```
°
```

```
#!/bin/bash
cat /etc/lpdfilter/testqueue/preload.ps -
/etc/lpdfilter/testqueue/reset.ps
```

File 18: /etc/lpdfilter/testqueue/pre: Inserting a PostScript Preload and a PostScript Reset

A Sample GDI Printer Configuration

This section provides an example for the customized configuration of a gdi print queue. As explained in *The Issue with GDI Printers* on page 65, it is often nearly impossible to make such printers run under Linux. However, special driver programs are available for some GDI models. In most cases, they are designed to run as Ghostscript add-ons with the driver reformatting the Ghostscript output into the printer's own language. Often these drivers make limited use of the printer's functionality, however, allowing only black-and-white printing, for example.

If such a driver is available, Ghostscript can be used with it in the following way (also see *Working with Ghostscript* on page 111):

- 1. Ghostscript converts the PostScript data into a raster of pixel dots then uses one of its drivers to convert the rasterized image into a format appropriate for the GDI driver at a suitable resolution. Data is then passed to the GDI driver.
- 2. The rasterized image is converted by the GDI driver into a data format suitable for the printer model.

For the steps described below, it is assumed that a GDI printer driver suitable for SuSE Linux Enterprise Server 8.1 is already installed or can be downloaded from the Internet. It is also assumed that the driver works in the way described above. In some cases, you may need some familiarity with the way source code is handled under Unix or how to unpack such sources (from .zip or .tar.gz archives or maybe from .rpm packages.

After unpacking such an archive, you will often find the latest installation instructions included in some of the files, typically in README or INSTALL, or even in a doc subdirectory. If you have downloaded a .tar.gz archive, you usually need to compile and install the driver yourself.

For the purposes of the example explained below, the following setup is assumed:

- The driver program has been installed as /usr/local/bin/ printerdriver.
- The required Ghostscript driver is pbmraw with an output resolution of 600 dpi.
- The printer is connected to the first parallel port /dev/lp0.

The Ghostscript driver and the resolution may be different for your printer. Read the documentation included with the driver to find out about these.

First, create the gdi queue. To do so, log in as root and run lprsetup, as follows:

earth:~ # lprsetup -add gdi -lprng -device /dev/lp0 \ -driver pbmraw -dpi 600 -size a4dj -auto -sf

This command must be entered as a single line without the backslash $(` \)$. Now, create the script /etc/lpdfilter/gdi/post:

```
#!/bin/bash
/usr/local/bin/printerdriver (gdi_driver_parameters)
```

File 19: /etc/lpdfilter/gdi/post: Running the GDI Printer Driver

Read the documentation of the driver program to find out which options exist for it. Specify them under *(gdi_driver_parameters)* as needed. Make the script executable for all users, and restart the print spooler:

```
earth:~ #
          chmod -v a+rx /etc/lpdfilter/gdi/post
earth:~ # rclpd stop
earth:~ # rclpd start
```

From now on, users should be able to print with this command:

newbie@earth:~ > lpr -Pgdi (filename)

Troubleshooting Hints for Ipdfilter

Enable different debug levels for lpdfilter by uncommenting (removing the '#' sign in front of) the corresponding line of the main filter script /usr/lib/lpdfilter/bin/if.

```
# DEBUG="off"
# DEBUG="low"
DEBUG="medium"
# DEBUG="high"
```

File 20: /usr/lib/lpdfilter/bin/if: Debug Levels

With DEBUG="low" enabled, the program logs its stderr output to the file /tmp/lpdfilter.if-\$\$.XXXXXX (where \$\$ is the process ID and XXXXXX a unique random string).

With DEBUG="medium" enabled, the program logs, in addition to its own error output, the stderr output of the scripts in /usr/lib/lpdfilter/ filter, if these scripts are run by /usr/lib/lpdfilter/bin/if. The debugging output is written to /tmp/lpdfilter.name-\$\$.XXXXXX (where name is the name of the script that is run and \$\$.XXXXXX a string composed in the way described above).

With DEBUG="high" enabled, all error output is logged as above. Additionally, all output normally destined to the printer is redirected to a log file named /tmp/lpdfilter.out-\$\$.XXXXXX (where \$\$.XXXXXX is a string composed in the way described above).

To avoid loosing control over the logging activity, you may want to remove the log files with rm -v /tmp/lpdfilter* before each new test run.

Custom Print Filters for the LPRng Spooler

The aim of this section is not to show you how to build an alternative to lpdfilter, but rather to lay out the inner workings of the Linux printing engine. We do this by demonstrating how to write a custom printer filter. The example explained below has been kept simple to show just the basic mechanism. This is also the reason why no provisions are made in the filter scripts to do any error checking. The following example is based on the assumption that the printer is connected to the first parallel port (/dev/lp0).

Any print filter must accept data from the print spooler on standard input. The filter must then convert the data into the printer-specific format and issue it on standard output. Now the print spooler takes care of the data again and makes sure it is transferred from the filter's standard output to the /dev/lp0 printer device. This is where the Linux kernel comes in: it transfers all data arriving at the printer device to the corresponding IO address (e.g., 0x378). The printer receives this data over the parallel line and interprets it to print accordingly.

On most systems, normal users do not have direct access to the printer device, therefore root permissions are needed for the commands below. Also, in any commands like cat ascii-file >/dev/lp0, replace ascii-file with the name of an existing ASCII file.

Basic Filtering Operations

You can print with the simple command

echo -en "\rHello\r\f" >/dev/lp0. This, however, does not activate the print spooler nor does it use any filter. It writes to the printer device /dev/lp0 directly. The command sends the ASCII signs `\r', `H', `e', `l', `l', `o', `\r', and `\f' directly to the printer device. The ASCII character for carriage return, `\r', causes the carriage (printer head) to return to its start position. The ASCII form feed character, `\f', causes the printer to eject the page.

The commands cat ascii-file >/dev/lp0 and

echo -en "\f" >/dev/lp0 still do not activate the spooler or a print filter, but again send characters directly to the printer device /dev/lp0. The first command sends the characters of the ASCII file to the printer. The second one adds a form feed character to eject the page.

Under Linux, ASCII text lines are separated only by a line feed character. By contrast, line breaks under DOS/Windows consist of a line feed ASCII character and a carriage return ASCII character. If you enter the commands

```
earth:~ # cat /etc/SuSE-release >/dev/lp0
earth:~ # echo -en "\f" >/dev/lp0
```

to send an ASCII file directly to the printer, the output will probably look like:

```
SuSE Linux 8.1 (i386)
VERSION = 8.1
```

The reason is that the printer only performs a line feed but no carriage return (since there is actually no carriage return character between the two lines).

However, it is possible to tell printers to perform both a line feed and a carriage return whenever a line feed character is sent. With the escape sequence $\033\&k2G$, all printers that understand the PCL3 language can be reconfigured to perform both a line feed and a carriage return upon receiving an ASCII line feed character. Send the escape sequence to the printer with echo -en " $\033\&k2G$ " >/dev/lp0 after which it should interpret line breaks in the expected way when printing an ASCII file.

Another problem may arise when trying to print country-specific characters, such as umlauts. DOS and Windows use an encoding for these that is different from Linux. Printers are mostly preconfigured for the DOS/Windows environment. As a remedy, enter

earth:~ # cp ascii-file ascii-file.ibmpc

```
earth:~ # recode lat1..ibmpc ascii-file.ibmpc
```

to first copy ascii-file to ascii-file.ibmpc then recode it according to the DOS/Windows standard. After that, the commands

```
earth:~ # cat ascii-file.ibmpc >/dev/lp0
earth:~ # echo -en "\f" >/dev/lp0
```

should print both the umlauts and the line breaks in the correct way. Note that the special escape sequence to correct the line break behavior is no longer needed, because the file has been recoded to have DOS/Windows line breaks and umlauts.

To sum this up, the sequence of commands

```
earth:~ # cp ascii-file ascii-file.ibmpc
earth:~ # recode lat1..ibmpc ascii-file.ibmpc
earth:~ # cat ascii-file.ibmpc >/dev/lp0
earth:~ # echo -en "\f" >/dev/lp0
```

should correctly print an ASCII file on any printer that accepts ASCII directly and is preconfigured for the DOS/Windows character encoding. Having arrived at this point, you may want to automate this by creating a print filter that reformats ASCII text for your printer according to the above steps.

A Sample Custom Print Filter

First, become root and create a subdirectory for the custom filter then change into that subdirectory:

```
earth:~ # mkdir /usr/local/myprinterfilter
earth:~ # cd /usr/local/myprinterfilter
```

Now, create a Bash script (basically a text file) named asciifilter with the contents shown in File 21.

#!/bin/bash
make a temporary file
INPUT="\$(mktemp /tmp/asciifilter.\$\$.XXXXXX)"
first store everything from stdin in \$INPUT

99

```
# to have the input as a regular file
cat >$INPUT
# recode the INPUT
recode lat1..ibmpc $INPUT
# add a form feed at the end of $INPUT
# to get the last page out of the printer
echo -en "\f" >>$INPUT
# send $INPUT to stdout
cat $INPUT
# remove the INPUT file
rm $INPUT
```

File 21: /usr/local/myprinterfilter/asciifilter

Make this script executable for all users by entering

```
earth:~ #
          chmod -v a+x /usr/local/myprinterfilter/
earth:~ # chmod -v a+rx /usr/local/myprinterfilter/asciifilter
```

Now use lprsetup to create a new print queue (enter lprsetup --help to see what the options do). The queue name used in our example is af, for "ascii filter."

earth:~ # lprsetup -add af -lprng -device /dev/lp0 -raw -sf

In the af entry of /etc/printcap, look for the if line, and replace /usr/lib/lpdfilter/bin/if with /usr/local/myprinterfilter/asciifilter, such that the complete af entry looks similar to File 22.

```
af:\
```

```
:cm=lpdfilter drv= method=raw color=no:\
:lp=/dev/lp0:\
:sd=/var/spool/lpd/af:\
:lf=/var/spool/lpd/af/log:\
:af=/var/spool/lpd/af/acct:\
:if=/usr/local/myprinterfilter/asciifilter:\
:la@:mx#0:\
:tr=:cl:sh:
```

File 22: /etc/printcap: Custom Filter Entry

Finally, stop then restart the print spooler with

earth:~ # rclpd stop
earth:~ # rclpd start

From now on, every user should be able to print through the new af queue with the command lpr -Paf ascii-file.

The CUPS Printing System

Naming Conventions

Client or *client program* refers to a program that sends print jobs to a CUPS daemon. A *daemon* is a local service that accepts print jobs either to forward them or to process them locally. *Server* refers to a daemon that is able to deliver print data to one or more printers. Each server functions as a daemon at the same time. In most cases, however, there is no special distinction to make between a server and a daemon, neither from the developer or from the user standpoint.

IPP and Server

Print jobs are sent to servers by CUPS-based programs, such as lpr, kprinter, or xpp, and with the help of the *Internet Printing Protocol*, IPP. IPP is defined in RFC-2910 and RFC-2911 (see http://www.rfc-editor.org/ rfc.html). IPP is somewhat similar to HTTP with identical headers but different content data. It also uses its own dedicated communication port 631, which has been registered with IANA (the Internet Authority for Number Allocation).

Print data is transferred to a CUPS daemon, which is also acting as a local server in most cases. Other daemons can be addressed using the environment variable CUPS_SERVER.

With the help of the broadcast function of the CUPS daemon, locally managed printers can be made available elsewhere in the network (using UDP port 631). They then appear as print queues on all other daemons configured to accept and use these broadcast packets. This makes it possible to "see" printers on other hosts after booting without configuring them locally, something that may be quite useful in corporate networks. On the other hand, this feature may pose a security risk if the host is connected to the Internet. When enabling printer broadcasting, make sure the daemon broadcasts into the local network only, access is limited to clients on the LAN, and the public IP address (the one used for the Internet connection) is not within the local IP range. Otherwise, remote users relying on the same ISP would be able to "see" and use the broadcast printers as well. In addition to that, such broadcasts mean more network traffic so may increase connection costs. Prevent a local printer from broadcasting IPP packets into the Internet by configuring the SuSEfirewall accordingly. No extra configuration is needed to receive broadcast IPP packets. A broadcast address must only be specified for outgoing print jobs. This may be configured with YaST2, for example.

IPP is used for the communication between a local and a remote CUPS daemon or server. More recent network printers also have built-in support for this protocol (there are a number of models from different makers). Find more information about this on the web pages of manufacturers or in your printer's manual. IPP is also supported by Windows 2000 (and newer Microsoft systems), although originally the implementation was somewhat flawed. These problems may have disappeared or it may be necessary to install a Service Pack to repair them.

Configuration of a CUPS Server

There are many ways to set up a printer with CUPS and to configure the daemon: with command-line tools, with YaST2, with the KDE Control Center, or even through a web browser interface. The following sections are limited to the command-line tools and to YaST2.

Caution

When using the web browser interface for CUPS configuration, be aware that there is a risk of compromising the root password. The password will be transmitted as plain text if the URL specified includes the real host name. Therefore, you should always use http://localhost:631/ as the host address.

Caution -

For the above reason, the CUPS daemon can only be accessed for administration if addressed as localhost (which is identical to the IP address 127.0.0.1) by default. Entering a different address returns an error message, even if it is valid.

To configure a locally connected printer, first set up a CUPS daemon on the local host. To do so, install package cups together with the PPD files provided by SuSE as included in package cups-drivers and package cups-drivers-stp. After that, start the server as root with the command /etc/rc.d/cups restart. If you configure it with YaST2, the above steps are already covered by selecting CUPS as the printing system and installing a printer.

PPD (PostScript Printer Description) files contain options for printer models in the form of a standard set of PostScript commands. They are required for printer installation under CUPS. SuSE Linux Enterprise Server comes with precompiled PPD files for many printers from a number of manufacturers. Manufacturers may also offer PPD files for their PostScript printers on web sites and installation CDs (often in an area called something like "Windows NT Installation").

You may also run a CUPS daemon locally to have all printers broadcast by other servers available on the local host although no printer is connected locally. Then easily use these printers from within KDE applications and OpenOffice, for example.

Broadcasting can be enabled either with YaST2 or by setting the Browsing directive to On (the default) and the BrowseAddress directive to a sensible value, like 192.168.255.255, in the file /etc/cups/cupsd.conf. After that, tell the CUPS daemon explicitly to grant access to incoming packets, either under <Location /printers> or, preferably, under <Location />, where you would have to include a line like Allow From some-host.mydomain (see file:/usr/share/doc/packages/cups/ sam.html). When finished editing the file, tell the daemon to reread its configuration by entering the command /etc/rc.d/cups reload as root.

Network Printers

Network printers are either printers that have a built-in print server interface (such as the JetDirect interface in some HP printers) or printers connected to a print server box or a router box, which is also enabled as a print server. Windows machines offering printer shares are not print servers in the strict sense (though CUPS can handle them easily in a way similar to print servers).

In most cases, a network printer supports the LPD protocol, which uses port 515 for communication. Check lpd availability with the command: netcat -z hostname.domain 515 && echo ok || echo failed

If such a server is available, CUPS can be configured to access it under a *device URI*, an address in the form lpd://server/queue. Read about the concept of device URIs in file:/usr/share/doc/packages/cups/sam. html.

However, you should probably not use the LPD protocol for a network printer, but rather the printer's built-in port 9100 if available (HP, Kyocera, and many others) or port 35 (QMS). In this case, the device URI must have the form socket://server:port/.

To use printers made available through Windows, install package samba-client first and configure this package — enable the correct "Workgroup" and make other settings. A device URI for Windows printers may be specified in several ways, but the most frequent one has the syntax smb://user:password@host/printer. For other configurations, see file:/usr/share/doc/packages/cups/sam.html and the man page for smbspool (man smbspool).

If you have a small network consisting of several (Linux) machines and have set up a print server for it, you will want to avoid configuring the printer for each and every client host. Achieve this by enabling the broadcast function of the daemon (see above). Thus, when you modify the configuration (for instance, to use the new standard paper size Letter), it is sufficient to do this once on the server side (also see *Specifying Options for Queues* on page 109). Although the configuration is saved locally on the server side, it is propagated to all clients in the network with the help of the CUPS tools and the IPP protocol.

Internal CUPS Print Job Processing

Conversion into PostScript

Basically the CUPS daemon should be able to handle any file type, although PostScript is always the safest bet. CUPS processes non-PostScript files by identifying the file type according to /etc/cups/mime.types first then converting the file into PostScript by calling the appropriate conversion tool for it as defined in /etc/cups/mime.convs. With CUPS, files are converted into PostScript on the server side rather than on the client side (as is the case with the traditional LPR-type spoolers). This feature was introduced to ensure that special conversion operations necessary for a particular printer model are only performed on the corresponding server machine, which has both advantages and disadvantages.

Accounting

After conversion into PostScript, CUPS calculates the number of pages for each print job. This is done with the help of pstops (an internal version of the program located at /usr/lib/cups/filter/pstops). The accounting

data for print jobs are written to /var/log/cups/page_log. Each line in this file contains the following information:

- printer name (for example, lp)
- user name (for example, root)
- job number
- date and time (in square brackets)
- current page number
- number of copies

Other Filtering Programs

CUPS can also use other, special filters, if the corresponding printing options have been enabled. These are the most important ones:

psselect: Allows limiting the printout to certain pages of a document.

ps-n-up: Allows the printing of several pages on one sheet.

Read file:/usr/share/doc/packages/cups/sum.html on how to enable the various options.

Conversion into the Printer-Specific Language

The next step in the CUPS printing mechanism is the conversion into the printer-specific data format. To do so, CUPS runs a filter (e.g., /usr/lib/ cups/filter/cupsomatic), which should be specified in the PPD file installed for the printer model. If this is not the case, the system assumes that the printer is a PostScript model. All device-dependent printing options, such as the resolution and paper size, are processed by this script. Writing a custom printer-specific filter script is not a trivial task and therefore best left to a specialist.

Transferring Data to the Printer

As the final step, CUPS calls one of its back-ends. A back-end is a special filter that transfers print data to a device or to a network printer (see file:/usr/share/doc/packages/cups/overview.html). The back-end maintains the communication with the device or network printer (as specified through a device URI during configuration). If the back-end is usb, for example, CUPS runs /usr/lib/cups/backend/usb, which in turn opens (and locks) the corresponding USB device file, initializes it, and passes the data coming from the print filter. When the job is finished, the back-end closes the device and unlocks it.

The following back-ends are currently available: parallel, serial, usb, ipp, lpd, http, socket (included in package cups). There are also canon and epson (included in cups-drivers-stp) and smb (included in samba-client).

Filterless Printing

To print files without any filtering, use the command lpr with its -1 option or alternatively use the lp command with the -oraw option. However, printers mostly do not function when doing so, because the Ghostscript interpreter is not called (by cupsomatic, for example) or due to the lack of some other important filtering action. Filtering may also be disabled with other CUPS tools, which have similar options to achieve this.

Tips and Tricks

OpenOffice

When printing from OpenOffice applications, CUPS is supported such that a running CUPS daemon is autodetected and queried for available printers and options (this is different from StarOffice 5.2, where it was still necessary to perform a setup for each printer). An extra CUPS setup from within OpenOffice should no longer be necessary.

If you want to use special CUPS programs for printing from OpenOffice, you should not rely on graphical tools (such as kprinter or xpp) to trigger the actual print command. Graphical tools may insist on opening their own dialog windows and thus cause OpenOffice to hang whenever they are activated.

Printing to or from Windows Machines

Printers connected to a Windows machine can be addressed through a device URI such as smb://server/printer. If you want to print from a Windows machine to a CUPS server, change the Samba configuration file /etc/samba/smb.conf to include the entry printing = cups or printing = CUPS then restart the smb server. See file:/usr/share/ doc/packages/cups/sam.html for details.

Setting up a Raw Printer

A raw printer can be set up by leaving out the PPD file during configuration, which effectively removes all filtering and accounting features from CUPS. However, this also means that data must already be available in the printer-specific format. Tests at SuSE have shown that this often does not work very well, therefore we currently cannot recommend this setup.

Custom Printer Options

Custom printer options (for example, a different default resolution) can be stored in the file ~/.lpoptions. If the corresponding printer is removed on the server side, several CUPS tools, such as kprinter and xpp, assume the printer is still there so allow you to select it. This leads to a number of problems. You should probably open ~/.lpoptions and remove the "offending" lines from the file, at least if you are experienced enough with the printing system.

Compatibility with LPR-Type Printing Systems

CUPS can be configured to accept print jobs from LPR-type printing systems. Either use YGST2 to make the necessary changes to /etc/inetd.conf or use some other means to remove the comment signs from the beginning of the printer line in /etc/inetd.conf. To switch back to LPRng, reinsert the comment sign.

Command-Line Tools for the CUPS Printing System

The command-line tools of the CUPS printing system and their manual pages are included in package cups-client. Further documentation is provided by the package cups and installed in /usr/share/doc/packages/cups, in particular the CUPS Software Users Manual, found at /usr/share/doc/packages/cups/sum.html and the CUPS Software Administrators Manual at /usr/share/doc/packages/cups/sam.html If a CUPS daemon runs locally on your host, you should also be able to access the documentation at http://localhost:631/documentation.html.

As a general rule, it is useful to remember that CUPS command-line tools sometimes require options be supplied in a certain order. Consult the corresponding manual pages if you are unsure about specific options.

Managing Local Queues

Printing Files

To print a file, enter a "System V style" print command like

```
newbie@earth:~ > lp -d \langle queuename \rangle \langle file \rangle
```

or a "Berkeley style" command like

newbie@earth:~ > lpr -P(queuename) (file)

Additional information can be obtained with the man page for lpr (man lpr) and the man page for lp (man lp), as well as in the section "Using the Printing System" of the CUPS Software Users Manual (file: /usr/share/doc/packages/cups/sum.html#USING_SYSTEM).

The -o parameter allows specification of a number of important options, some of which directly influence the type of printout. More information is available in the man page for lpr (man lpr) and the man page for lp (man lp) as well as in the section "Standard Printer Options" of the CUPS Software Users Manual (file:/usr/share/doc/packages/cups/sum.html#STANDARD_OPTIONS).

Checking the Status

To check the status of a queue, enter the "System V style" command lpstat -0 (queuename) -p (queuename) or the "Berkeley style" command lpg -P(queuename). If you do not specify a queue name, the commands will display information on all queues. With lpstat -0, the output will show all active print jobs in the form of a (queuename)-(jobnumber) listing.

With lpstat -l -o (queuename) -p (queuename), the output is more verbose. lpstat -t or lpstat -l -t displays the maximum amount of available information.

For additional information, consult the man page for lpq (man lpq) and the man page for lpstat (man lpstat), and read the section "Using the Printing System" of the CUPS Software Users Manual (file:/usr/share/doc/packages/cups/sum.html#USING_SYSTEM).

Removing Jobs from the Queue

You can enter the "System V style" command cancel (queuename)-(jobnumber) or the "Berkeley style" command lprm -P(queuename) (jobnumber) to remove the job with the specified number from the specified queue. For additional information, consult the man page for lprm (man lprm) and the man page for cancel (man cancel) and read the section "Using the Printing System" of the CUPS Software Users Manual (file:/usr/share/doc/packages/cups/sum.html#USING_SYSTEM).

Specifying Options for Queues

To see how to specify hardware-independent options that affect the type of printout, read the section "Standard Printer Options" in the CUPS Software Users Manual (file:/usr/share/doc/packages/cups/sum. html#STANDARD_OPTIONS). The section "Saving Printer Options and Defaults", which is found at file:/usr/share/doc/packages/cups/sum. html#SAVING_OPTIONS, explains how to save option settings.

Printer-specific options affecting the type of printout are stored in the PPD file for the queue in question. They can be listed with the command lpoptions -p (queuename) -1. The output has the following form:

option/text: value value value ...

The currently active setting is marked with an asterisk (`*') to the left, for example:

PageSize/Page Size: A3 *A4 A5 Legal Letter Resolution/Resolution: 150 *300 600

According to the above output, the PageSize is set to A4 and the Resolution to 300 dpi.

The command lpoptions $-p \langle queuename \rangle$ -o option=value changes the value for the given option. With the above sample settings in mind, use the command lpoptions $-p \langle queuename \rangle$ -o PageSize=Letter to set the paper size for the specified queue to Letter.

If the above lpoptions command is entered by a normal user, the new settings are stored for that user only, in the file ~/.lpoptions. By contrast, if the lpoptions command is entered by root, the settings specified are stored in /etc/cups/lpoptions and become the default for all local users of the queue. The PPD file is not touched by this, however.

If (and only if) you change the contents of a PPD file for a given queue, the new settings apply to all users in the local network who print through this queue. The system administrator can change the defaults of a PPD file with a command like: earth:~ # lpadmin -p (queuename) -o option=value

Accordingly, to change the default paper size of the sample queue to Letter for all users in the local network, enter the command:

earth:~ # lpadmin -p (queuename) -o PageSize=Letter

Managing Remote Queues

In the examples below, replace printserver with the name or the IP address of your actual print server and queuename with the name of the remote queue on the print server. Given that this section only covers the basic commands, you may also want to read Section *Managing Local Queues* on page 108, which explains more options and includes pointers to additional sources of information.

Printing Files

Print a file either with a "System V style" command like lp -d (queuename) -h printserver (filename) or with a "Berkeley style" command like lpr -P(queuename)@printserver (filename). In both cases, this starts a print job for the specified queue on the given print server.

The print server must have been configured to accept jobs on its queues from your host. In its default configuration, the CUPS daemon does not allow this, but you can easily enable the feature with the help of the YaST2 printer configuration module.

Checking the Status

Xheck the status of a remote queue on a print server with the "System V style" command lpstat -h printserver -o (queuename) -p (queuename).

Removing Jobs from the Queue

With the "System V style" command cancel -h printserver (queuename)-(jobnumber), remove the print job with the specified job number from the specified queue on the given print server.

111

Using Command-Line Tools for CUPS Troubleshooting

In the case of a broken print job, the troubleshooting procedure is basically the same as the one described in *Using Command-Line Tools for LPRng Troubleshooting* on page 86, with the difference that CUPS requires different commands for the second step:

- 1. Remove all paper from the printer so the printer stops working.
- 2. Check which queue is currently printing by entering lpstat -o (or lpstat -h printserver -o, respectively) then remove the trouble-making print job with cancel (queuename)-(jobnumber) (or with cancel -h printserver (queuename)-(jobnumber), respectively).
- 3. If necessary, use the fuser command to kill leftover programs.
- 4. Do a complete reset of the printer.

Working with Ghostscript

Ghostscript is a program that accepts PostScript and PDF files as input then converts them into several other formats. Ghostscript includes a number of drivers to achieve this. These are sometimes also referred to as "devices."

Ghostscript converts files in two steps:

- 1. PostScript data is rasterized the graphical image is broken up into a fine-grained raster of pixel dots. This step is performed independently from the Ghostscript driver used later. The finer the raster (the higher the resolution), the higher the output quality. On the other hand, doubling the resolution both horizontally and vertically (for example) means that the number of pixels must quadruple. Accordingly, the computer needs four times the CPU time and amount of memory to double the resolution.
- 2. The dot matrix that makes up the image is converted into the desired format (a printer language, for example) with the help of a Ghostscript driver.

Ghostscript can also process PostScript files to display them on screen or convert them into PDF documents.

To display PostScript files on screen, you should probably use the program gv (rather than relying on bare Ghostscript commands), which gives a more convenient graphical interface to work with Ghostscript.

Ghostscript is a very big program package and has a large number of command-line options. Apart from the information available with the the man page for gs (man gs), the most important part of the documentation is the list of Ghostscript drivers, which is found in /usr/share/doc/ packages/ghostscript/catalog.devices and the files /usr/share/ doc/packages/ghostscript/doc/index.html, /usr/share/doc/ packages/ghostscript/doc/Use.htm, /usr/share/doc/packages/ ghostscript/doc/Devices.htm, /usr/share/doc/packages/ ghostscript/doc/hpdj/gs-hpdj.txt, /usr/share/doc/packages/ ghostscript/doc/hpijs/hpijs_readme.html, and /usr/share/doc/ packages/ghostscript/doc/stp/README.

When executed from the command line, Ghostscript processes any options and then presents you with its own GS> prompt. Exit from this dialog mode by entering quit.

If you enter gs -h, Ghostscript displays its most important options and lists the available drivers. This listing, however, only includes generic driver names, even for drivers that support many different models, such as uniprint or stp. The parameter files for uniprint and the models supported by stp are explicitly named in /usr/share/doc/packages/ ghostscript/catalog.devices.

Sample Operations with Ghostscript

Find a number of PostScript examples in the directory /usr/share/doc/ packages/ghostscript/examples. The "color circle" in /usr/share/ doc/packages/ghostscript/examples/colorcir.ps is well suited for test printouts.

Displaying PostScript under X

Under X, the graphical environment, use gs to view a PostScript file on screen. To do so, enter the following command as a single line, omitting the backslash (`\'):

```
newbie@earth:~ > gs -r60 \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps
```

In the above command, the -r options specifies the resolution, which must be appropriate for the output device (printer or screen). Test the effect of

this option by specifying a different value, for example, -r30. To close the PostScript window, press (Ctrl) + (C) in the terminal window from which gs was started.

Conversion into PCL5e

The conversion of a PostScript file into the printer-specific format of a PCL5e or PCL6 printer can be achieved with a command like

```
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
sOutputFile=/tmp/out.prn \
-sDEVICE=ljet4 -r300x300 \
/usr/share/doc/packages/ghostscript/examples/colorcir.ps \
quit.ps
```

Again the command must be entered as a single line and without any backslash ('\'). With this command, it is assumed that the file /tmp/out.prn does not exist yet.

Conversion into PCL3

To convert a PostScript file into the printer-specific format of a PCL3 printer, enter one of the following commands:

```
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
     sOutputFile=/tmp/out.prn \
     -sDEVICE=deskjet -r300x300 \
     /usr/share/doc/packages/ghostscript/examples/colorcir.ps \
     quit.ps
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
     sOutputFile=/tmp/out.prn \
     -sDEVICE=hpdj -r300x300 \
     -sModel=500 -sColorMode=mono -dCompressionMethod=0 \
     /usr/share/doc/packages/ghostscript/examples/colorcir.ps \
    quit.ps
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
     sOutputFile=/tmp/out.prn \
     -sDEVICE=cdjmono -r300x300 \
     /usr/share/doc/packages/ghostscript/examples/colorcir.ps \
     quit.ps
```

```
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
    SOutputFile=/tmp/out.prn \
    -sDEVICE=cdj500 -r300x300 \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps \
    quit.ps
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
    sOutputFile=/tmp/out.prn \
    -sDEVICE=cdj550 -r300x300 \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps \
    quit.ps
```

(Again each of the above commands must be entered as a single line, without the backslashes.)

Conversion into ESC/P, ESC/P2, or ESC/P Raster

These are some sample commands to convert a PostScript file into the printer-specific format of an ESC/P2, ESC/P, or ESC/P raster printer.

```
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
    sOutputFile=/tmp/out.prn \
    @stcany.upp \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps \
    quit.ps
newbie@earth:~ > gs -q -dNOPAUSE -dSAFER -
    sOutputFile=/tmp/out.prn \
    -sDEVICE=stcolor -r360x360 \
    -dBitsPerPixel=1 -sDithering=gsmono -dnoWeave \
    -sOutputCode=plain \
    /usr/share/doc/packages/ghostscript/examples/colorcir.ps \
    quit.ps
```

The above commands also show that the uniprint Ghostscript driver, which is called through a parameter file (stcany.upp in our example), requires a different command syntax than "regular" Ghostscript drivers. Since all driver options are stored in the uniprint parameter file, they do not have to be specified on the Ghostscript command line itself.

Sending the Output Directly to the Printer

With each of the above commands, the output is written in the corresponding printer language and stored in the file /temp/out.prn. This file can be sent

directly to the printer by root without the use of a print spooler or any filtering. For a printer connected to the first parallel port, this can be achieved with the command cat /tmp/out.prn >/dev/lp0.

Working with a2ps

Before an ASCII file can be printed through Ghostscript, it needs to be converted into PostScript, because this is the input format that Ghostscript expects. This conversion can be achieved with a2ps.

The α 2ps program is a powerful, versatile tool that lets you convert simple text files into high-quality PostScript output. It has a large number of command-line options. Learn about these in the man page for a2ps (man a2ps) or read the full documentation of α 2ps as an info page.

Sample Operations with a2ps

Using a2ps to Prepare a Text File for Printing

As a first example, $\Box 2ps$ can be used to convert a text file into PostScript, with two pages scaled down so they fit on one sheet. This can be achieved with the command:

```
newbie@earth:~ > a2ps -2 --medium=A4dj --output=/tmp/out.ps
textfile
```

The output of a2ps can then be displayed under X with

newbie@earth:~ > gs -r60 /tmp/out.ps

to get a preview of the printout. If the printout comprises more than one sheet, hit (-) in the terminal window from which gs was started to scroll down to the next page. To exit gs, enter (Ctrl) + (C).

Take the output of Q2ps and convert it into your printer's language by entering:

In the above command, specify your own driver parameters under $\langle driver parameters \rangle$ as described in the previous section.

Provided that you are logged in as root, you can send the output of Ghostscript directly to the printer without relying on a spooler or any further filtering with the command:

earth:~ # cat /tmp/out.prn >/dev/lp0

For the above command, it is assumed that the printer is connected to the first parallel port (/dev/lp0).

Printing Business Cards

To demonstrate the possibilities of a2ps, this section shows how to use the program to make and print a stack of simple business cards. First, create a plain text file called card that contains the necessary data as shown in 23.

```
Title FirstName LastName
Street
PostalCode City
E-mail: user@domain
Phone: AreaCode-Number-Extension
```

File 23: card: Business Card Data File

Append a form feed character (f) to this to ensure that a2ps treats each card as an individual page.

newbie@earth:~ > echo -en "\f" >>card

Now, multiply the contents of the file to have a set of 10 cards in one cards file:

newbie@earth:~ > for i in \$(seq 1 10) ; do cat card >>cards ;
 done

Use cat cards \mid wc -L to find out how many characters the longest line of cards contains.

Now do the actual PostScript conversion. We want ten cards per sheet printed in two columns with five cards each with a box or frame around them. We also want to use the maximum font size as allowed by the longest line and no additional header or footer lines. All this can be done with the command:

This command must be entered on a single line without the backslash ($` \)$. For number, fill in the number of characters in the longest line as determined above.

Finally, preview the printout with gs -r60 cards.ps then send the output to the printer as described in the previous section. Alternatively, print the file in the normal way with lpr card.ps.

Reformatting PostScript with psutils

To use one of the reformatting programs described below, generate a PostScript input file by printing to a file, such as /tmp/in.ps, from within an application. Check with file /tmp/in.ps to see whether the generated file is really in PostScript format.

The package psutils includes a number of programs to reformat PostScript documents. The program pstops, in particular, allows you to perform extensive transformations. Details can be obtained in the man page for pstops (man pstops). The package psutils is not included in the standard setup of SuSE Linux Enterprise Server, so you may need to install it.

The following commands only work if the application program has created a PostScript file which is appropriate for such reformatting operations. This should mostly be the case, but there are some applications that cannot generate PostScript files in the required way.

psnup

The command psnup -2 /tmp/in.ps /tmp/out.ps takes /tmp/in.ps as its input and transforms it into the output file /tmp/out.ps in such a way that two pages are printed side by side on one sheet. However, with the contents of two pages being included on one, the complexity of the resulting document is much higher and some PostScript printers may fail to print it, especially if they are equipped with only a small amount of standard memory.

pstops

The program pstops allows you to change the size and positioning of PostScript documents. For example, the command pstops '1:0@0.8(2cm, 3cm)' /tmp/in.ps /tmp/out.ps scales the document by a factor of 0.8, which effectively scales down an A4 page from about 21x30 cm to about 17x24 cm. This, in turn, leaves an additional margin of about 4 cm on the right and 6 cm on the top. Therefore, the document is also shifted by 2 cm towards the right and 3 cm towards the top to get roughly the same margins everywhere.

This pstops command shrinks the page by quite an amount and also provides for relatively wide margins, so it should generate a page that is almost always printable — even with those applications that are far too optimistic about the limits set by your printer. You can use a command like the above for those cases where the application's printer output in /etc/in.ps is too large for the printable area.

As another example, the commands

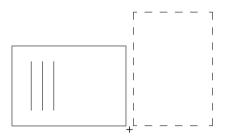
newbie@earth:~ > pstops '1:0@0.8(2cm,3cm)' /tmp/in.ps
 /tmp/outl.ps
newbie@earth:~ > psnup -2 /tmp/outl.ps /tmp/out.ps

place two heavily scaled-down pages on one sheet, leaving quite a lot of space between them. To improve this, include instructions to position each of the pages individually:

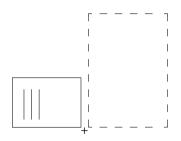
newbie@earth:~ > pstops '2:0L@0.6(20cm,2cm)+1L@0.6(20cm,15cm)' \
 /tmp/in.ps /tmp/out.ps

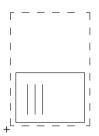
The above command needs to be entered as a single line without the $` \ '$.

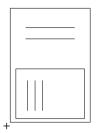
The following is a step-by-step explanation of the page specifications as expressed by pstops '2:0L@0.6(20cm,2cm)+1L@0.6(20cm,15cm)':

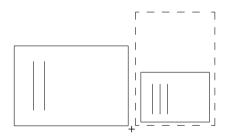

- **2:0** ... +1 Two pages are merged into one and pages are counted modulo 2, which means that each page gets the logical number 0 or 1, respectively.
- **0L@0.6(20cm,2cm)** Pages with the logical number 0 are turned to the left by 90 degrees and scaled down by a factor of 0.6. They are then shifted to the right by 20 cm and to the top by 2 cm.
- **1L@0.6(20cm,15cm)** To match the above reformatting, pages with the logical number 1 are turned to the left by 90 degrees, and scaled down by a factor of 0.6. They are then shifted to the right by 20 cm and to the top by 15 cm.

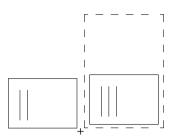
Visualization of the pstops Example


In the case of PostScript files, the origin of coordinates is located in the bottom left corner of a page in normal position, as indicated by the '+'. This is a page with the logical number 0, which has three lines of text:


After turning it to the left by 90 degrees, it looks like this:


Now, scale it by a factor of 0.6:


Finally, move it to the right by 20 cm and up by 2 cm:


This is merged with the page that has the logical number 1, with two lines of text on it:

Now page 1 gets turned by 90 degrees to the left:

After scaling by factor 0.6, it looks like this:

To finish up, page 1 is moved 20 cm to the right and 15 cm to the top:

psselect

```
The psselect program allows selection of indi-
vidual pages from a document. With the command
psselect -p2,3,4,5 /tmp/in.ps /tmp/out.ps or even
psselect -p2-5 /tmp/in.ps /tmp/out.ps, select pages 2, 3, 4,
and 5 from the document in /tmp/in.ps and write the selection into
/tmp/out.ps.
The commands psselect -p1,2,3,4 /tmp/in.ps /tmp/out.ps and
psselect -p-4 /tmp/in.ps /tmp/out.ps select pages 1, 2, 3, and 4.
With the command psselect -p2,2,2,5,5 /tmp/in.ps /tmp/out.ps,
page 2 is selected three times and page 5 twice.
The command psselect -p3- /tmp/in.ps /tmp/out.ps
selects everything from page 3 up to the end.
psselect -p_1 /tmp/in.ps /tmp/out.ps only selects the last
page. With psselect -p_4-_2 /tmp/in.ps /tmp/out.ps, you can
select everything from four pages before the end to two pages before the end.
The command psselect -r -p3-5 /tmp/in.ps /tmp/out.ps
```

selects pages 3, 4, and 5 from /tmp/in.ps and writes them

into /tmp/out.ps in the opposite order. Finally, the command psselect -r -p- /tmp/in.ps /tmp/out.ps takes all pages and writes them to the output file in the opposite order.

Using Ghostscript to View the Output

On a graphical display, the PostScript file /tmp/out.ps can be viewed with gs -r60 /tmp/out.ps. Scroll through the pages by pressing \square in the terminal window from which you started Gnostscript. Terminate with (Ctrl) + (C).

As a graphical front-end for Ghostscript, use gv. To view the abovementioned output file, for example, enter gv /tmp/out.ps. The program is especially useful whenever there is a need to zoom in or out a document or to view it in landscape orientation (although this has no effect on the file contents). It can also be used to select individual pages, which then can be printed directly from within gv.

ASCII Text Encoding

In plain text files, each character is represented as a certain numeric code. Characters and their matching codes are defined in code tables. Depending on the code tables used by an application and by the print filter, the same code may be represented as one character on the screen and as another one when printed.

Standard character sets only comprise the range from code 0 to code 255. Of these, codes 0 through 127 represent the pure ASCII set, which is identical for every encoding. Iit comprises all "normal" letters as well as digits and some special characters, but none of the country-specific special characters. Codes 128 through 255 of the ASCII set are reserved for country-specific special characters, such as umlauts.

However, the number of special characters in different languages is much larger than 128. Therefore, codes 128 to 255 are not the same for each country. Rather, the same code may represent different country-specific characters, depending on the language used.

The codes for Western European languages are defined by ISO-8859-1 (also called Latin 1). The ISO-8859-2 encoding (alias Latin 2) defines the character sets for Central and Eastern European languages. Code 241 (octal), for example, is defined as the (Spanish) inverted exclamation mark in ISO-8859-1, but

the same code 241 is defined as an uppercase A with an ogonek in ISO-8859-2. The ISO-8859-15 encoding is basically the same as ISO-8859-1, but, among other things, it includes the Euro currency sign, defined as code 244 (octal).

A Sample Text

The commands below must be entered as a single line without any of the backslashes $(` \ ')$ at the end of displayed lines.

Create a sample text file with:

Visualizing the Sample with Different Encodings

Under X, enter these commands to open three terminals:

```
newbie@earth:~ > xterm -fn -*-*-*-*-*-14-*-*-*-iso8859-1 \
    -title iso8859-1 &
newbie@earth:~ > xterm -fn -*-*-*-*-14-*-*-*-iso8859-15  \
    -title iso8859-15 &
newbie@earth:~ > xterm -fn -*-*-*-*-14-*-*-*-iso8859-2 \
    -title iso8859-2 &
```

Use the terminals to display the sample file in each of them with cat example. The "iso8859-1" terminal should display code 241 as the inverted (Spanish) exclamation mark and code 244 as the general currency symbol. The "iso8859-15" terminal should display code 241 as the inverted (Spanish) exclamation mark, and code 244 as the Euro symbol. The "iso8859-2" terminal should display code 241 as an uppercase A with an ogonek and code 244 as the general currency symbol.

Due to the fact that character encodings are defined as fixed sets, it is not possible to combine all the different country-specific characters with each other in an arbitrary way. For example, the A with an ogonek cannot be used together with the Euro symbol in the same text file.

To obtain more information (including a correct representation of each character), consult the corresponding man page in each terminal — the man page for iso_8859-1 (man iso_8859-1) in the "iso8859-1" terminal, the man page for iso_8859-15 (man iso_8859-15) in the "iso8859-15" terminal, and the man page for iso_8859-2 (man iso_8859-2) in the "iso8859-2" terminal.

Printing the Sample with Different Encodings

When printed, ASCII text files, such as the example file, are treated in a similar way according to the encoding set for the print queue used. However, word processor documents should not be affected by this, because their print output is in PostScript format (not ASCII).

Consequently, when printing the above example file, characters are represented according to the encoding set for ASCII files in your printing system. You can also convert the text file into PostScript beforehand to change the character encoding as needed. The following a2ps commands achieve this for the example file:

```
newbie@earth:~ > a2ps -1 -X ISO-8859-1 -o example-ISO-8859-1.ps
    example
newbie@earth:~ > a2ps -1 -X ISO-8859-15 -o example-ISO-8859-
    15.ps example
newbie@earth:~ > a2ps -1 -X ISO-8859-2 -o example-ISO-8859-2.ps
    example
```

Then print the files example-ISO-8859-1.ps, example-ISO-8859-15. ps, and example-ISO-8859-2.ps to get printouts with different encodings.

Printing in a TCP/IP Network

Find extensive documentation about the LPRng printing system in the *LPRng-Howto* in /usr/share/doc/packages/lprng/LPRng-HOWTO.html and on the CUPS printing system in the *CUPS Software Administrators Manual* in /usr/share/doc/packages/cups/sam.html.

Terminology

Print server

Print server refers to a complete, dedicated printing host with the required CPU power, memory, and hard disk space.

Print server box, network printer

• *Print server box* refers to a computer with relatively limited resources, which is equipped with both a TCP/IP network link and a local printer port. This includes "router boxes" with a built-in printer port.

• A *network printer* is a printer device with its own TCP/IP port. Basically, it is a printer with an integrated print server box. Network printers and print server boxes are handled in essentially the same way.

There is an important distinction to be made between a network printer or a print server box on the one hand and a true print server on the other. As a somewhat special case, there are large printer devices that have a complete print server included with them to make them network-capable. These are treated like print servers because clients will talk to the printer only through the server and not directly.

TCP/IP Printing Protocols

The following lists the different methods that can be used to implement printing on a TCP/IP network. The decision of which one to use does not so much depend on the hardware, but more on the possibilities offered by each protocol. Accordingly, the YaST2 printer configuration asks you to select a protocol and not a hardware device when setting up network printing.

Printing over the LPD protocol

Print jobs are forwarded to a remote queue over the LPD protocol. To allow this, the protocol must be supported both on the client and the server side.

Client side

LPRng

The lpd of LPRng supports the LPD protocol. For remote printing, a local queue must be set up through which the local lpd can forward the print job to a remote queue, using the LPD protocol.

LPRng also allows network printing without a local lpd running. With this method, the lpr included in package lprng uses the protocol to directly forward a print job to the remote queue.

CUPS

CUPS has support for the LPD protocol, but only through the CUPS daemon cupsd. To enable this, a local queue must be set up through which the print job can be relayed by the local cupsd to the remote queue using the LPD protocol.

Server side

Print server

The printer must be connected locally to the print server and the print server itself must support the LPD protocol.

Network printer or print server box

The print server box or network printer must support the LPD protocol (which should normally be the case).

Printing over the IPP protocol

Print jobs are forwarded to a remote queue over the IPP protocol. To allow this, the protocol must be supported both on the client and the server side.

Client side

LPRng

LPRng does not yet support the IPP protocol.

CUPS

CUPS supports the IPP protocol through cupsd. For this method, a local queue must be set up, which can be used by cupsd to forward print jobs to a remote queue using the IPP protocol.

CUPS also allows network printing without a local cupsd running. With this method, the program lp included in package cups-client or the programs xpp or kprinter use the IPP protocol to directly forward a print job to a remote queue.

Server side

Print server

The printer must be connected locally to the print server and the print server itself must support the IPP protocol.

Network printer or print server box

The print server box or network printer must support the IPP protocol, which is only the case with some recent devices.

Direct remote printing through TCP sockets

With this method, there is no print job that gets relayed to a remote queue. No protocol capable of handling print jobs and queues is involved in the process (neither LPD nor IPP). Rather, printer-specific data is transferred to a remote TCP port via TCP sockets, which must be supported both on the client and on the server side.

Client side

LPRng and lpdfilter

The lpd of the LPRng printing system supports streaming data directly via TCP sockets. To enable this, there must be a local queue that can be used by the local lpd to convert the data of each print job into the printer-specific format (with the help of lpdfilter) and to transfer them to the remote TCP port via TCP sockets after conversion.

With LPRng, it is also possible to implement this method without a local lpd. This requires that the lpr (included in package lprng) is called with the -Y option to transfer data directly to the remote TCP port via TCP sockets. For details on this, see the man page for lpr (man lpr). However, there is no print filter involved at all, which means that print data must be in the printer-specific format from the beginning.

CUPS

CUPS supports the direct transfer of print data via TCP sockets, but only if cupsd is running. To enable this method, there must be a local queue that can be used by the local cupsd to convert the data of each print job into the printerspecific format and to stream data to the remote TCP port via TCP sockets after conversion.

Server side

Network printer or print server box

Print server boxes and network printers normally keep a TCP port open to transfer a data stream in the printer-specific format directly to the printer.

HP network printers, in particular, HP JetDirect print server boxes, use port 9100 as the default for this kind of data stream. JetDirect print server boxes with two or three local printer ports listen on TCP ports 9100, 9101, and 9102. The same ports are used by many other print server boxes. If you are not sure about this, ask the manufacturer or consult the printer manual to find out which port is used by your device for raw socket printing. Additional information about this can be found in the *LPRng-Howto* (file:/usr/share/ doc/packages/lprng/LPRng-HOWTO.html), especially file:/usr/share/doc/packages/lprng/LPRng-HOWTO. html#SECNETWORK, file:/usr/share/doc/packages/ lprng/LPRng-HOWTO.html#SOCKETAPI, and file: /usr/share/doc/packages/lprng/LPRng-HOWTO. html#AEN4858.

Printing over the SMB protocol

With this method, print jobs are converted into the printer-specific format first then transferred via the SMB protocol to a remote share that represents a remote printer. Both the client and the server side must support the SMB protocol. Although neither LPRng and lpdfilter or CUPS have direct support for the SMB protocol, they can support it indirectly with the help of smbclient and smbspool, respectively. Both programs are included in package samba-client.

Client side

LPRng and lpdfilter

LPRng needs lpdfilter to support the SMB protocol. There must be a local queue through which the local lpd can convert the print job into the printer-specific format with the help of lpdfilter. The latter then forwards the data with the help of smbclient to the remote share, using the SMB protocol.

CUPS

There must be a local queue that can be used by the local cupsd to convert data into the printer-specific format. After that, data is transferred to the remote share by smbspool using the SMB protocol.

Server side

SMB print server

The printer must be connected to an SMB print server. The latter is usually a DOS or Windows machine, although it could also be a Samba server powered by Linux. The SMB print server must support the SMB protocol and access to the printer (to the corresponding share) must have been enabled on the server side.

Filtering for Network Printers

This section describes the possible ways to implement filtering for network printers. Independently from the filtering method used, there should be exactly one point in the entire process chain where the input file is converted into the final format — the one your printer requires to put the data on paper (PostScript, PCL, ESC/P).

The conversion must be accomplished somehow somewhere by a printer filter. It should run on a machine with sufficient CPU power and disk space to handle the task. This is especially true when using Ghostscript to convert data for high-resolution color and photo printouts on non-PostScript devices. Network printers and print server boxes usually do not have any built-in filtering capabilities, so they mostly require a print server.

If your printer is a PostScript model, you may be able to do without a print server. Also, PostScript printers are often able to autodetect whether their input is in ASCII or PostScript format and switch accordingly. If you expect to print ASCII texts with country-specific characters in them, it may be necessary to set the printer to a certain character encoding and to use a2ps to convert the ASCII input into a PostScript file with that encoding. However, as long as the printing volume is not too high, a PostScript printer does not usually require a dedicated print server as most applications are able to produce ASCII or PostScript output.

Network printers and print server boxes, on the other hand, often do not have the resources to handle higher printing volumes on their own. You will then need a dedicated print server with sufficient disk space to store all the print jobs queued temporarily.

Prerequisites

The printer model must be supported by SuSE Linux Enterprise Server, because print data must be converted into the printer-specific language by a filter, as described for local printers (see *Manual Configuration of Local Printer Ports* on page 75 and the subsequent sections).

Terminology

- A *client* is the host on which the print job is issued.
- *Print server box* also refers to network printers (and not only print server boxes in the narrower sense), because both are treated the same way.
- *Print server* refers to a central, dedicated host that handles all print jobs from all the network's clients. A print server can either send data to a locally connected printer or transfer it to print server boxes through a TCP/IP network.
- *Forwarding (queue)* refers to a queue that forwards or relays print jobs to remote queues, but does not do any filtering.
- *Filter (queue)* refers to a queue that filters (converts) print jobs.
- A *prefilter (queue)* is a queue that filters print jobs then transfers the resulting data to a forwarding queue on the same host.

- A *forwarding filter (queue)* is a queue that filters print jobs and forwards the resulting data to a remote queue.
- *Streaming filter (queue)* refers to a queue that filters print jobs then streams the resulting data to a remote TCP port.
- The above terms may be combined with *LPD(-based)*, *IPP(-based)*, or SMB(-based) to indicate the protocol used in conjunction with the method.

Possible Filtering Methods for Network Printing

Print server box with filtering by client

The filtering is performed on the client side. A complete printing system must run on the client — either the LPRng and lpdfilter system or the complete CUPS printing system.

Client using the LPD protocol (LPRng or CUPS)

Prefilter followed by forwarding (LPRng only)

This is the classic remote printing solution involving two queues on the client side, one for filtering and one for forwarding.

- 1. Client: The prefilter queue converts the print job into the printer format then transfers the data to the forwarding queue as a new print job.
- 2. Client: The forwarding queue relays the print data to the print server box (LPD-based forwarding).
- 3. LPD print server box: The print data is transferred to the printer.
- Forwarding filter (LPRng or CUPS) With this method, filtering and forwarding is performed by one queue. If used with the LPRng printing system, the method is also called "lpr bounce" or "lpd bounce".
 - 1. Client: The print job is converted into the printer format and forwarded to the print server box (LPD-based forwarding filter).
 - 2. LPD print server box: The print data is transferred to the printer.

Client using the IPP protocol (CUPS only)

Forwarding filter (CUPS only)

- 1. Client: The print job is converted into the printer format and forwarded to the print server box (IPP-based forwarding filter).
- 2. IPP print server box: The print data is transferred to the printer.

Client using TCP socket (LPRng or CUPS)

Streaming filter (LPRng or CUPS)

- 1. Client: The print job is converted into the printer format and streamed to the print server box (streaming filter).
- 2. Print server box: The print data is transferred to the printer.

Print server box with filtering by print server

Because the filtering is performed on the print server, the latter must run a complete printing system (including the corresponding daemon), either the LPRng/lpdfilter or the CUPS printing system.

On the other hand, running a complete printing system on the client side is not strictly required (because the server does all the filtering), provided the client issues print jobs with the lpr command (in the case of LPRng) or with lp, xpp, or kprinter (in the case of CUPS) and jobs are directly sent to the print server. In either case, the print server must support the protocol used by the client (either LPD or IPP).

When the print server receives a print job, it processes it in the same way as described above for a client. The client may use one protocol to send print jobs to the print server and the latter another protocol to send data to the print server box.

Client using the LPD protocol (LPRng only)

Direct print command (LPRng only)

- 1. Client: Sends the print job directly to the print server with the lpr command.
- 2. LPD print server: Converts the print job into the printer format and sends the data to the print server box.

Forwarding (LPRng only)

- 1. Client: Forwards the print job to the print server (LPDbased forwarding).
- 2. LPD print server: Converts the print job into the printer format and sends the data to the print server box.

Client using the IPP protocol (CUPS only)

Direct print command (CUPS only)

- 1. Client: Sends the print job directly to the print server using the lp command or the programs xpp or kprinter.
- 2. IPP print server: Converts the print job into the printer format and sends the data to the print server box.

Printer connected to a print server with filtering by the print server

If the print server has a local printer connected to it, the procedure is the same as described under *Print server box with filtering by print server*, with the difference that it sends the data to the printer.

Printer connected to a print server with filtering by the client

This is probably not such a good idea, regardless of whether you have an LPD or an IPP print server. To implement this, you would need to install and configure a complete printing system on each client host. As a better solution, consider a printer connected to a print server with filtering by the print server.

SMB print server with filtering by client

Filtering cannot be easily implemented on an SMB print server. In that sense, an SMB print server is treated in the same way as a print server box.

Client using the SMB protocol (LPRng or CUPS)

SMB-based forwarding filter (LPRng or CUPS)

- 1. Client: Converts the print job into the printer format and forwards the data to the SMB print server (SMB-based forwarding filter).
- 2. SMB print server: Sends the data to the printer.

Remote Printer Troubleshooting

Checking the TCP/IP network

First, make sure everything is in order with the TCP/IP network in general, including name resolution (see Chapter *Linux in the Network* on page 231).

Checking the filter configuration

Connect the printer to the first parallel port of your computer. To test the connection, initially set it up as a local printer to exclude any network-related problems. Then find the correct Ghostscript driver and the other configuration options until the printer works without problem.

Testing a remote lpd

The command netcat -z host 515 && echo ok || echo failed tests whether lpd can be reached via TCP on port 515 of host. If lpd cannot be reached in this way, it is either not running at all or there is some basic network problem.

If you are logged in as root, enter the command echo -e "\004queue" | netcat -w 2 -p 722 host 515 to get a (possibly very long) status report about the queue on the host, provided that lpd is running and the host is reachable. If the daemon does not respond, it is either not running at all or there is a basic network problem. If lpd does respond, the output should give an idea why printing through the queue on host does not work. These are some examples:

lpd: your host does not have line printer access
lpd: queue does not exist
printer: spooling disabled
printer: printing disabled

Output 2: lpd Status Messages

If you get messages like the ones above, the problem lies with the remote lpd.

Testing a remote cupsd

The command netcat -z host 631 && echo ok || echo failed tests whether cupsd can be reached via TCP on port 631 of host. If cupsd cannot be reached in this way, it is either not running at all or there is some basic network problem.

With the command lpstat -h host -l -t, get a (possibly very long) status report about all queues on host, provided that cupsd is running and the host is reachable.

With the command echo -en "\r" | lp -d queue -h host, send a print job consisting of a single carriage return character with which to test whether the queue on host is accepting any jobs. This test command should not print out anything or only cause the printer to eject an empty page.

Testing a remote SMB server

As a basic test of an SMB server, enter:

earth:~ # echo -en "\r" | smbclient '//HOST/SHARE' 'PASSWORD' \ -c 'print -' -N -U 'USER' && echo ok || echo failed

This command must be entered as a single line without the backslash $(\ \)$. For HOST, enter the host name of the Samba server. For SHARE, enter the name of the remote queue. For PASSWORD, enter the password string. Replace USER with the user name. This test command should not print out anything or only cause the printer to eject an empty page.

The command smbclient -N -L host displays any shares on the host that are currently available. Details on this can be obtained from the man page for smbclient (man smbclient).

Troubleshooting an unreliable network printer or print server box

Spoolers on print server boxes often become unreliable when having to deal with relatively high printing volumes. As the cause of this lies with the server side spooler, there is mostly no way to fix this.

As a workaround, however, circumvent the spooler on the print server box by using TCP sockets to directly stream data to the printer connected to the host. This turns the print server box into a mere data converter between the two different data streams (TCP/IP network and local printer line), which effectively makes the printer behave like a local printer although it is connected to the print server box. Without the spooler acting as an intermediary, this method also gives much more direct control over the printer device in general.

To use this method, you need to know the corresponding TCP port on the print server box. If the printer is switched on and properly connected, you should be able to determine the TCP port a minute or so after booting the print server box with the program nmap. Running nmap on the print server box may return an output similar to this:

Port	State	Service
23/tcp	open	telnet
80/tcp	open	http
515/tcp	open	printer
631/tcp	open	cups
9100/tcp	open	jetdirect

• You can log in on the above print server box with telnet to look for important information or to change basic configuration options.

- The above print server runs an HTTP daemon, which can provide detailed server information or allow you to set specific printing options.
- The print spooler running on the print server box can be reached over the LPD protocol on port 515.
- The print spooler running on the print server box can also be reached over the IPP protocol on port 631.
- The printer connected to the print server box can be accessed directly via TCP sockets on port 9100.

Print Servers Supporting Both LPD and IPP

Supporting Both Protocols through CUPS

By default, the CUPS daemon only supports the IPP protocol. However, the program /usr/lib/cups/daemon/cups-lpd from the package cups makes it possible for a CUPS daemon to accept print jobs arriving via the LPD protocol on port 515. This requires that the corresponding service is enabled for inetd — either with YaST2 or by enabling the corresponding line in /etc/inetd.conf manually.

Supporting Both Protocols by Using LPRng and Ipdfilter with CUPS

There may be situations where you want to run both LPRng and lpdfilter and CUPS on one system, maybe because you want to enhance the functionality of LPD with some CUPS features or because you need the LPRng and lpdfilter system as an add-on for certain special cases.

Running the two systems together on the same system will lead to a number of problems, however. Below, we list the most important of these and briefly explain the limitations resulting from them. The topic is too complex to describe them in any greater detail here. There are several ways to solve these issues, depending on the individual case.

- You should not rely on YaST2 for configuration if you install both printing systems. The printer configuration module of YaST2 has not been written with this case in mind.
- There is a conflict between package lprng and package cups-client, because they contain a number of files with identical names, such as /usr/bin/lpr and /usr/bin/lp. You should, therefore, not install package cups-client. This, however, means that no CUPS-based

command-line tools are available, but only those included with LPRng. You are still able to print through CUPS print queues from the X Window System with xpp or kprinter, however, as well as from all application programs with built-in support for CUPS.

 By default, cupsd creates the /etc/printcap file when started and writes the names of CUPS queues to it. This is done to maintain compatibility with applications that expect queue names in /etc/ printcap to offer them in their print dialogs. With both printing systems installed, disable this cupsd feature to reserve /etc/printcap for exclusive use by the LPRng and lpdfilter printing system. As a result, applications that get queue names only from /etc/printcap can use only these local queues, but not the remote queues made available by CUPS through the network.

Part II

System

Booting and Boot Managers

This chapter introduces various methods for booting your installed system. The basics of the boot process can be applied to different boot managers. LILO is used as an example. After a detailed description of LILO, GRUB is explained with comparisons to LILO. A brief introduction to loadlin is also included.

LILO is the boot loader normally used with previous SuSE Linux Enterprise Server releases. If you update to this release, LILO will continue to be used. If you have a new installation, GRUB will be used as default.

Booting a PC	140
Boot Concepts	141
Map Files, LILO, and GRUB	142
An Overview of LILO	143
Configuring LILO	145
Installing and Uninstalling LILO	152
Sample Configurations	155
LILO Problems	157
Booting with GRUB	158
Creating Boot CDs	160
Configuring the Boot Mechanism with loadlin	162

Booting a PC

After turning on your computer, the first thing that happens is that the BIOS (Basic Input Output System) takes control, initializes the screen and keyboard, and tests the main memory. Until this task is completed, no external devices or external storage media are known to the system.

Once the basic system has finished its internal setup, it starts to verify the hardware around it. Date, time, and information about some of the most important external devices are read from the CMOS settings (usually referred to as the CMOS setup). After reading the CMOS, the BIOS should recognize the first hard disk, including details such as its geometry. It can then start to load the operating system (OS) from there.

To load the OS, the system loads a 512-byte data segment from the first hard disk into main memory and executes the code stored at the beginning of this segment. The instructions contained there determine the rest of the boot process. This is the reason why the first 512 bytes of the hard disk are often called the *Master Boot Record* (MBR).

Up to this point (loading the MBR), the boot sequence is independent of the installed operating system and is identical on all PCs. Also, all the PC has to access peripheral hardware are those routines (drivers) stored in the BIOS.

Master Boot Record

The layout of the MBR always follows a standard independent of the operating system. The first 446 bytes are reserved for program code. The next 64 bytes offer space for a partition table for up to four partitions. Without the partition table, no file systems exist on the hard disk – the disk would be virtually useless without it. The last two bytes must contain a special "magic number" (AA55). Any MBR containing a different number is rejected.

Boot Sectors

Boot sectors are the first sectors on a hard disk partition, except the extended partition that serves as a "container" for other partitions. They offer 512 bytes of space and are designed to contain code able to launch an operating system on this partition. Boot sectors of formatted DOS, Windows, and OS/2 partitions do exactly that. In contrast, Linux boot partitions are empty at the very start. A Linux partition cannot be started directly, although it may contain a kernel and a valid root file system. A boot sector with a valid start code contains the same "magic number" as the MBR in its last two bytes. The DOS MBR of the first hard disk contains information that determines which partition of a hard disk is "active" — which partition should be searched for the operating system to boot. Therefore, DOS has to be installed on the first hard disk. The executable code in the MBR ("first stage boot loader") tests whether the marked partition contains a valid boot sector.

If this is the case, the "second stage boot loader" can be started from there. DOS system programs can now be loaded and you will see the usual DOS prompt. In DOS, only primary partitions can be marked active. Therefore, you cannot use logical partitions inside an extended partition as bootable DOS partitions.

Boot Concepts

The simplest boot concept affects only one machine with one operating system installed. The boot process for this case has already been outlined. The same concept can be used for a Linux-only machine. In this case, you could theoretically skip the installation of LILO. The big disadvantage of doing this is that you cannot pass additional parameters to the system kernel at boot time. As soon as there is more than one operating system installed, there are a number of new boot possibilities.

Booting another OS from a floppy disk: One OS can be booted from the hard disk. Other operating systems can be booted using boot disks.

- *Requirements:* the floppy drive must be bootable
- *Example:* install Linux in addition to Windows, but boot Linux from a floppy disk
- Advantage: no boot loader needs to be installed
- *Disadvantage:* requires working boot disks and the boot process takes longer
- Depending on the purpose of the computer, it is an advantage or disadvantage that Linux cannot be booted without a disk.

Boot chaining of additional systems: The same OS is always booted. Others can be optionally started from within the first OS.

• *Requirements:* adequate programs for chain booting of operating systems must be available

- *Example:* loading Linux from DOS or Windows using loadlin.exe or starting a NetWare server from DOS with server.exe (see Section *Configuring the Boot Mechanism with loadlin* on page 162).
- **Installing a boot manager:** Theoretically, this allows you to use an arbitrary number of operating systems on a single machine. The choice of systems is done at boot time. Changing operating systems requires a reboot. Of course, the boot manager must work smoothly with all installed operating systems.

Map Files, LILO, and GRUB

The main obstacle for booting an operating system is the fact the kernel usually is a file within a file system on a partition on a disk. These concepts are unknown to the BIOS.

To circumvent this, "maps" and "map files" were introduced. These maps simply note the physical block numbers on the disk that comprise the logical files. When such a map is processed, the BIOS loads all the physical blocks in sequence as noted in the map, building the logical file in memory.

The main difference between LILO and GRUB is that LILO relies almost entirely on maps, whereas GRUB tries to get rid of fixed maps during boot as early as possible. This is accomplished by introducing *File System Code* to the boot loader, so files can be found by their path names rather than block numbers. This difference has historical reasons: in the early days of Linux, many file systems were competing for dominance. Werner Almesberger wrote a boot loader that did not need to know what kind of file system the kernel to boot actually resided in. The idea behind the GRUB approach, however, is even older, from the ages of traditional Unix and BSD. These usually had a single file system of choice and often had a reserved space at its beginning in which to embed a boot loader. This boot loader knew the data structures of the file system in which it was embedded and kernels could be found by name in the root directory of that file system.

Another fundamental difference is that the LILO boot code is written in 16-bit assembler while as much of GRUB as possible is written in 32-bit portable C. The impact of this, however, is mostly beyond the scope of this book.

The following section describes the installation and configuration of a boot manager, using the Linux boot manager LILO. A complete description of LILO's features can be found in [Alm94]. This reference can be located in

/usr/share/doc/packages/lilo/user.dvi, viewed on screen with applications like xdvi, or printed with: lpr /usr/share/doc/packages/ lilo/user.dvi

GRUB is compared to LILO in Section *Booting with GRUB* on page 158. This is followed by a description of loadlin.

An Overview of LILO

The Linux boot loader LILO is usually installed in the MBR (details in Sections *LILO Locations* on the following page and *Installing and Uninstalling LILO* on page 152). LILO has access to two real mode hard disks and is able to find all the data it needs from the *raw* hard drives without requiring any partitioning data. Because of this, operating systems can also be booted from the second hard disk. The entries in the partition table are ignored when using LILO.

Tip

A raw device is a block device (such as a hard disk, partition, or floppy disk) accessed directly via a device file and not a file system.

Tip —

An important difference from the standard DOS boot sequence is that you can select any of the installed systems at boot when using LILO. After loading the MBR into memory, LILO is started and displays the boot menu with all the installed operating systems. The first in the list is booted by default if no selection is made. LILO then loads the boot sector of the partition from which to boot the operating system or it loads the Linux kernel and boots Linux. It also provides the important option of passing a command to the kernel. For security reasons, this can be protected totally or partially with a password.

The Components of LILO

The LILO boot mechanism consists of the following components:

the beginning, or *first stage*, of the LILO code in a boot sector that activates the system boot

Tip

The boot sectors installed by LLO contain a byte sequence similar to that characteristic for boot sector viruses. Therefore, it is not unusual for DOS virus scanners to claim to have detected the AIRCOP boot sector virus in files such as /boot/chain.b or /boot/os2_d.b.

Tip —

- the *heart* of the LILO code, located in /boot/boot-menu.b
- a *map* file, normally /boot/map, where LILO enters the location of Linux kernels and other data during its installation
- optional: the *message file* /boot/message, which displays the graphical boot menu from which the operating system can be selected
- the different Linux kernels and boot sectors LILO should offer

Caution

Any write access (even through file movements) to any of these files corrupts the map file, requiring you to *update* LILO (see *Updating After Changing the Configuration* on page 153). This is especially important when changing kernels.

Caution -

LILO Locations

This section refers to the *first stage* of LLO mentioned above. Consider this general restriction: depending on the BIOS version on your computer, it may be required that the kernel image /boot/vmlinuz be located on the *first 1024 cylinders* of the hard disk. This can be achieved with a small extra partition that can be "mounted" in the directory /boot, all of which is located within the first 1024 cylinders. Further information is provided in the SuSE support database:

http://sdb.suse.de/en/sdb/html/1024_Zylinder.html

The following locations are suitable for storing the LILO boot sector.

• on a floppy disk.

This is the simplest, but also the slowest method for booting with LILO. Choose this alternative if you do not want to change the existing boot sector.

in the boot sector of a primary Linux partition on the first hard disk. This leaves the MBR untouched. Before it can be booted, the partition must be marked active. Start folisk as root with the command fdisk -s <partition>. The program will ask for a command. `m' gives you a list of possible entries and `a' marks the selected partition as active. If Linux is completely installed on logical drives or partitions on the second hard disk, LILO can only be installed in the boot sector of the extended drive of the first hard disk, if there is one. Linux folisk can also activate such a partition.

For booting multiple systems from the hard disk, this is extremely awkward. Every time you want to boot, you have to activate the corresponding boot sector *beforehand*. The next two variants are much less cumbersome.

• in the Master Boot Record.

This variation offers the highest flexibility. It is the only alternative possible if all of the Linux partitions reside on the second hard disk and there is no extended partition on the first drive. Every setting of the MBR must be edited with extreme care since errors may have severe consequences. The safety aspects are described in Section *Installing and Uninstalling LILO* on page 152.

• in a boot sector booted by *another boot manager*.

Try this if you have used another boot manager and want to continue using it. Depending on its flexibility and power, there are several variations. A common case: you have a primary Linux partition on the second hard disk from which you boot Linux. Your boot manager is able to boot this partition via a boot sector. Then you can activate your Linux partition by installing LILO into this boot sector and telling your boot manager that it is active.

Caution

Be careful if you try to make a *logical* Linux partition bootable by installing LILO onto it. Success *is not guaranteed*, even if your other boot manager is able to launch logical partitions.

Caution —

Configuring LILO

LILO is a flexible boot manager that offers many ways of adapting a configuration to your needs. The most important options and meanings are described below. For more detail, look at [Alm94].

LILO is configured in /etc/lilo.conf. If you are installing LILO for the first time, use YaST to configure LILO. Fine-tune by editing /etc/lilo.conf later.

Note

/etc/lilo.conf should only be readable for root, as it could contain passwords (see Section *Other LILO Configuration Options* on page 149). This is the default setting with SuSE Linux Enterprise Server.

Note -

It is recommended to keep a backup of the previous lilo.conf file. Your settings only take effect when you update LILO after changing /etc/lilo.conf (see Section *Installing and Uninstalling LILO* on page 152).

Structure of lilo.conf

/etc/lilo.conf starts with a global section followed by one or more system sections for each operating system LILO should start. A new section is started by a line beginning with either image or other.

The order of entries in /etc/lilo.conf only matters because the first one in the list is booted by default unless the default option is used or the user selects another entry. This can be set to delay and timeout.

A sample configuration for a computer with both Windows and Linux is shown in File 24. There is a new Linux kernel (/boot/vmlinuz and a fallback kernel /boot/vmlinuz.shipped) and Windows on /dev/hda1. The program MemTest86 is also available.

```
### LILO global section
boot = /dev/hda
                             # LILO installation target: MBR
backup = /boot/MBR.hda.990428 # backup file for the old MBR
                                # 1999-04-28
vqa
        = normal
                             # normal text mode (80x25 chars)
read-only
menu-scheme = Wg:kw:Wg:Wg
1ba32
                             # Use BIOS to ignore
                             # 1024 cylinder limit
prompt
password = q99iwr4
                             # LILO password (example)
timeout = 80
                             # Wait at prompt for 8 s before
```

default is booted message = /boot/message # LILO's greeting ### LILO Linux section (default) image = /boot/vmlinuz # Default label = linux root = /dev/hda7# Root partition for the kernel initrd = /boot/initrd ### LILO Linux section (fallback) image = /boot/vmlinuz.shipped label = Failsafe root = /dev/hda7 initrd = /boot/initrd.suse optional ### LILO other system section (Windows) other = /dev/hda1 # Windows partition label = windows ### LILO memory test section (memtest) image = /boot/memtest.bin label = memtest86

File 24: Sample Configuration of /etc/lilo.conf

Anything between a `#' and the end of a line is regarded as a comment. Spaces and comments are ignored by LILO and can be used to improve readability.

The mandatory entries are explained here. The additional options are described in Section *Other LILO Configuration Options* on page 149.

• Global section (Parameter part)

▷ boot=(bootdevice)

The device on whose first sector LILO should be installed. $\langle bootdevice \rangle$ may be a floppy disk drive (/dev/fd0), a partition (e.g., /dev/hdb3), or an entire disk (e.g., /dev/hda). The last means installing LILO in the MBR. Default: if this option is missing, LILO is installed on the current root partition.

⊳ lba32

With this option, ignore the 1024-cylinder limit of LILO if your BIOS supports this.

▷ prompt

Forces the LILO prompt to be displayed. The default is no prompt (refer to Section *Other LILO Configuration Options* on the facing page, option delay). This is recommended if LILO needs to manage more than one system. timeout should be set to guarantee an automatic reboot if nothing is entered at the prompt.

timeout=(tenth-seconds) Sets a time-out for selecting an operating system to boot. Afterwards, the default system is booted.
 Specify the time-out in (tenth-seconds) (0.1 second increments).
 Pressing Shift or the arrow keys disables the timeout option and LILO waits for orders. Default is set to 80.

Linux section

▷ image={kernelimage}

Enter the name of the kernel image to boot, including its directory location. With a new system, this is most likely /boot/vmlinuz.

▷ label=(*name*)

This name must be unique in /etc/lilo.conf. Otherwise, freely choose a name for the system (e.g., Linux). Maximum length is 15 characters. Use only letters, numbers, and underscore in names — no blanks or special characters. For more on the specific rules for which characters to use, see [Alm94], as described in Section *Boot Concepts* on page 141. The default is the file name of the kernel image (e.g., /boot/vmlinuz).

By this name, select which system to boot from the menu. It is recommended, if there are several systems installed, to use a message file displaying the possible selections (see Section *Other LILO Configuration Options* on the facing page, option message).

▷ root=(rootdevice)

This gives the kernel the name of the root partition (e.g., /dev/hda2) of your Linux system. This is recommended for security reasons. If this option is omitted, the kernel takes its own root partition $\langle kernelimage \rangle$.

Linux part (Linux — Safe Settings)

Even if you installed a customized kernel, you are still able to boot the SuSE standard kernel.

▷ optional

If you decide to delete /boot/vmlinuz.shipped (*not recommended*), this section will be skipped without an error message during LLO installation.

- Other systems
 - ▷ other=(*partition*)

other tells LLO to start the partitions of other systems (e.g., /dev/hda1).

▷ label=(name)

Select a name for the system. This is recommended, because the default — the raw device name — is not very informative.

Memory Test

Entry for the memory test program memtest86.

Other LILO Configuration Options

The previous section covered the entries required in /etc/lilo.conf. Other useful options are discussed below. They are either marked as global or image options of /etc/lilo.conf.

backup=(backup) (global)

The file where LLO backs up the boot sector. The default is /boot/ boot.xxxx, where xxxx is the internal device number of the installation partition.

We do not recommend use of a cryptic name. You will not be able to use the implemented uninstall feature of LILO, but we think it is better to do this carefully by hand, anyway. (see Section *Uninstalling LILO* on page 154)

Caution

If the backup file exists, LILO does *not* create a new one. Make sure you use a name not already in use.

Caution \square

compact (image)

This option is recommended if you want to install LILO on a floppy disk. If enabled, LILO tries to read more sectors at a time, resulting in

a faster boot process. This does not work on every machine. We do not recommend setting this as the normal way is safer and it only provides a difference of one or two seconds.

loader=(boot loader) (image)

To load a boot sector belonging to another operating system, LILO constructs a *pseudo MBR* in its map file. At boot time, LILO first starts this pseudo MBR, which, in turn, starts the other boot sector. This option specifies the file where the code for the pseudo MBR is found.

Default: /boot/chain.b (usually, this is correct).

When booting another operating system in this way, it is possible to swap hard disks according to their device numbers. This allows an OS, such as DOS, that must be installed on the first hard disk to actually be installed on a later hard disk. For this, the options map-drive= $\langle number \rangle$ and to= $\langle number \rangle$ are used. See File 25.

File 25: Extract from /etc/lilo.conf: Booting DOS from a Second Hard Disk

- table=(ptable) (image)
 (ptable) sets the source device for the partition table written into the pseudo MBR (normally /dev/hda or /dev/sda).
- disk=(device file) (global) bios=(BIOS device number) cylinders=(amount) heads=(amount) sectors=(amount)

LILO can be told precisely which BIOS device number and geometry to use. This is rarely needed. There is one major exception: *IDE-SCSI* system. If you own a BIOS that is capable of switching the boot devices *SCSI prior to IDE* and want to use this feature, tell LLO the switched order from the perspective of the BIOS. This is achieved by an extra entry in the global section of lilo.conf. An example for a system with one SCSI and one IDE disk can be seen in File 26.

```
# Enable LILO to correctly access /dev/sda and /dev/hda
# at boot time if their boot order is interchanged in
# the BIOS:
disk = /dev/sda  # The SCSI disk is regarded as ...
bios = 0x80  # ... first BIOS disk;
disk = /dev/hda  # the IDE disk is regarded as ...
bios = 0x81  # ... second BIOS disk.
```

File 26: Extract from lilo.conf: Boot Sequence — SCSI Before IDE

linear (global)

Giving this option when installing LLO causes all references to hard disk sectors to be stored as logical addresses instead of physical addresses, so they are independent of any hard disk geometry. This option is intended for cases where, when booting, the BIOS detects a different geometry than that of the Linux system running. Only needed in rare cases.

The linear option does *not* release you from the constraints of the 1024-cylinder limit, which is determined by the BIOS geometry of the boot hard disk. Refer also to /usr/share/doc/sdb/en/html/kgw_lilo_linear.html.

message=(message-file) (global)

Points to a file creating the boot screen and displaying the selection of operation systems. SuSE Linux Enterprise Server normally uses a PCX image instead of the classical start-up message. To learn more about this, read file:/usr/share/doc/sdb/de/html/jkoeke_ bootgrafik_72.html.

Note -

If this option is set, the message file becomes part of the LILO boot machinery and, after every change to this file, LILO must be updated (Section *Installing and Uninstalling LILO* on the following page).

Note –

password=(password) (global or image)

May be located either in the global or one of the system-specific image sections. Provides secure access to LILO services or booting the corresponding system by means of a password. If you take this seriously, remove the password from lilo.conf after using it. As root, you can set a new password for LILO any time you like (you just need to update LILO afterwards). It is recommended also to set the option restricted, otherwise it could be possible to launch a shell. See the man page about lilo.conf (man lilo.conf).

read-only (global)

LILO uses this image option to instruct the kernel initially to mount the root partition read-only, as is usually customary for booting Linux systems. If this option is omitted, the kernel will use its own default setting, which is shown by the rdev $-R \langle kernelimage \rangle$ command.

delay=(tenth-seconds) (global)

If the prompt is *not* explicitly set, access a prompt by pressing (f) Shiff), (Ctrl), or (Atr). The delay= option sets the time to elapse before LILO boots the first system in its list. The default is 0 — no waiting. The delay option has no effect if a prompt is specifically requested by prompt.

• $vga=\langle mode \rangle$ (global)

Selects VGA mode at start-up. Valid modes are normal (80x25), ext (80x50), or ask (asks when booting). For a framebuffer-enabled kernel, possible values are listed and described in /usr/src/linux/ Documentation/fb/vesafb.txt.

append="(parameter)" (image)

Image option for Linux kernel. Enables kernel parameters to be specified, for example, for hardware components, in the same way as at the ULO prompt. The kernel first reads the append line then the prompt. Therefore, if the parameters given at the append line are different from those specified at the prompt, the latter ones will be used.

For example: append="mcd=0x300,10"

Installing and Uninstalling LILO

During a new Linux installation or at a later time, YaST leads you through the steps of installing LILO interactively. In this section, we assume that some

action is required that goes beyond what YaST2 can accomplish and we take a closer look at how LILO works during the installation and uninstallation process.

Caution

The installation of a boot manager is tricky. Ensure *in advance* that you are completely able to boot Linux and other mounted systems. You must have fdisk installed on a crash recovery disk. Otherwise, you might find yourself unable to access your hard disk at all.

Caution -

Updating After Changing the Configuration

If any of the LILO components have changed or you have modified your configuration in /etc/lilo.conf, update LILO. This is easily done by launching the *Map Installer* as root with /sbin/lilo.

LILO creates a backup of the target boot sector, writes its *first stage* into it, then generates a new map file (see also Section *The Components of LILO* on page 143). LILO issues a report on each installed system as shown in Output 3.

Added linux * Added suse Added windows Added memtest86

Output 3: Output After Launching LILO

When the installation is completed, the machine can be rebooted with shutdown -r now. While rebooting, the BIOS first performs its system test. Immediately afterwards, see LILO and its command prompt, where you can enter parameters and select a boot image from the recently installed configurations. (Tob) shows a list of all systems installed.

Installation After Recompiling a Kernel

For including a freshly-compiled kernel in your LLO boot setup, the Linux kernel Makefile offers an all-in-one solution. All the commands to configure and create the kernel are put together in the file /usr/src/linux/ Makefile. Here, INSTALL_PATH=/boot is specified. This Makefile has a target called bzlilo that, after a kernel compilation, automatically copies the currently installed kernel /boot/vmlinuz (this used to be /vmlinuz) to /boot/vmlinuz.old, the new kernel to /boot/vmlinuz, then reinstalls LLO. This can be done by entering the command make bzlilo instead of make zImage. This is only useful if you have edited /etc/lilo.conf *in advance* and if your current kernel really is located in /boot/vmlinuz. The new and the old kernels should now be listed. See File 24 on page 146 for an example of the resulting /etc/lilo.conf.

At the LILO prompt, launch either of the two kernels. This makes your boot more secure, because you can still boot your old kernel if the new one fails. For more on creating a new kernel, see Chapter *The Kernel* on page 171.

Uninstalling LILO

Caution

Uninstalling a boot manager is tricky. Ensure *in advance* that you are able to boot Linux and other systems with their respective boot disks.

Caution -

To uninstall LILO, copy the former content of the boot sector over LILO. This requires a valid backup of that former content. See Section *Other LILO Configuration Options* on page 149, option backup.

Caution

A boot sector backup is no longer valid if the partition in question has a new file system. The partition table of an MBR backup becomes invalid if the hard disk in question has been repartitioned since the backup was created. Obsolete "backups" are time bombs. It is best to delete them as soon as possible.

Caution -

It is very simple to regain a DOS or Windows MBR. Just enter the MS-DOS command (available since 5.0)

C:\> FDISK /MBR

or, on OS/2,

C:\> FDISK /NEWMBR

These commands only write the first 446 bytes (the boot code) into the MBR and leave partitions untouched.

For other restorations, first make a backup of the LILO sector in question — just to be on the safe side. Now check carefully whether your old backup file is the correct one and if it is exactly 512 bytes in size. Finally, write it back with the following commands:

• If LILO resides in partition yyyy (e.g., hda1, hda2):

```
earth:~ # dd if=/dev/yyyy of=New-File bs=512 count=1
earth:~ # dd if=Backup-Date of=/dev/yyyy
```

• If LILO resides in the MBR of zzz (e.g., hda, sda):

```
earth:~ # dd if=/dev/zzz of=New-File bs=512 count=1
earth:~ # dd if=Backup-Date of=/dev/zzz bs=446 count=1
```

The last command is "cautious" and does not overwrite the partition table. Again, *do not forget:* with fdisk, mark the desired starting partition as *bootable*.

Sample Configurations

If Linux is the only operating system on your machine, there is nothing left to do. All the required steps have already been taken by YaST2. More information for multisystem computers can be found under /usr/share/doc/howto/en/html/mini/Linux+*.

DOS/Windows 95/98 and Linux

Requirements: There must be at least a primary partition each for DOS/Windows 95/98 and Linux below the 1024-cylinder limit (Section *LILO Locations* on page 144).

For this case, we have already discussed a configuration (File 24 on page 146) — only the settings for root, image, and other need adaptation. LILO is installed in the MBR.

Save your /etc/lilo.conf and be sure you have a Linux boot disk. Windows 95/98 is especially inclined to eliminate "foreign" MBRs. If you can still boot Linux using your boot disk, this problem is quickly solved with the command

```
earth:~ # /sbin/lilo
```

This completes your LILO installation.

Windows NT or Windows 2000 and Linux

In general, the boot concepts of Windows 2000 and Windows NT are identical. Therefore the following explanations only refer to Windows NT, but are valid for Windows 2000 as well.

- 1. If Windows NT and Linux need to coexist on the same hard disk, use the NT boot manager for booting. This can either start the kernel images or the boot sectors themselves. Execution of the following steps prepares everything for a peaceful coexistence of Linux and Windows NT:
 - Install NT.
 - Partition the NT disks (using FAT so Linux can write to them).
 - Install Linux as usual (in our example, the root partition is on /dev/sda3). Mount either the DOS partition or an error-free DOS floppy disk (for example, on /dos).
 - Install LILO, but install it in Linux's root partition (/dev/sda3), not in the MBR (/dev/sda). You may still configure a selection of Linux kernels for LILO. See File 27.

```
# LILO Configuration file
# Start LILO global Section
boot=/dev/sda3
                              # Target of installation
backup=/boot/boot.sda3.020428 # Backup previous
                              # boot sector; 28. Apr 2002
prompt
timeout=100
               # Wait at prompt: 10 s
              # force sane video state
vga = normal
# End LILO global section
# Linux bootable partition config begins
image = /vmlinuz
                            # default image to boot
    root = /dev/sda3
                            # Here the root partition!
    label = Linux
# Linux bootable partition config ends
               File 27: lilo.conf for a Boot Disk
```

After editing lilo.conf, install LLO as usual with /sbin/lilo.

• Copy the LILO boot sector to a location where NT can find it. For example,

earth:~ # /bin/dd if=/dev/sda3 bs=512 count=1 \

of=/dos/liloboot.lin

This step, as well as the following, must be performed after every kernel update.

- Boot NT. Copy liloboot.lin from the data disk to the main directory of NT's system drive, if it is not already there.
- In boot.ini (first setting attributes), supplement, at the end, c:\liloboot.lin="Linux".
- After the next boot (if everything went smoothly), there should be an entry in NT's boot manager.
- 2. Another possibility, but not always feasible: Install LILO to the MBR and pretend that it is DOS (as described in the above example). This method apparently no longer works for newer NT versions, as it only seems to start if it detects special (undocumented) sequences in the MBR, which are, unfortunately, not recognized by LILO.

Caution

NT 3.5x and 4.0 do not recognize Linux partition types 82 and 83. Make sure that no NT program tries to "repair" your partition table. This would result in loss of data. Always have valid backups of the ULO boot sector available.

Caution \square

LILO Problems

Some Guidelines

Some simple initial guidelines will prevent most LLO problems (this is taken from the LLO documentation [Alm94]):

- Always have an up-to-date and tested *boot disk* at hand.
- SuSE Linux Enterprise Server contains a rescue system on its boot disk and installation CD to give you access to all your Linux partitions. Tools are included for fixing almost any problems that can occur.
- Check /etc/lilo.conf before using the map installer (/sbin/lilo).

Booting with GRUB

Except the points mentioned earlier, most of the LILO features also apply to GRUB. Some differences will be apparent to the user, however.

Like LILO, GRUB also consists of two stages — a 512-byte first stage to be put into an MBR or a partition boot block and a larger "stage2" found using a map file. From here on, however, things work differently with GRUB. stage2 contains code to read file systems. Currently supported are ext2 (and thus ext3, for GRUB's read-only purposes), reiser FS, jfs, xfs, minix, and the DOS FAT FS as used by Windows. Any file contained in such a file system on a supported BIOS disk device can be displayed, used as a command or menu file, or loaded into memory as a kernel or initrd, just by issuing the appropriate command followed by the BIOS device and a path.

The big difference to LILO is that once GRUB is installed, kernels and menu entries can be added or changed without any further action required. At boot time, GRUB will dynamically locate and reread the files' contents.

The Menu

For the computer user, the most important GRUB file, once GRUB is installed, is the menu file, by default /boot/grub/menu.lst. This file contains all information about other partitions or operating systems that may be booted using the menu.

Because of its own code to read file systems, GRUB does a fresh read of the menu file on each boot, so there is absolutely no need to update GRUB each time you make changes to the file — just use YaST2 or your favorite editor.

The menu file contains commands. The syntax is quite simple. Each line consists of a command followed by optional parameters separated spaces, as in the shell. Some commands allow an equal sign before their first parameter for historical reasons. Comments introduced by the hash sign (`#').

To identify the menu entries in the menu summary presentation, give each entry a name or title. After the keyword title, spaces are skipped and the rest of the line appears as a selectable item when the menu is shown. All commands up to the next title will be executed when this menu entry is chosen.

The simplest case is the chain loading of another operating system's boot loader. The command is called chainloader and the argument is usually

another partition's boot block in GRUB's block notation, for example:

chainloader (hd0,3)+1

GRUB's device naming is explained in Section *Names for BIOS devices* on the current page. This example means one block from the beginning of a partition.

The command to specify a kernel image is just kernel. The first argument is taken as a path to a kernel file on a partition. The remainder is passed to that kernel when it is started.

If the kernel does not have the necessary built-in file system or disk drivers to access the root partition, an initrd must be specified. This is a separate GRUB command and takes the path to the initrd file as its only argument. This command must follow the kernel command, as the loading address of the initrd will be written into the already-loaded kernel image.

The root command simplifies the specification of kernels and initrds. In a strict sense, this command really does not do anything, but is just a shorthand. root takes a GRUB device or partition as its only argument and all kernel, initrd, or other file paths that do not explicitly specify a device will have this device prepended, up to the next root command.

Implicitly at the end of each menu entry there is a boot command, so there is no need to write it into the menu file. Should you, however, come into a situation to interactively type GRUB commands by hand during the boot process, you will have to finally issue the boot command. boot takes no arguments. It just executes the loaded kernel image or chain loader.

Once you have written all your menu entries, specify which entry number to use as default. Otherwise, the first one (number 0) will be used. You can also specify a time-out in seconds after which this should occur. timeout and default are usually written before the menu entries.

Names for BIOS devices

The origin of GRUB is revealed by the way it gives names to BIOS devices. A BSD-like scheme is used: the floppy disk devices 0×000 , 0×01 are called fd0 and fd1, respectively, and all hard disks recognized by the host BIOS or added by add-on controllers 0×80 , 0×81 , 0×82 are simply called hd0, hd1, and so on, regardless of their specific type. The problem of linux device name correspondence to BIOS devices is common to both LLO and GRUB. Both use similar heuristics to establish a mapping, but GRUB stores the result in a file that can be corrected.

Partitions on hard disks are expressed by appending their number with a separating comma. A complete GRUB path consists of a device name, which is always written in parenthesis, and a file path on that device or partition, always with a leading slash. So, for example, on a system with only a single IDE disk and Linux on its first partition, a bootable kernel might be

(hd0,0)/boot/vmlinuz

- Note

Partition numbers in GRUB are zero-based. (hd0,0) corresponds to /dev/hda1.

Note –

Installation Using the GRUB Shell

Because GRUB is 32-bit C code, it is quite easy to replace the BIOS calls with Linux system calls to get an identical GRUB program that is able to function within a Linux environment. This program is called the *GRUB shell*. The functionality to install a GRUB onto a disk is present within GRUB itself as the install or setup command and is thus available via the GRUB shell when Linux is running and when GRUB has just been loaded during the boot process. This greatly eases the rapair of a damaged system.

The Linux environment is where the BIOS mapping heuristics come into play: the GRUB shell reads a file device.map, which consists of one line specifying the GRUB device and the path name to a Linux device node separated by spaces. Some SCSI adaptor BIOSes allow their disks to be inserted *before* the IDE disks instead of appended after them, some BIOSes are capable of switching first and second hard disk, and others give you full control over the sequence of disks attached to on-board interfaces and all add-on cards. On current PCs, there is no reliable way to detect this. So, in case of trouble, first make sure device.map reflects the actual BIOS numbering of your disks. device.map is found in the default GRUB directory, /boot/grub/.

Creating Boot CDs

This concerns problems arising when attempting to boot a system with the LILO boot manager configured with YaST2. The creation of a system boot disk fails with more recent SuSE Linux Enterprise Server versions because the space available on a floppy disk is no longer sufficient for the start-up files.

Procedure

It is possible to create a bootable CD-ROM containing the Linux start-up files if your system has an installed CD writer. This solution is only a workaround. It should normally be possible to configure LLO properly. Refer to the documentation about this subject in /usr/share/doc/packages/ lilo/README, the man page for lilo.conf (man lilo.conf), and the man page for lilo (man lilo).

Boot CD with ISOLINUX

It is easiest to create a bootable CD with the ISOLINUX boot manager. The SuSE installation CDs are also made bootable with isolinux.

- Boot the installed system first using the following alternate procedure:
 - ▷ Boot from the installation CD as for installation.
 - Choose the preselected option 'Installation' during the boot sequence.
 - ▷ Choose the language and keyboard map next.
 - ▷ In the following menu, choose 'Boot installed system'.
 - ▷ The root partition is automatically detected and the system is booted from it.
- Install package syslinux with YoST2.
- Open a root shell. The following commands create a temporary directory and copy the files required for the booting of the Linux system (the isolinux boot loader as well as the kernel and the initrd) into it:

```
earth:~ # mkdir /tmp/CDroot
earth:~ # cp /usr/share/syslinux/isolinux.bin /tmp/CDroot/
earth:~ # cp /boot/vmlinuz /tmp/CDroot/linux
earth:~ # cp /boot/initrd /tmp/CDroot
```

Create the boot loader configuration file /tmp/CDroot/isolinux.
 cfg with your preferred editor. Enter the following content:

```
DEFAULT linux
LABEL linux
KERNEL linux
APPEND initrd=initrd root=/dev/hdXY [boot parameter]
```

Enter your root partition for the parameter root=/dev/hdXY. It is listed in the file /etc/fstab. Enter additional options for the setting [boot parameter], which should be used during booting. The configuration files could, for example, look like this:

```
DEFAULT linux LABEL linux KERNEL linux APPEND initrd=initrd root=/dev/hda7 hdd=ide-scsi
```

• The following command (entered at a command prompt) then creates an ISO-9660 file system for the CD.

```
mkisofs -o /tmp/bootcd.iso -b isolinux.bin -c boot.cat
  -no-emul-boot -boot-load-size 4
  -boot-info-table /tmp/CDroot
```

The complete command must be entered as one line.

• The file /tmp/bootcd.iso can be written to CD after that with either graphical CD writing applications, like KonCD or XCDroost, or simply at a command prompt:

cdrecord -v speed=2 dev=0,0,0 /tmp/bootcd.iso -eject

The parameter dev=0,0,0 must be changed according to the SCSI ID of the writer. This can be determined with the command cdrecord -scanbus. Also, refer to the man page for cdrecord (man cdrecord).

• Test the boot CD. Reboot the computer to verify whether the Linux system is started correctly from the CD.

Configuring the Boot Mechanism with loadlin

loadlin will be introduced in the following sections as another method of booting SuSE Linux Enterprise Server. loadlin is a DOS application capable of booting a Linux kernel stored in a DOS directory. loadlin can be seamlessly integrated into an already existing DOS/Windows 9x environment and easily started with the help of the Windows boot manager. As there is no entry in the MBR, Windows will not know that Linux is installed, but only "see" one or more partitions possessing IDs Window does not recognize. Undesired side effects that could result from Linux coexisting on your Windows system are minimized that way.

162

The procedure described here works for Windows 95 and Windows 98. The configuration files shown below were developed for Windows 95. Therefore, the following only directly refers to Windows 95.

You will have to make some preparations before using loadlin to boot Linux. Depending on your system environment, you will also have to modify certain boot files.

loadlin can be activated in two ways: by selecting from several configurations in the boot menu or by starting loadlin from a running system then switching to Linux. Both methods have their advantages and disadvantages:

- Using the boot menu, avoid starting Linux from within another operating system.
- You can integrate other configurations into a boot menu.
- However, you must modify the boot files to set up a boot menu. You might have to try out different options. Some helpful tips can be obtained in the DOS help files after typing help menu.
- Switching to Linux at the DOS prompt is quite simple.
- The Linux boot can be nicely built into the graphical interface of Windows 95. Switch to Linux by double-clicking an icon. You can also set up a boot menu in Windows 95 (Windows 95 runs on DOS 7.0).

Tip

If possible, use a boot menu if you want to boot Linux as soon as you switch on the computer. The DOS prompt or the double-click method can additionally be used to switch to Linux from DOS/Windows 95. Only a summary of using Windows boot menus is included here.

Required Files for loadlin

The following is needed (in DOS, Windows 3.x, and Windows 95):

1. If loadlin is not already installed, install it from CD 1 by entering the command setup.

2. Switch to the c:\loadlin directory (in MS-DOS). You will find a file linux.par there. In this directory, create a file with the name startlin.bat in an editor (use another name if desired) as in the file 28.

c:\loadlin\loadlin c:\loadlin\linux.par

File 28: Sample batch file for booting Linux

Now edit the following lines in the linux.par file:

File 29: Sample parameter file for booting Linux

Replace xxx with the device name of your root partition. The initrd entry is only required if, for example, you need to boot SCSI support as well (for more on the "initial ramdisk" concept. Start Linux at the DOS prompt at any time using the startlin.bat file. The file linux.par, used by startlin.bat and by config.sys, contains all the parameters necessary for booting Linux. When you are more familiar with Linux, you can add or substitute other boot parameters in linux.par. If you compile your own kernel later, copy it from the Linux file system to the c:\loadlin\zimage file and, from that point on, your new kernel will boot. If necessary, also store a newly-generated initrd in that file.

Setting Up Boot Menus

Configure a boot menu in DOS or Windows 3.x as follows:

1. First, set up a boot menu in the c:\config.sys file. Edit it according to the sample file in File 30 on the next page.

```
[Menu]
menuitem=Win, Boot Windows...
menuitem=DOS, Boot MS-DOS...
menuitem=Linux, Boot Linux...
menucolor=15,1
menudefault=Win,5
```

File 30: Sample config.sys for Booting Linux (Part 1)

Set up the boot menu items under the [Menu] label. Also set the menu's color, the time after which the default system should boot, and which one is the default.

2. Enter the labels [Common], [Win], [DOS], and [Linux] further below. Write the global entries under Common. Under the other labels, enter the specifications that should only apply to certain entries. Use the lines as in File 31.

```
[Common]
device=c:\dos\himem.sys /testmem:off
device=c:\dos\emm386.exe noems
dos=high,umb
files=30
buffers=10
shell=c:\dos\command.com
[Win]
devicehigh=c:\dos\dblspace.sys /move
devicehigh=c:\cd\slcd.sys /D:SONY_000 /B:340 /M:P /V /C
[DOS]
devicehigh=c:\dos\dblspace.sys /move
devicehigh=c:\cd\slcd.sys /D:SONY_000 /B:340 /M:P /V /C
[Linux]
shell=c:\loadlin\loadlin.exe @c:\loadlin\linux.par
[Common]
rem Remains empty
```

File 31: Sample config.sys for Booting Linux (Part 2)

Finally, save the file.

3. Now open the c:\autoexec.bat file. Enter the same labels in the file, along with their corresponding entries. The notation will, however, be somewhat different. The label selected in the boot menu is stored in the variable %config%. File 32 is an example.

```
@echo off
rem Entries for all configurations
switches= /f
set comspec=c:\dos\command.com
prompt $p$g
loadhigh c:\dos\keyb gr,,c:\dos\keyboard.sys
loadhigh c:\dos\doskey
set temp=c:\temp
loadhigh c:\dos\mscdex.exe /D:SONY_000 /E /V /L:H
c:\logimaus\mouse.exe
goto
:Win
c:\dos\smartdrv.exe a- b- c+ 2048 1024
path c:\windows;c:\dos;c:\util;
win
c:\dos\smartdrv /C
goto end
:DOS
path c:\dos;c:\util;
goto end
:end
echo * Goodbye *
```

File 32: Sample autoexec.bat for Booting Linux

4. Now, when you boot your computer, the boot menu will appear and you will have five seconds to select the system to boot. Otherwise, after five seconds, Windows will automatically boot. If you select 'Linux', Linux will start and prompt you for your login.

Booting from Windows

Go through the following steps to configure a start icon for Linux, which you can use to boot Linux from a running Windows 95 system.

- 1. Click into the c:\loadlin folder, select the file startlin.bat, and select 'Edit' \rightarrow 'Copy'.
- 2. Go to the folder or position on your desktop to which to save your Linux icon. Press the right mouse button and click 'Add Link'.
- 3. Highlight the link you just made, press the right mouse button and click 'Properties'. Go to the 'Application' tab and click the button 'Advanced' below. Check the box 'MS-DOS Mode' in the dialog. Confirm with 'OK'.
- 4. You can use the 'Other Icon' browse button to search for a nice icon then give the link a suitable name. Done!
- 5. Double-clicking the new icon takes you to a dialog confirming that Windows 95 is now entering MS-DOS mode. If this dialog bothers you, disable it in the link properties.

The Windows Boot Menu

Configure a boot menu for Windows 95:

1. First, edit the file c:\msdos.sys. To do so, make the file visible by entering

```
C:> attrib -R -S -H c:\msdos.sys
```

This is a text file in which you need to enter some lines to activate the special Windows 95 boot menu. The lines below the [Options] label should look similar to those shown in File 33.

```
[Options]
BootGUI=0
BootDelay=0
BootMenu=0
Logo=0
```

File 33: msdos.sys for Booting Linux

The Logo=0 parameter is optional and prevents Windows 95 from switching to graphical mode before booting. This will speed up the booting process and make things easier later, in case at some point you want to use the DOS emulator in Linux. The BootGUI=0 parameter causes Windows 95 to boot directly to DOS mode. After editing the file, reset the attributes. Then enter

C:> win

at the DOS prompt to start Windows, although our sample file c: \autoexec.bat will already do this, if you have chosen Win95 in the menu.

 Next, you must set up your own boot menu in the file c:\config. sys by entering similar information as shown at the beginning of File 34.

```
[Menu]
menuitem=Win95, Booting Windows 95...
menuitem=DOS, Booting MS-DOS...
menuitem=Linux, Booting Linux...
menudefault=Win95,5
```

File 34: Sample config.sys (Part 1) for Booting Linux in Windows 95

Set up the boot menu items under the [Menu] label. Select the default system and the amount of time until it is automatically booted if no other choice is made by the user.

3. Further below, you will see the [Win95], [DOS], [Linux], and [Common] labels. Enter global settings under [Common] (there will only be a few in Windows 95). Enter other boot menu-related settings under the remaining labels. Use the lines from your present config.sys for this. The example in File 35 gives a general idea.

```
[Win95]
dos=high,umb
device=c:\windows\himem.sys /testmem:off
[DOS]
device=c:\plugplay\drivers\dos\dwcfgmg.sys
dos=high,umb
device=c:\windows\himem.sys /testmem:off
device=c:\windows\emm386.exe noems I=B000-B7FF
devicehigh=c:\cdrom\torisan.sys /D:TSYCD3 /P:SM
[Linux]
shell=c:\loadlin\loadlin.exe @c:\loadlin\linux.par
```

[Common] accdate=C+ D+ H+ switches= /F buffers=20

File 35: Sample config.sys (Part 2) for Booting Linux in Windows 95

Finally, save the file.

4. Now open the c:\autoexec.bat file. Enter the same labels in this file, along with their corresponding entries. However, the notation will be somewhat different. The label selected in the boot menu is stored in the variable %config%. You may want to enter something like in File 36.

```
@echo off
loadhigh keyb gr,,c:\windows\command\keyboard.sys
goto %config%
:Win95
win
goto end
:DOS
path c:.;d:.;c:\windows\command;c:\util;
loadhigh c:\windows\command\mscdex.exe /D:TSYCD3 /L:x
loadhigh c:\windows\command\doskey
c:\windows\command\mouse.exe
goto end
:end
echo * And now? *
```

File 36: Sample autoexec.batThis macro is not allowd. Please consult the documentation. for Booting Linux in Windows 95

5. Now, when you boot your machine, your self-designed boot menu will appear. You will have five seconds to select the system to boot. Otherwise, Windows 95 will boot automatically. If you select 'Linux', Linux will boot and prompt for a login.

6 The Kernel

The Kernel

The kernel that is written to the harddisk during the installation is configured to support as many hardware components and other kernel features as possible.

Kernel Sources

To compile the kernel sources, the following packages must be installed: the kernel sources (package kernel-source), the C compiler (package gcc), the GNU binutils (package binutils), and the include files for the C compiler (package glibc-devel). We strongly recommend to install the C compiler in any case, since the C language is inseparable from UNIX operating systems.

Kernel Modules

Many drivers and features no longer have to be compiled directly into the kernel, but can be loaded in the form of kernel modules while the system is active. The kernel configuration determines which drivers are to be compiled into the kernel and which ones are loaded as runtime modules.

Kernel modules are located at /lib/modules/<version>, <version> being the current kernel version.

Handling Modules

The following commands are available for your use:

insmod

insmod loads the requested module after searching for it in a subdirectory of /lib/modules/<version>. However, modprobe (see below) should be preferred over insmod, which has lost its significance.

rmmod

Unloads the requested module. This is only possible if this module is no longer needed. For example, it is not possible to unload the isofs module (the CD-ROM file system) as long as a CD is mounted.

depmod

Creates the file modules.dep in /lib/modules/<version>, where the dependencies of all modules are defined. This is necessary to ensure that all dependent modules are loaded together with the selected ones. If START_KERNELD is set in /etc/rc.config, this file is created each time the system is started.

modprobe

Loads or unloads a given module under consideration of the dependencies of this module. This command is extremely powerful and can be used for a lot of things (e.g., testing all modules of a given type until one is successfully loaded). In contrast to insmod, modprobe checks /etc/modules.conf and is the preferred way for loading modules. For detailed information on this topic, please refer to the corresponding manual page.

lsmod

Shows you which modules are currently loaded and by how many other modules they are being used. Modules started by the kernel daemon have the tag autoclean, which shows that these modules will be removed automatically when they reach their idle time limit.

/etc/modules.conf

In addition, loading of modules is influenced by /etc/modules.conf. See the man page for depmod (man depmod).

The parameters for modules which access hardware directly and therefore need system-specific options can be entered in this file (e.g. CD-ROM drivers

or network drivers). Basically, the parameters entered here are the same as those given at the kernel boot prompt, but in many cases the names which are used at the boot prompt are different. If a module fails to load, try specifying the hardware in this file and use modprobe instead of insmod to load the module.

Special Features of SuSE Linux Enterprise Server

This chapter provides information on the *Filesystem Hierarchy Standard* (FHS) and *Linux Standard Base* (LSB), various software packages, and special features such as booting with "initrd".

176
176
177
181
182
183

Linux Standards

File System Hierarchy Standard (FHS)

SuSE Linux Enterprise Server strives, as far as possible, to conform to the *File system Hierarchy Standard* (FHS, package fhs). See also http://www.pathname.com/fhs/. For this reason, it is sometimes necessary to move files or directories to their "correct" places in the file system.

Linux Standard Base (LSB)

SuSE supports the *Linux Standard Base* project. Current information on this can be found at http://www.linuxbase.org.

The LSB specification version for 8.1 is 1.2. From now on, the Filesystem Hierarchy Standard (FHS) is included in the specification and defines settings, such as the package format and the initialization of the system. See Chapter *The SuSE Linux Enterprise Server Boot Concept* on page 191.

The LSB specification currently only comprises the x86 architecture.

teTeX — T_EX in SuSE Linux

TEX is a complete typesetting system which runs on various platforms. It is expandable with macro packages like LATEX. It consists of very many single files that have to be assembled according to the *T*EX *Directory Structure* (TDS) (ref. ftp://ftp.dante.de/tex-archive/tds/ teTeX is a compilation of current TEXapplications.

teTeX is employed in SuSE Linux Enterprise Server with a configuration that complies with the requirements of both the TDS and the FHS.

Example Environments for FTP and HTTP

About FTP

To make it easier to set up an FTP server, the package ftpdir includes an example environment. This is installed in /srv/ftp.

About HTTP

Apache is the standard web server in SuSE Linux Enterprise Server. Together with the installation of Apache, some example documents are made available in /srv/httpd. To set up your own web server, include your own DocumentRoot in /etc/httpd/httpd.conf and store your files (documents, picture files) accordingly.

Hints on Special Software Packages

Package bash and /etc/profile

- /etc/profile
- ~/.profile
- 3. /etc/bash.bashrc
- 4. ~/.bashrc

Users can make personal entries in ~/.profile or in ~/.bashrc respectively. To ensure the correct processing of these files, it is necessary to copy the basic settings from /etc/skel/.profile or /etc/skel/.bashrc respectively into the home directory of the user. It is recommended to copy the settings from /etc/skel following an update. Execute the following shell commands to prevent the loss of personal adjustments:

```
mv ~/.bashrc ~/.bashrc.old
cp /etc/skel/.bashrc ~/.bashrc
mv ~/.profile ~/.profile.old
cp /etc/skel/.profile ~/.profile
```

The personal adjustments then need to be copied back from the files *.old.

cron Package

The Cron tables are now located in /var/cron/tabs. /etc/crontab serves as a system-wide cron table. Enter the name of the user who should run the command directly after the time table (see File 37, here root is entered). Package-specific tables, located in /etc/cron.d, have the same format. See the man page for cron (man 8 cron). 1-59/5 * * * * root test -x /usr/sbin/atrun && /usr/sbin/atrun

File 37: Example of an Entry in /etc/crontab

/etc/crontab cannot be processed with crontab -e. It must be loaded directly into an editor, modified, then saved.

A number of packages install shell scripts to the directories /etc/ cron.hourly, /etc/cron.daily, /etc/cron.weekly, and /etc/ cron.monthly, whose instructions are controlled by /usr/lib/cron/ run-crons. /usr/lib/cron/run-crons is run every fifteen minutes from the main table (/etc/crontab). This guarantees that processes that may have been neglected can be run at the proper time. Do not be surprised if, shortly after booting, the user nobody turns up in the process tables and is highly active. This probably means that nobody is just updating the locate (see Section Settings for the Files in /etc/sysconfig on page 213).

The daily system maintenance jobs have been distributed to various scripts for reasons of clarity (package aaa_base). Apart from aaa_base, /etc/ cron.daily thus contains for instance the components backup-rpmdb, clean-tmp or clean-vi.

Log Files — the Package logrotate

There are a number of system services ("daemons"), which, along with the kernel itself, regularly record the system status and specific events to log files. This way, the administrator can regularly check the status of the system at a certain point in time, recognize errors or faulty functions, and troubleshoot them with pinpoint precision. These log files are normally stored in /var/ log as specified by FHS and grow on a daily basis. The package logrotate package helps control the growth of these files.

Configuration

Configure logrotate with the file /etc/logrotate.conf. In particular, the include specification primarily configures the additional files to read. SuSE Linux Enterprise Server ensures that individual packages install files in /etc/logrotate.d (e.g., syslog or yast).

```
# see "man logrotate" for details
# rotate log files weekly
weeklv
```

keep 4 weeks worth of backlogs rotate 4 # create new (empty) log files after rotating old ones create # uncomment this if you want your log files compressed #compress # RPM packages drop log rotation information into this directory include /etc/logrotate.d # no packages own lastlog or wtmp - we'll rotate them here #/var/log/wtmp { # monthly # create 0664 root utmp # rotate 1 #}

system-specific logs may be also be configured here.

File 38: Example for /etc/logrotate.conf

logrotate is controlled through cron and it is called daily by /etc/cron. daily/logrotate.

Note

The create option reads all settings made by the administrator in /etc/permissions*. Ensure that no conflicts arise from any personal modifications.

Man Pages

For some GNU applications (e.g., tor) the man pages are no longer maintained. They have been replaced by info files. info is GNU's hypertext system. Typing info info gives a starting help for using info. info can be launched via emacs -f info or on its own with info.

The Command ulimit

With the ulimit (*user limits*) command, it is possible to set limits for the use of system resources and to have these displayed. ulimit is especially useful for limiting the memory available for applications. With this, an application can be prevented from using too much memory on its own, which could bring the system to a standstill.

ulimit can be used with various options. To limit memory usage, use the options listed in Table 7.1.

-m	maximum size of physical memory
-v	maximum size of virtual memory (swap)
-s	maximum size of the stack
-C	maximum size of the core files
-a	display of limits set

Table 7.1: ulimit: Setting Resources for the User

System-wide settings can be made in /etc/profile. There, creating core files must be enabled, needed by programmers for "debugging". A normal user cannot increase the values specified in /etc/profile by the system administrator, but he can make special entries in his own ~/.bashrc.

Limits of physical memory: ulimit -m 98304 # Limits of virtual memory: ulimit -v 98304

File 39: ulimit: Settings in ~/.bashrc

Details of memory must be specified in KB. For more detailed information, see the man page for bash (man bash).

Note

Not all shells support ulimit directives. PAM (for instance, pam_limits) offers comprehensive adjustment possibilities should you depend on encompassing settings for these restrictions.

Note -

The free Command

The free command is somewhat misleading if your goal is to find out how much RAM is currently being used. The relevant information can be found in /proc/meminfo. These days, users, who have access to a modern operating system such as Linux, should not really have to worry much about memory. The concept of "available RAM" dates back to before the days of unified memory management. The slogan *free memory is bad memory* applies well to Linux. As a result, Linux has always made the effort to balance out caches without actually allowing free or unused memory.

Basically, the kernel does not have direct knowledge of any applications or user data. Instead, it manages applications and user data in a "page cache". If memory runs short, parts of it will be either written to the swap partition or to files, from which they can initially be read with the help of the mmap command (see the man page for mmap (man 2 mmap)).

Furthermore, the kernel also contains other caches, such as the "slab cache" where the caches used for network access are stored. This may explain differences between the counters in /proc/meminfo. Most, but not all of them, can be accessed via /proc/slabinfo.

The File /etc/resolv.conf

Domain name resolution is handled through the file /etc/resolv.conf. Refer to DNS — Domain Name Service on page 256 on this.

This file is updated by the script /sbin/modify_resolvconf exclusively, with no other program having permission to modify /etc/resolv.conf directly. Enforcing this rule is the only way to guarantee that the system's network configuration and the relevant files are kept in a consistent state.

Virtual Consoles

Linux is a multiuser and multitasking system. The advantages of these features can be appreciated, even on a stand-alone PC system.

In text mode, there are six virtual consoles available. Switch between them using (Alt) + (F1) to (Alt) + (F6). The seventh console is reserved for X11. More or fewer consoles can be assigned by modifying the file /etc/inittab.

To switch to a console from X11 without leaving X11, use (Ctrl) + (Att) + (F1) to (Ctrl) + (Att) + (F6). (Att) + (F7) then returns to X11.

Keyboard Mapping

To standardize the keyboard mapping of programs, changes were made to the following files:

```
/etc/inputrc
/usr/X11R6/lib/X11/Xmodmap
/etc/skel/.Xmodmap
/etc/skel/.exrc
/etc/skel/.less
/etc/skel/.lesskey
/etc/csh.cshrc
/etc/termcap
/usr/lib/terminfo/x/xterm
/usr/X11R6/lib/X11/app-defaults/XTerm
/usr/share/emacs/{VERSION}/site-lisp/term/*.el
/usr/lib/joerc
```

These changes only affect applications that make use of terminfo entries or whose configuration files are changed directly (vi, less, etc.). Other non-SuSE applications should be adjusted to these defaults.

Under X, the compose key ("multikey") can be accessed using the key combination (Ctrl) + (1 Shiff) (right). Also see the corresponding entry in /usr/X11R6/lib/X11/Xmodmap.

Local Adjustments — I18N/L10N

SuSE Linux Enterprise Server is, to a very large extent, internationalized and can be modified for local needs in a flexible manner. In other words, internationalization ("I18N") allows specific localizations ("L10N"). The abbreviations I18N and L10N are derived from the first and last letters of the words and, in between, the number of letters omitted.

Settings are made via LC_* variables defined in the file /etc/sysconfig/ language. This refers not only to "native language support", but also to the categories *Messages* (Language), *Character Set*, *Sort Order*, *Time and Date*, *Numbers*, and *Money*. Each of these categories can be defined directly via its own variable or indirectly via a variable in the file language (see the man page for locale (man 5 locale)).

1. RC_LC_MESSAGES, RC_LC_CTYPE, RC_LC_COLLATE, RC_LC_TIME, RC_LC_NUMERIC, RC_LC_MONETARY: These variables are passed to the shell without the RC_ prefix and determine the above categories. The files concerned are listed below.

The current setting can be shown with the command locale.

- 2. RC_LC_ALL: This variable (if set) overwrites the values of the variables mentioned in item 1.
- RC_LANG: If none of the above variables are set, this is the "fallback". By default, SuSE Linux Enterprise Server only sets RC_LANG. This makes it easier for users to enter their own values.
- 4. ROOT_USES_LANG: A yes or no variable. If it is set to no, root always works in the POSIX environment.

The other variables can be set via the sysconfig editor.

The value of such a variable contains the language code, country code, encoding, and modifier. The individual components are connected by special characters:

LANG=(*language*)[[_(*COUNTRY*)].Encoding[@Modifier]]

Some Examples

You should always set the language and country codes together. Language settings follow the standard ISO 639 (http://www.evertype. com/standards/iso639/iso639-en.html and http://www.loc. gov/standards/iso639-2/). Country codes are listed in ISO 3166, see (http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_ listp1.html). It only makes sense to set values for which usable description files can be found in /usr/lib/locale. Additional description files can be created from the files in /usr/share/il8n using the command localedef. A description file for en_US.UTF-8 (for English and United States) can be created with:

earth:~ # localedef -i en_US -f UTF-8 en_US.UTF-8

LANG=en_US.ISO-8859-1

This sets the variable to English language, country to United States, and the character set to ISO-8859-1. This character set does not support the Euro sign, but it will be useful sometimes for programs that have not been updated to support ISO-8859-15. The string defining the charset (ISO-8859-1 in our case) will then be evaluated by programs like Emacs.

LANG=en_US.UTF-8

If you use a Unicode xterm, it is necessary to specify UTF-8 as well. To achieve this, make a small shell script called uxterm to start xterm with UTF-8 loaded each time. See File 40.

%

```
#!/bin/bash
export LANG=en_US.UTF-8
xterm -fn \
'-Misc-Fixed-Medium-R-Normal--18-120-100-100-C-90-IS010646-1' \
-T 'xterm UTF-8' $*
```

File 40: uxterm to Start a Unicode xterm

SuSEconfig reads the variables in /etc/sysconfig/language and writes the necessary changes to /etc/SuSEconfig/profile and /etc/ SuSEconfig/csh.cshrc. /etc/SuSEconfig/profile is read or "sourced" by /etc/profile. /etc/SuSEconfig/csh.cshrc is sourced by /etc/csh.cshrc. This makes the settings available system-wide.

Settings for Language Support

Files in the category *Messages* are, as a rule, only stored in the language directory (e.g., en) to have a fallback. If you set LANG to en,_US and the "message" file in /usr/share/locale/en_US/LC_MESSAGES does not exist, it will fall back to /usr/share/locale/en/LC_MESSAGES.

A fallback chain can also be defined, for example, for Breton \rightarrow French or for Galician \rightarrow Spanish \rightarrow Portuguese:

LANGUAGE="br_FR:fr_FR" LANGUAGE="gl_ES:es_ES:pt_PT"

If desired, use the Norwegian variants "nynorsk" and "bokmål" instead (with additional fallback to no):

```
LANG="nn_NO"
LANGUAGE="nn_NO:nb_NO:no"
```

or

```
LANG="nb_NO"
LANGUAGE="nb_NO:nn_NO:no"
```

Note that in Norwegian, LC_TIME is also treated differently.

Possible Problems

 The thousand comma is not recognized. LANG is probably set to en, but the description the glibc uses is located in /usr/share/locale/ en_US/LC_NUMERIC. LC_NUMERIC, for example, must be set to en_US.

For More Information

- *The GNU C Library Reference Manual,* Chap. "Locales and Internationalization"; included in package glibc-info.
- Markus Kuhn, UTF-8 and Unicode FAQ for Unix/Linux, currently at http://www.cl.cam.ac.uk/~mgk25/unicode.html.
- Unicode-Howto, by Bruno Haible file:/usr/share/doc/howto/en/html/Unicode-HOWTO.html.

Support for 32-bit and 64-bit Programs in an AMD64 Environment

Although SuSE Linux Enterprise Server is available for multiple 64-bit platforms, this does not necessarily mean that all the applications contained in it have yet been ported to 64-bit. However, SuSE Linux Enterprise Server supports 32-bit applications to be run in a 64-bit environment. This chapter will briefly show you how this support can be achieved on the SuSE Linux Enterprise Server 64-bit platforms.

Introduction	188
Runtime Support	188
Software Development	189
Kernel Issues	190

Introduction

SuSE Linux Enterprise Server for the 64-bit architectures ia64, ppc64, s390x, sparc64 and AMD64 is designed to run existing 32-bit applications for the corresponding 32-bit architecture in the 64-bit environment out of the box. The corresponding 32-bit architectures are x86 for ia64, ppc for ppc64, s390 for s390x and x86 for AMD64. This support allows to run today your favorite 32-bit applications instead of waiting for the availability of a 64-bit port of it. The current ppc64 system is running in 32-bit mode, while you are able to run 64-bit applications.

For this 32-bit support, we have to look at these topics:

Runtime support How can 32-bit applications be executed?

Development support What needs to be done to build 32-bit applications that run on both 32-bit and 64-bit architectures?

Kernel API How can 32-bit applications run under a 64-bit kernel?

Runtime Support

Note

Conflicting 32-bit and 64-bit versions of applications

If your package is available both as 32-bit and 64-bit version, the parallel installation of both 32-bit and 64-bit applications will conflict. You have to decide whether you want the 32-bit or 64-bit application and then install and use that version.

Note –

Each application needs a number of libraries for its correct execution. Unfortunately the names of the 32-bit and 64-bit libraries are the same, and therefore they have to be differentiated somehow.

The 64-bit architectures ppc64, s390x, sparc64 and AMD64 all use the same approach: To maintain compatibility with the 32-bit versions, the 32-bit libraries are exactly in the same place as in the 32-bit environment. For example the 32-bit version of libc.so.6 will be found in /lib/libc.so.6 in both the 32-bit and 64-bit environments.

All 64-bit libraries and link objects are placed in directories named lib64, e.g. the 64-bit objects you would normally expect in /lib, /usr/lib, and

/usr/X11R6 are now found in /lib64, /usr/lib64, and /usr/X11R6/ lib64 respectively, to make room for the 32-bit libs with the same base name in /lib, /usr/lib, and /usr/X11R6/lib.

In general, subdirectories of the link object directories that only contain wordsize independent data have *not* been moved. For example, you will find the X11 fonts below /usr/X11R6/lib/X11/fonts as usual.

This setup is LSB (Linux Standards Base) and FHS (Filesystem Hierachy Standard) compliant.

For ia64 — and also for the 64-bit Alpha platform — the 64-bit native libraries are located in the default lib directories, there is neither a lib64 nor a lib32 directory. Instead ia64 handles 32-bit x86 code as an emulation. A set of base libraries are installed in subdirectories of /usr/i386-linux.

Software Development

All 64-bit architectures support development of 64-bit objects. But the degree of support for 32-bit compilation is architecture dependend. The different possibilities for the toolchain consisting of GCC, the GNU Compiler Collection, and the binutils which include the assembler α s and the linker $|\alpha|$ are:

- **Biarch Compiler** With a biarch development toolchain both 32-bit and 64bit objects can be generated, the default is compilation of 64-bit objects. Using special flags 32-bit objects can be generated. The special flag for gcc is -m32, the flags for binutils are architecture dependend but GCC will pass the right flags to linker and assembler. A biarch development toolchain currently exists for sparc64, which supports sparc and sparc64 development, and for AMD64 which supports development for the x86 and AMD64 instruction sets.
- **No Support** SuSE does not support directly 32-bit software development on all platforms. If you like to develop s390 or x86 applications on zSeries or ia64 respectively, you should use the corresponding 32-bit SuSE Linux Enterprise Server Enterprise Server versions.
- **32-bit as default** The PPC64 platform uses a 32-bit compiler by default. For compilation of 64-bit objects a cross compiler has to be used, the names of the tools have a prefix of powerpc64-linux-, e.g. GCC is called powerpc64-linux-gcc. The compiler lives in /opt/cross/bin which is by default in the user's path. Future releases of SuSE Linux Enterprise Server Enterprise Server for PPC64 should contain a biarch compiler.

Note that header files have to be written in a way that they are architecture independend and that both the 32-bit and 64-bit installed libraries should have an API (application programming interface) that correspondends to the installed header files. The SuSE environment confirms to this but if you upgrade yourself libraries, you have to take care of these issues.

Kernel Issues

The 64-bit kernels for ia64, ppc64, s390x and AMD64 provide both a 64-bit and a 32-bit kernel ABI (application binary interface), the latter is the same as the ABI of the corresponding 32-bit kernel. This means that 32-bit applications can interact with the 64-bit kernel the same way as with a 32-bit kernel.

Note that the 32-bit system call emulation of a 64-bit kernel does not support a number of APIs that are used by system programs. Therefore a small number of system programs, e.g. lspci or the LVM administration programs, need to exist as 64-bit programs to work correctly.

A 64-bit kernel can only load 64-bit kernel modules that are specifically compiled for the kernel. It is *not* possible to use 32-bit kernel modules.

Tip

Some applications need their own kernel-loadable modules. If you are planning to use such a 32-bit application in the 64-bit environment, please contact your application provider and SuSE to make sure the 64-bit version of the kernel-loadable module and the kernel API 32-bit translations for that module are available.

The SuSE Linux Enterprise Server Boot Concept

Booting and initializing a UNIX system can challenge even an experienced system administrator. This chapter gives a short overview of the SuSE Linux Enterprise Server boot concept. The new implementation is compatible with the *System Initialization* section of the LSB specification (Version 1.2). Refer to Section *Linux Standard Base (LSB)* on page 176 for more information on LSB.

The init Program	192	
Runlevels	192	
Changing Runlevels	193	
Init Scripts	195	
The YaST2 Runlevel Editor	197	
SuSEconfig, /etc/sysconfig, and /etc/rc.config	198	
Using the YaST2 sysconfig Editor	199	
System Configuration: Scripts and Variables		

The simple words "Uncompressing Linux..." signal that the kernel is taking control of your hardware. It checks and sets your console — more precisely: the BIOS registers of graphics cards and output format — to read BIOS settings and to initialize basic hardware interfaces. Next, your drivers "probe" existing hardware and initialize it accordingly. After checking the partitions and mounting the root file system, the kernel starts init, which "boots" (Unix jargon) the main system with all its programs and configurations. The kernel controls the entire system, including hardware access and the CPU time programs use.

The init Program

The program init is responsible for correctly initializing all system processes. Thus, it is the father of all processes in the entire system.

init takes a special role. It is started directly by the kernel and resists *signal 9*, which normally enables you to kill processes. All other programs are either started directly by init or by one of its "child" processes.

init is centrally configured via the /etc/inittab file. Here, the "runlevels" are defined (see Section *Runlevels* on the current page). It also specifies which services and daemons are available in each of the levels.

Depending on the entries in /etc/inittab, several scripts are invoked by init. For reasons of clarity, these scripts all reside in the directory /etc/ init.d.

The entire process of starting the system and shutting it down is maintained by init. From this point of view, the kernel can be considered a background process whose task it is to maintain all other processes and to adjust CPU time and hardware access according to requests from other programs.

Runlevels

In Linux, *runlevels* define how the system is started. After booting, the system starts as defined in /etc/inittab in the line initdefault. Usually this is 3 or 5 (see Table 9.1 on the facing page). An alternative to this is assigning a special runlevel at boot time (e.g., at the boot prompt). The kernel passes any parameters it does not need directly to init.

To change runlevels while the system is running, enter init with the appropriate number. Only the superuser is allowed to do this. init 1 brings you

Runlevel	Meaning
0	System halt
S	Single user mode; from boot prompt with US keyboard layout
1	Single user mode
2	Local multiuser without remote network (standard)
3	Full multiuser with network
4	Unused
5	Full multiuser mode with network and xdm
6	System reboot

Table 9.1: Valid Runlevels in Linux

to *single user mode*, which is used for the maintenance and administration of your system. After finishing work in *S* mode, the system administrator can change the runlevel to 3 again by typing init 3. Now all essential programs are started and users can log in and work with the system.

Table 9.1 below gives an overview of available runlevels. Runlevel 2 should not be used on a system with a /usr partition mounted via NFS. You can halt the system using init 0 or reboot it with init 6.

If you have already installed and configured the X Window System properly (Section *The X Window System* on page 35) and want users to log in via a graphical user interface, change the runlevel to 5. Try it first by typing init 5 to see whether the system works as expected. Afterwards, set the default runlevel to 5 in YaST2.

Changing Runlevels

Generally, a couple things happen when you change runlevels. First, *stop scripts* of the current runlevel are launched, closing down some programs essential for the current runlevel. Then *start scripts* of the new runlevel are started. Here, in most cases, a number of programs will be started.

To illustrate this, we will show you a change from runlevel 3 to 5:

The administrator (root) tells init to change runlevels:

```
root@earth:/ > init 5
```

- init now consults its configuration file (/etc/inittab) and realizes it should start /etc/init.d/rc with the new runlevel as a parameter.
- Now rc calls all the stop scripts of the current runlevel, but only for those where there is no start script in the selected new runlevel. In our example, these are all the scripts that reside in /etc/init.d/rc3.d (old runlevel was 3) and start with a `K'. The number following `K' guarantees a certain order to start, as there are some dependencies to consider.

Note

The names of the stop scripts always begin with K' for kill. Start scripts begin with S' for start.

Note –

• The last thing to start are the start scripts of the new runlevel. These are (in our example) in /etc/init.d/rc5.d and begin with an `S'. The same procedure regarding the order in which they are started is applied here.

When changing into the same runlevel as the current runlevel, init only checks /etc/inittab for changes and starts the appropriate steps (e.g., for starting a getty on another interface).

Option	Meaning
start	Starts service.
stop	Stops service.
restart	Stops service and restarts if service is already running.
	If it is not running, it starts the service.
reload	Load configuration of service again without stopping and restarting it.
force-reload	Load configuration of the service again if the service supports this. If not, a restart is carried out.
status	Show current status.

Table 9.2: Summary of init Script Options

Init Scripts

Scripts in /etc/init.d are divided into two sections:

- scripts executed directly by init. This only applies while booting and shutting down the system immediately (power failure or a user pressing (Ctrl) + (Alt) + (Del)).
- scripts started indirectly by init. These are run when changing the runlevel and always call the master script /etc/init.d/rc, which guarantees the correct order of the relevant scripts.

All scripts are located in /etc/init.d. Scripts for changing the runlevel are also found there, but are called via symbolic links from one of the subdirectories (/etc/init.d/rc0.d to /etc/init.d/rc6.d). This is just for clarity reasons and avoids duplicate scripts (e.g., if they are used in several runlevels). Since every script can be executed as both a start and a stop script, these scripts have to understand the parameters "start" and "stop". The scripts understand, in addition, the "restart", "reload", "force-reload", and "status" options. These different options are explained in Table 9.2.

After leaving runlevel 3, /etc/init.d/rc3.d/K40network is run. /etc/ init.d/rc runs the /etc/init.d/network script with the stop parameter. After entering runlevel 5, the same script is started. This time, however, with the start parameter.

Links in these runlevel-specific subdirectories simply serve to assign the scripts to a certain runlevel. Adding and removing the required links is done

by the program insserv (or by the link /usr/lib/lsb/install_initd) when installing and uninstalling packages. Refer to the man page for insserv (man 8 insserv).

Below is a short introduction to the boot and stop scripts launched first (or last, respectively) as well as an explanation of the maintaining script.

boot Executed while starting the system directly using init. It is independent of the chosen runlevel and is only executed once. Here, file systems are checked, the kernel daemon is launched, some unnecessary files in /var/lock are deleted, and the network is configured for the loopback device (if it has been selected in /etc/rc.config).

If an error occurs while automatically checking and repairing the file system, the system administrator can intervene after first entering the root password.

Last to be executed is the script boot.local.

- **boot.local** Here, enter additional commands to execute at boot before changing into a runlevel. It can be compared to AUTOEXEC.BAT on DOS systems.
- **boot.setup** General settings to make while changing from *single user mode* to another runlevel. Here, keyboard maps are loaded and the kernel daemon is started, which loads modules automatically.
- halt This script is only executed while changing into runlevel 0 or 6. Here, it is executed either as halt or as reboot. Whether the system shuts down or reboots depends on how halt is called.
- **rc** This script calls the appropriate stop scripts of the current runlevel and the start scripts of the newly selected runlevel.

With this concept in mind, you can create your own scripts. A skeleton has been prepared in /etc/init.d/skeleton. The exact format is described in the LSB outline. This defines specifically the order of steps and in which levels the script should be processed.

Now, create the links in the corresponding rc?.d to your script to make sure it is launched when you change runlevels (see Section *Changing Runlevels* on page 193 for script names). Refer to the man page for init.d (man 7 init.d) and the man page for insserv (man 8 insserv) for the necessary technical background. Use the YaST2 Runlevel Editor to create these links with a graphical front-end. See *The YaST2 Runlevel Editor* on the next page.

Caution

Creating your own init scripts

Faulty init scripts may hang up your machine. Handle them with utmost care and, if possible, subject them to heavy testing in the multiuser environment. Some useful information on init scripts can be found in Section *Runlevels* on page 192.

Caution -

The YaST2 Runlevel Editor

After this expert module starts, it is initialized. The current default runlevel is shown in the next dialog. This "operation mode" starts after your system boots. In SuSE Linux Enterprise Server, this is usually runlevel 5 (full multiuser operation with network and KDM, the graphical login). Runlevel 3 also works well (full multiuser operation with network). With the help of YaST2, a different default runlevel can be set. See Table 9.1 on page 193.

'Edit' continues to an overview of all the services and daemons, supplemented with information as to whether they have been activated on your system and for which runlevels. Highlight a line with the mouse and activate the check boxes for runlevels '0', '1', '2', '3', '5', '6', and 'S' and, with that, state which service or daemon should be activated for which runlevel. Runlevel 4 is undefined — this is always reserved for custom settings.

With 'Start' and 'Stop', decide whether a server should be implemented. The current status is checked via 'Update', if this has not already been done automatically. 'Reset to default value' allows you to restore the default settings to their initial state following installation. 'Activate service' only appears if the service is currently disabled. 'Reset all services to default value' restores all services to their original state following installation. 'Finish' saves the system configuration.

Caution

Changing runlevel settings

Faulty runlevel settings may render a system unusable. Before applying your changes, make absolutely sure you know about their consequences.

Caution \square

SuSEconfig, /etc/sysconfig, and /etc/rc.config

The main configuration of SuSE Linux Enterprise Server can be done via the configuration files in /etc/sysconfig. /etc/rc.config, formerly the main configuration file of SuSE Linux Enterprise Server, is maintained as an empty file to allow your self-made scripts to source your settings and to apply your own variables globally.

The configuration files in /etc/sysconfig are interpreted by single scripts. For example, the network configuration files are only read by the network scripts.

Moreover, a large number of configuration files are generated from the settings in /etc/sysconfig. This is the task of /sbin/SuSEconfig. If you change the network configuration, for example, the file /etc/host.conf is regenerated, as it depends on the configuration made.

If you change anything in those files manually, you need to run /sbin/ SuSEconfig afterwards to make sure all changes to the appropriate configuration files are made at the correct places. If you change the configuration with YaST2, it automatically executes /sbin/SuSEconfig and updates your configuration files.

This concept enables you to make basic changes to your configuration without having to reboot the system. Since some changes are rather complex, some programs must be restarted for the changes to take effect. If the network configuration has changed, the network programs can be restarted using the commands:

earth: # rcnetwork stop
earth: # rcnetwork start

As you can see, you can easily start and stop init scripts by hand.

Generally, we recommend the following steps for configuring your system:

- Bring the system into *single user mode* (Runlevel 1) with init 1.
- Change the configuration files as needed. This can be done using an editor of your choice or using the *Sysconfig editor* of YaST2.
- Execute /sbin/SuSEconfig to make the changes take effect. If you have changed the configuration files with YaST2, this is done automatically.

 Bring your system back to the previous runlevel with something like init 3.

This procedure is mainly relevant if you have changed system-wide settings (such as network configuration). It is not necessary to go into *single user mode* for small changes, but it ensures all relevant programs are correctly restarted.

Tip

To disable the automatic configuration of SuSEconfig, set the variable (*ENABLE_SUSECONFIG*) in /etc/sysconfig/suseconfig to no. Do not disable SuSEconfig if you want to use the SuSE installation support. It is also possible to disable the autoconfiguration partially.

Tip —

Using the YaST2 sysconfig Editor

The files where the most important SuSE Linux Enterprise Server settings are stored are located in the /etc/sysconfig directory. This data used to be stored in a central file, /etc/rc.config. The sysconfig editor presents the settings options in an easy-to-read manner. The values can be modified and subsequently added to the individual configuration files in this directory. In general, it is not necessary to manually edit them, however, because these files are automatically adjusted when installing a package or configuring a service.

Caution

Modifications of /etc/sysconfig/ files

Do not modify the /etc/sysconfig files if you lack previous experience and knowledge. It could do considerable damage to your system.

Caution -

System Configuration: Scripts and Variables

This section describes a selection of system parameters, including their default settings. If you do not use YaST2 to change the configuration files in /etc/sysconfig, make sure you set empty parameters as two quotation

Figure 9.1: YaST2: Configuring with the sysconfig Editor

marks (e.g., $\langle KEYTABLE="" \rangle$) and surround parameters that contain a blank with quotation marks. Parameters consisting of only one word do not need to be quoted.

Note

Platform-specific variables in /etc/sysconfig

This is just an overview of variables and files in /etc/sysconfig. They are intended to represent those present on all supported platforms. Nevertheless, you might find some variables here that are not present on your specific hardware. Others, mostly highly specific ones, will probably not be mentioned here. Refer to the documentation in the appropriate /etc/sysconfig files.

Note -

Settings for the Files in /etc/sysconfig

3ddiag For 3Ddiag.

200

SCRIPT_3D="switch2mesasoft"

This variable specifies the script used to create the necessary symbolic links to the correct OpenGL libraries or extensions. These scripts are located in /usr/X11R6/bin. Possible values are:

no execute no script

switch2mesasoft emulation of Mesa Software (works with all
graphics cards)

switch2mesa3dfx Mesa/Glide

switch2nvidia_glx XFree86 4.x/NVIDIA_GLX
(NVIDIA_GLX/NVIDIA_kernel)

switch2xf86_glx XFree86 4.x/DRI

Use 3Ddiag to determine the correct settings.

- SuSEfirewall2 Activating firewall. See the readme file in package SuSEfirewall2.
- **amavis** Activate the virus scanning facility AMaViS.

USE_AMAVIS="yes"

Set to yes if you want to use the e-mail virus scanning facility AMaViS within sendmail or postfix. If set to yes, SuSEconfig creates the correct sendmail or postfix configuration for using AMaViS. For details, see README.SuSE of the amavis package.

apache Configuration of the HTTP daemon Apache. This overview only covers the most important variables that need to be set by default or are vital for a basic understanding of Apache. Refer to the Apache documentation which you can install as package apache-doc for further information.

HTTPD_PERFORMANCE="slim"

Specify the performance class of your Apache. Choose from slim, mid, thick, and enterprise for the number of clients to server. SuSEconfig will set MinSpareServers, MaxSpareServers, StartServers, and MaxClients accordingly (see /sbin/conf.d/ SuSEconfig.apache)

HTTPD_START_TIMEOUT="2"

Time-out during server start-up (in seconds). After this time, the stat script decides whether the httpd process has started without an error. You need to increase this value if you use mod_ssl and your certificate is passphrase protected.

HTTPD_SEC_ACCESS_SERVERINFO="no"

Enable or disable the status module to provide server status and server info.

HTTPD_SEC_SAY_FULLNAME="no"

Which information should be provided at the bottom of servergenerated documents (e.g., error messages)? yes provides version number and server name. email adds a mailto: instruction to the version number and server name. This option correlates with the ServerSignature directive of Apache. If no information should be revealed, set the parameter to no.

HTTPD_SEC_SERVERADMIN=""

Set the e-mail address of the server administrator (ServerAdmin directive) This address is added to the server's responses if (*HTTPD_SEC_SAY_FULLNAME*) is set to email. If empty, it defaults to webmaster@\$HOSTNAME. HOSTNAME is set in /etc/HOSTNAME. Note that the ServerAdmin directives inside the VirtualHost statements are not changed, including the one for the SSL virtual host.

HTTPD_SEC_PUBLIC_HTML="yes"

Do you want to allow access to UserDirs (like /home/*/public_ html)? If yes, this is defined in /etc/httpd/suse_public_html. conf.

HTTPD_CONF_INCLUDE_FILES=""

Here you can name files, separated by spaces, that should be included by httpd.conf. This allows you to add, for example, VirtualHost statements without touching /etc/httpd/httpd.conf itself, which means that SuSEconfig will continue doing its job (since it would not touch httpd.conf when it detects changes made by the admin via the md5sum mechanism).

HTTPD_AWSTATS_COMBINED_LOG="yes"

Should Apache write an extra combined log file? This is necessary for the awstats program (yes or no).

HTTPD_DDT="yes"

Should the DDT admin CGI be enabled? It is used to create and manage accounts on a local DDT (Dynamic DNS Tools) server.

MAILMAN_APACHE="yes"

Enable the web front-end for Mailman?

HTTPD_SEC_MOD_MIDGARD="yes"

Enable the midgard module. Midgard is an Open Source content management system.

HTTPD_SEC_MOD_PERL="yes" Enable the Perl module.

HTTPD_SEC_MOD_PHP="yes" Enable the PHP module.

HTTPD_SEC_MOD_PYTHON="yes" Enable the Python module.

HTTPD_SEC_MOD_SSL="no"

Enable the SSL module. Before you can enable this module, you need a server certificate. A test certificate can be created by entering

cd /usr/share/doc/packages/mod_ssl
./certificate.sh

as root. Also, you need to set the ServerName inside the <VirtualHost _default_:443> block to the fully qualified domain name (see \$HOSTNAME in /etc/HOSTNAME). If your server certificate is protected by a passphrase, increase the value of $\langle HTTPD_START_TIMEOUT \rangle$.

HTTPD_SEC_NAGIOS="yes"

Allow access to Nagios's web interface (configured in /etc/httpd/ nagios.conf).

ZOPE_PCGI="no"

If unset, Zope runs as a stand-alone server. Remember Apache must be installed to use PCGI.

ZOPE_KEEP_HOMES="yes"

If Zope is handled by apache-pcgi and user home directories should be handled by Apache, set the variable to yes.

argoups This package allows you to control the actual condition of an ArgoUPS. If the power fails, the system performs a shutdown.

ARGO_TYPE="local"

Specify the connection type to the system to monitor. If the system should be monitored remotely (net), also specify the remote server at the $\langle ARGO_REMOTESERVER \rangle$ parameter.

ARGO_REMOTESERVER=""

ARGO_TTY="/dev/ttyS0"

Serial port to which ArgoUPS is attached.

ARGO_USERTIME="2"

Time to allow (in minutes) after a blackout until the script specified in $\langle ARGO_USERFILE \rangle$ is executed.

ARGO_USERFILE="/usr/sbin/argoblackout"

ARGO_SHUTDOWN="8"

Time after that when the shutdown should be started.

argus Server for Argus (a network monitor).

ARGUS INTERFACE="eth0"

Interface to which argus should listen.

ARGUS_LOGFILE="/var/log/argus.log" The Argus log file. It can get very large.

autofs With this daemon, it is possible to mount directories accessible via NFS or local directories (CD-ROM drives, disk drives, etc.) automatically. The package autofs must be installed and configured.

AUTOFS OPTIONS=""

autofs daemon options, for example, "--timeout 60". --timeout specifies the time (in seconds) after which directories should automatically be unmounted.

autoinstall AutoYast2 the autoinstaller of YaST2.

REPOSITORY="/var/lib/autoinstall/repository" Repository with all profiles holding the configuration details of the hosts to install.

CLASS DIR="/var/lib/autoinstall/classes"

Use classes to simplify the creation of profiles for complex installation scenarios. They will be stored in /var/lib/autoinstall/classes.

PACKAGE REPOSITORY=""

Location in which to store the installation data and packages for SuSE Linux Enterprise Server.

backup Backup of the RPM database

RPMDB_BACKUP_DIR="/var/adm/backup/rpmdb"

Where should cron.doily backups of the RPM database be stored? If you do not want backups, set the variable to "" .

MAX RPMDB BACKUPS="5"

Number of backups of the RPM database.

RCCONFIG BACKUP_DIR="/var/adm/backup/rpmdb"

If you want cron.doily to backup /etc/rc.config and the files in /etc/sysconfig, specify a directory where the backups will be stored. The backups will be made every time cron.doily is called and the the content of those files has changed. Setting the variable to "" disables this feature.

MAX RCCONFIG BACKUPS="5"

Here, set the maximum number of backup files for the /etc/rc. config and /etc/sysconfig files.

clock time settings

GMT=""

If your hardware clock is set to GMT (*Greenwich Mean Time*), set this to -u. Otherwise, set it to --localtime. This setting is important for the automatic change from and to daylight savings time.

TIMEZONE=""

The time zone is also important for the change from and to daylight savings time. This sets /usr/lib/zoneinfo/localtime.

console Settings for the console.

FB_MODULES=""

You may want to load a framebuffer display driver into your kernel to change graphics modes and other things with fbset in console mode. Most people will not enter anything here, as it will not work with vesofb already active. It is advantageous to have framebuffer support compiled into your kernel. Some XFree86 drivers (especially in XFree86-4.x) do not work well if you enable framebuffer text mode.

FBSET_PARAMS=""

If your kernel has framebuffer support or loads it as a module, you might want to change the resolution or other parameters. These can be set with $\langle FBSET_PARAMS \rangle$. To get a list of possible parameters and their meanings, refer to the man page for fbset (man fbset) or enter fbset -h in the console.

Caution

Setting framebuffer parameters

Framebuffer modes are extremely hardware dependent. A wrong decision here might damage your monitor. Consider the following things before setting framebuffer modes:

vesafb does not (currently) support changing the display mode.

Do not set modes your monitor cannot handle. Watch out for the maximum horizontal frequency. Old monitors might even be damaged if you exceed their capabilities.

Caution —

CONSOLE_FONT=""

Font for the console loaded at boot. Additional settings are: (*CONSOLE_SCREENMAP*), (*CONSOLE_UNICODEMAP*), and (*CONSOLE_MAGIC*).

CONSOLE_UNICODEMAP=""

Some fonts come without a unicode map. You can then specify the unicode mapping of your font explicitly. Find these maps under /usr/share/kbd/unimaps/. Normally, this variable is not needed.

CONSOLE_SCREENMAP=""

Does your console font need to be translated to unicode? Choose a screenmap from /usr/share/kbd/consoletrans/.

CONSOLE_MAGIC=""

For some fonts, the console has to be initialized with (*CONSOLE_MAGIC*). This option is normally not needed.

SVGATEXTMODE="80x25"

\$\langle SVGATEXTMODE \rangle comes from the package svgatext, which allows higher text resolutions (up to 160x60) on SVGA cards. The variable contains a valid mode from /etc/TextConfig. Configure this file to suit the needs of your graphics card. The procedure is explained in /usr/share/doc/packages/svgatext. The deefault is 80x25. SV-GATextMode resolutions are used in runlevels 1, 2, 3, and 5.

cron Daily administration work on the system. The cron daemon automatically starts certain programs at specified times. It is recommended to activate it on computers that run all the time. An alternative or supplement is the AT daemon.

Note

A number of system settings require regular execution of certain programs. Therefore, the CrOn daemon should be active on every system.

Note -

MAX_DAYS_IN_TMP="0"

cron.doily can check for old files in tmp directories. It will delete all files not accessed for more than the days specified here. Leave it empty or set it to 0 to disable this feature.

TMP_DIRS_TO_CLEAR="/tmp /var/tmp"

Specify the directories from which old files should be deleted.

OWNER_TO_KEEP_IN_TMP="root"

Specify whose files should not be deleted, even after the time set.

CLEAR_TMP_DIRS_AT_BOOTUP="no"

Set this to yes to entirely remove (rm -rf) all files and subdirectories from the temporary directories defined in $\langle TMP_DIRS_TO_CLEAR \rangle$ on

boot. This feature ignores $\langle OWNER_TO_KEEP_IN_TMP \rangle$ — all files will be removed without exception.

DELETE_OLD_CORE="no"

Should old core files be deleted? If set to no, cron.doily will tell you if it finds old core files. This feature requires $\langle RUN_UPDATEDB \rangle$ be set to yes and package findutils-locate needs to be installed.

MAX_DAYS_FOR_CORE="7"

Maximum age of core files in days.

REINIT_MANDB="yes"

Should the manual page database (mandb and whatis) be recreated by cron.daily?

DELETE_OLD_CATMAN="yes"

Should old preformatted man pages (in /var/catman) be deleted?

CATMAN_ATIME="7"

How long (in days) should old preformatted man pages be kept before deleting them?

dhcpd Configure the DHCP server.

DHCPD_INTERFACE="eth0"

Enter a space-separated list of interfaces on which the DCHP server should be listening.

DHCPD_RUN_CHROOTED="yes"

Should dhcpd run in a "chroot jail"? Refer to dhcpd's README.SuSE (/usr/share/doc/packages/dhcp/README.SuSE) for further details.

DHCPD_CONF_INCLUDE_FILES=""

dhcpd.conf can contain include statements. If you enter the names of any include files here, *all* conf files will be copied to \\$chroot/ etc/ when dhcpd is started in the chroot jail. /etc/dhcpd.conf is always copied.

DHCPD_RUN_AS="nobody"

Leave empty or enter root to let dhcpd run as root. Enter nobody to run dhcpd as user nobody and group nogroup.

DHCPD_OTHER_ARGS=""

Other arguments with which dhcpd should be started. See man dhcpd for details.

dhcrelay DHCP Relay Agent. A DHCP relay agent allows you to relay DHCP (and Bootp) requests from one subnet without a DHCP server to one with a DHCP server.

DHCRELAY_INTERFACES=""

Interfaces on which the DHCP relay agent should listen (separarted by spaces).

DHCRELAY_SERVERS=""

Specify a space-separated list of DHCP servers to be used by the DHCP relay agent.

displaymanager Display manager configuration

DISPLAYMANAGER=""

Set the display manager for login. Possible values: console, xdm (traditional display manager of X Window System), kdm (display manager of KDE), gdm (display manager of GNOME), or wdm ("WINGs display manager").

DISPLAYMANAGER_REMOTE_ACCESS="no"

Allow remote access to your display manager. Default is no.

DISPLAYMANAGER_STARTS_XSERVER="yes"

Display manager starts a local X server. Set to no for remote access only.

KDM_SHUTDOWN="auto"

 $\langle KDM_SHUTDOWN \rangle$ determines who will be able to shutdown the system in kdm. Valid values are root, all, none, local, and auto.

KDM_USERS=""

Enter a space-separated list of users for whom icons should be displayed. If empty, the system defaults will be taken.

KDM_BACKGROUND=""

Specify a special background for KDM.

KDM_GREETSTRING=""

If you wish to be greeted by the system in a special way, enter the greeting words here.

dracd Settings for the dracd and mail relaying using "POP-before-SMTP."

DRACD_RELAYTIME="5"

Postfix, on a POP server, remembers the IP address of an authenticated host for a certain time (time to live) and allows this host to send e-mail. After the time has expired, a new authentication is necessary. This time to live is set in minutes.

DRACD_DRACDB="/etc/postfix/dracd.db"

This is where dracdb is stored.

dvb Settings for your DVB card.

DVB_SOUND_CHIP="ti"

Choose the sound chip on your DVB card — ti or crystal.

hardware Hardware settings

DEVICES_FORCE_IDE_DMA_ON="" Switch on DMA for the listed IDE devices.

DEVICES_FORCE_IDE_DMA_OFF="" Switch off DMA for the listed IDE devices.

hotplug Configuring the hotplug service.

HOTPLUG_DEBUG="default"

This variable controls the amount of output of the hotplug service. With default, "", or no, it prints only few messages and errors to syslog. Set it to off and it will be absolutely quiet. With verbose (or yes), it prints some extra debug output. With max it will pollute your syslog with every single detail.

HOTPLUG_START_USB="yes"

Enable or disable USB hotplug event handling.

Note [·]

Disabling USB hotplug

Disabling USB hotplug while having the USB input devices loaded as modules will render your keyboard unusable.

Note –

HOTPLUG_USB_HOSTCONTROLLER_LIST="usb-uhci uhci usbohci ehci-hcd"

The host controller drivers will be probed in this order.

HOTPLUG_USB_MODULES_TO_UNLOAD="scanner"

These modules should be unloaded on an USB "remove" event. For some devices, it is useful to reinitialize the hardware.

HOTPLUG_USB_NET_MODULES="pegasus usbnet catc kaweth CDCEther"

If one of these modules is loaded or unloaded, it is treated like a network device and the system creates a hardware description for the following "net event".

HOTPLUG_START_NET="yes"

Enable or disable NET hotplug event handling.

HOTPLUG_NET_DEFAULT_HARDWARE=""

One day in the future, there will be ways to obtain information on which type of hardware is behind a given network interface. Currently, there is no easy way to get this information. At the moment, we use the following work-around: hardware descriptions are written at the USB or PCI hotplug events then read by the NET event. If you plug several devices at a time, this might cause race conditions. If the workaround fails, the string in $\langle HOTPLUG_NET_DEFAULT_HARDWARE \rangle$ is used when if{up,down} is called. Set it to what you use as hotplug NIC: pcmcia, usb, or firewire.

HOTPLUG_NET_TIMEOUT="8"

Specify how long to wait for a hardware description from a USB or PCI event (in seconds). If this value equals 0, the hotplug service will not wait for a hardware description and always use the value of *(HOTPLUG_NET_DEFAULT_HARDWARE)*. The default value here is 8 since some PCMCIA NICs need a long time for some negotiation jobs.

HOTPLUG_START_PCI="yes"

Enable or disable PCI hotplug event handling.

HOTPLUG_PCI_MODULES_NOT_TO_UNLOAD=""

These modules should not be unloaded on a PCI "remove" event, because they cause too much trouble.

intermezzo Settings for the Intermezzo file system.

EXCLUDE_GID="63"

Specify the group to exclude from replication.

irda IrDA is the infrared interface used, for example, by notebooks. To activate it permanently, call insserv /etc/init.d/irda.

IRDA_PORT="/dev/ttyS1"

Currently, the UART (SIR) mode is supported in the normal configuration. The variable $\langle IRDA_PORT \rangle$ sets the used serial port. Check your BIOS setup to find out which is correct. If you have a supported FIR chipset, specify the name of the corresponding kernel module in $\langle IRDA_PORT \rangle$, for example, IRDA_PORT="toshoboe". FIR must be enabled in the BIOS setup first. Sometimes, you additionally have to disable the serial port, which would be used in SIR mode via setserial /dev/ttyS<x> uart none

- **isdn**/ Here you will find all the scripts needed for ISDN.
- ispell Configuring the ispell spell checker.

ENGLISH_DICTIONARY="system american british"

SuSEconfig.ispell maintains a symbolic link from the english (default) dictionary to either american or british. If only one is installed, the link will point to this one. If both are installed, the spaceseparated value of *(ENGLISH_DICTIONARY)* takes effect. The magic word system expands to the system's default language (as defined in /etc/sysconfig/language's *(RC_LANG)*), if it is one of the English languages, and expands to the empty string otherwise. The symlink will point to the first installed dictionary in the list.

java Configuring Java.

CREATE_JAVALINK="yes"

SuSEconfig can automatically create the links /usr/lib/java and /usr/lib/jre that point to a suitable JDK or JRE respectively if you set (*CREATE_JAVALINK*) to yes. If you are not satisfied with the choice it makes, set (*CREATE_JAVALINK*) to no and set the link manually.

JAVA_JRE_THREADS_TYPE="green"

Configuration for the package java-jre. Set this to native if you want *real* multithreading, for example, in combination with SMP systems.

JAVA_THREADS_TYPE="green"

Configuration for the package java. Set this to native if you want *real* multithreading, for example, in combination with SMP systems.

joystick Joystick configuration

GAMEPORT_MODULE_0=""

Gameport module names, for example, ns558 for legacy gameport support.

JOYSTICK_MODULE_0=""

Joystick module names, usually analog.

JOYSTICK_MODULE_OPTION_0=""

Joystick module options, such as js=gameport for analog.

JOYSTICK_CONTROL_0=""

Control name of sound driver to activate (via alsactl).

JOYSTICK_CONTROL_PORT_0=""

Port to use (via alsactl). Some sound cards, like ens1371, need the port address (typically 0x200).

kernel Kernel.

INITRD_MODULES=""

This variable contains the list of modules to add to the initial ramdisk with the script mk_initrd (like drivers for scsi controllers, lvm, or reiserfs).

SHMFS_SIZE=""

Size parameter for mounting the shmfs file system. The kernel defaults to half the available RAM size, but this might not be enough for some special setups.

keyboard Keyboard layout.

KEYTABLE="de-latin1-nodeadkeys"

Defines the key layout. If you use a US keyboard, this variable can remain empty.

KBD_RATE="24.0"

Rate of automatic keyboard repetition. Set this to a value between 2 and 30 times per second. The variable for the delay also needs to be set: $\langle KBD_DELAY \rangle$.

KBD_DELAY="500"

Set the delay after which the automatic key repetition starts. Possible values: 250, 500, 750, and 1000 in milliseconds. Also set the variable $\langle KBD_RATE \rangle$.

KBD_NUMLOCK="bios"

Set this to no and (NumLock) will not be enabled at boot. Other options are yes, "", or bios for BIOS setting.

KBD_SCRLOCK="no"

Enable or disable (ScrollLock).

KBD_CAPSLOCK="no"

Do not enable CapsLock at boot time.

KBD_DISABLE_CAPS_LOCK="no"

Disable (CapsLock) and make it a normal Shift key?

KBD_TTY="tty1 tty2 tty3 tty4 tty5 tty6"

Limit (NumLock), (CapsLock), and (ScrollLock) to certain TTYs. "" means all.

COMPOSETABLE="clear winkeys shiftctrl latin1.add" Compose tables to load. See /usr/share/doc/packages/kbd/ README.SuSE for further details on key tables.

language Settings for language and locale.

RC_LANG="en_US"

Sets variable LANG for locale. This is the default for local users, as long as no $\langle RC_LC_^* \rangle$ variables are used. The respective sysconfig variables are $\langle RC_LC_ALL \rangle$ (overwrites LC_* and LANG), $\langle RC_LC_MESSAGES \rangle$, $\langle RC_LC_CTYPE \rangle$, $\langle RC_LC_MONETARY \rangle$, $\langle RC_LC_NUMERIC \rangle$, $\langle RC_LC_TIME \rangle$, and $\langle RC_LC_COLLATE \rangle$. See Section Local Adjustments — I18N/L10N on page 183.

ROOT_USES_LANG="ctype"

Should locale settings be used for root? ctype means that root uses just (LC_CTYPE) .

locate The locate database allows files on the system to be found quickly. It is usually updated shortly after booting the system.

RUN_UPDATEDB="no"

Should the database for locate (locate) get updated once a day? More detailed configuration of updatedb is possible with the following variables.

RUN_UPDATEDB_AS="nobody"

Specify the user executing updatedb. Default, for security reasons, is nobody.

UPDATEDB_NETPATHS=""

Normally, uptdatedb only scans local hard disks, but can include net paths in the database as well. If you specify directories here, they will be scanned.

UPDATEDB_PRUNEPATHS="/mnt /media/cdrom /tmp /usr/tmp /var/tmp /var/spool /proc /media"

Specify the directories to skip for the daily updatedb runs.

UPDATEDB_NETUSER=""

User, such as nobody, to search net paths.

UPDATEDB_PRUNEFS=""

Specify the type of file systems to exclude from the updatedb runs.

- **1vm** The Logical Volume Manager.
- **mail** Settings for e-mail.

FROM_HEADER=""

From: line defined for the whole system. If "", the FQDN is used. See Section *Domain Name System* on page 238.

MAIL_CREATE_CONFIG="yes"

Set this to no if SuSEconfig should not generate the configuration files (e.g., you want to generate /etc/sendmail.cf yourself). If you want to generate a sendmail configuration /etc/sendmail.cf from parameters given in /etc/sysconfig/sendmail, use yes.

NULLCLIENT=""

A null client is a machine that can only send mail. It receives no mail from the network and it does not deliver any mail locally. A null client typically uses POP or NFS for mailbox access.

SMTPD_LISTEN_REMOTE="no"

Set this to yes if external e-mails should be accepted. This is necessary for any mail server. If set to no or empty, only mails from the local host are accepted.

mouse Mouse settings

MOUSE=""

Specify the interface to which the mouse is connected (e.g., /dev/ ttySO). YaST2 or SuSEconfig sets a link /dev/mouse pointing to the device.

GPM_PROTOCOL=""

The gpm protocol for the mouse device from the variable MOUSE. The default value is defined by YaST2.

GPM_PARAM=" -t \$GPM_PROTOCOL -m \$MOUSE" Default parameters for gpm.

network Directory for network configuration.

network/config Some general settings for network configuration.

DEFAULT_BROADCAST="+"

 $\langle DEFAULT_BROADCAST \rangle$ is read when a $\langle BROADCAST \rangle$ is not set elsewhere. Choose from the following values: "" for no broadcast address, – for $\langle IPADDR \rangle$ without host bits, or + for $\langle IPADDR \rangle$ with all host bits set.

CHECK_FOR_MASTER="yes"

To require an interface (master) to be up before an alias (labeled address) can be set up, set $\langle CHECK_FOR_MASTER \rangle$ to yes. Technically, this is not neccessary, because labeled and unlabeled adresses are equivalent. This setting serves just for the convenience of ifconfig users.

CHECK_DUPLICATE_IP="yes"

If ifup should check if an IP address is already in use, set this to yes. Make sure packet sockets (*(CONFIG_PACKET)*) are supported in the kernel, since this feature uses arping, which depends on that. Also be aware that this takes one second per interface. Consider that when setting up a lot of interfaces.

DEBUG="no"

Switch on and off debug messages for all network configuration scripts. If set to no, most scripts still can enable it locally with -o debug.

USE_SYSLOG="yes"

Should error messages from network configuration scripts go to syslog? If no, stderr is used.

MODIFY_RESOLV_CONF_DYNAMICALLY="yes"

There are some services (ppp, ippp, dhcp-client, pcmcia, and hotplug) that have to change /etc/resolv.conf dynamically at certain times. To prevent these services from changing /etc/resolv. conf at all, set this variable to no. If unsure, leave it at the default, which is yes.

MODIFY_NAMED_CONF_DYNAMICALLY="no"

Like $\langle MODIFY_RESOLV_CONF_DYNAMICALLY \rangle$, except it modifies /etc/named.conf. If unsure, leave it at the default, which is no.

network/dhcp Setting up DHCP (Dynamic Host Configuration Protocol).

Note

To configure one or more interfaces for DHCP configuration, you have to change the (*BOOTPROTO*) variable in /etc/sysconfig/network/ifcfg-<interface> to dhcp (and possibly set (*STARTMODE*) to onboot).

Note –

Most of these options are used only by dhcpcd, not by the ISC dhclient which uses a config file. Most of the options can be overridden by setting them in the ifcfg-* files, too.

DHCLIENT_BIN=""

Which DHCP client should be used? If empty, dhcpcd is tried, then dhclient. Other possible values are dhcpcd for the DHCP client daemon or dhclient for the ISC dhclient.

DHCLIENT_DEBUG="no"

Start in debug mode? Debug info will be logged to /var/log/ messages for dhcpcd or to /var/log/dhclient-script for ISC dhclient.

DHCLIENT_SET_HOSTNAME="no"

Should the DHCP client set the host name? If yes, take care that the host name is not changed during a running X session or the $\langle DISPLAY \rangle$ variable cannot be read anymore. As a consequence, no new windows could be opened.

DHCLIENT_MODIFY_RESOLV_CONF="yes"

Should the DHCP client modify /etc/resolv.conf at all? If not, set this to no. The default is yes. resolv.conf will also stay untouched when (*MODIFY_RESOLV_CONF_DYNAMICALLY*) in /etc/ sysconfig/network/config is set to no.

DHCLIENT_SET_DEFAULT_ROUTE="yes"

Should the DHCP client set a default route (default gateway)? When multiple copies of dhcpcd run, it would make sense that only one of them does it.

DHCLIENT_MODIFY_NTP_CONF="no"

Should the DHCP client modify the NTP configuration? If set to yes, /etc/ntp.conf is rewritten (and restored upon exit). If this is unwanted, set this variable to no. The default is no.

DHCLIENT_MODIFY_NIS_CONF="no"

Should the DHCP client modify the NIS configuration? If set to yes, /etc/yp.conf is rewritten (and restored upon exit). If this is unwanted, set this variable to no. The default is no.

DHCLIENT_SET_DOMAINNAME="yes"

Should the DHCP client set the NIS domain name? (Only valid if the server supplies the nis domain option).

DHCLIENT_KEEP_SEARCHLIST="no"

When writing a new /etc/resolv.conf, should the DHCP client take an existing search list and add it to the one derived from the DHCP server?

DHCLIENT_LEASE_TIME=""

Specifies (in seconds) the lease time suggested to the server. The default is infinite. For a mobile computer, you probably want to set this to a lower value.

DHCLIENT_TIMEOUT="999999"

This setting is only valid for dhcpcd. Specify a time-out in seconds after which dhcpcd terminates if it does not get a reply from the DHCP server.

DHCLIENT_REBOOT_TIMEOUT=""

This setting is only valid for dhcpcd. This time-out controls how long dhcpcd tries to reacquire a previous lease (init-reboot state), before it starts getting a new one.

DHCLIENT_HOSTNAME_OPTION="AUTO"

Specify a string used for the host name option field when dhcpcd sends DHCP messages. By default, the current host name is sent (AUTO), if one is defined in /etc/HOSTNAME. Use this variable to override this with another host name or leave empty not to send a host name.

DHCLIENT_CLIENT_ID=""

Specifies a client identifier string. By default, the hardware address of

217

the network interface is sent as client identifier string, if none is specified here.

DHCLIENT_VENDOR_CLASS_ID=""

Specifies the vendor class identifier string. dhcpcd uses the default vendor class identifier string (system name, system release, and machine type) if it is not specified.

DHCLIENT_RELEASE_BEFORE_QUIT="yes"

Send a $\langle DHCPRELEASE \rangle$ to the server (sign off the address)? This may lead to getting a different address and host name next time an address is requested. However, some servers require it.

DHCLIENT_SLEEP="0"

Some interfaces need time to initialize. Add the latency time in seconds so these can be handled properly. This setting should be made on a per interface basis, rather than here.

STARTMODE=""

(STARTMODE) tells if up when a interface should be set up. Possible values are onboot for an automatic start at boot time, manual when if up is called manually, and hotplug when if up is called by hotplug or pcmcia.

BOOTPROTO=""

With $\langle BOOTPROTO \rangle$, choose between a static configuration with fixed IP addresses or dhcp.

IPADDR=""

Set the IP adress if static configuration is desired.

NETMASK=""

Specify the netmask of your net or subnet.

PREFIXLEN=""

Alternatively, specify the prefix length.

NETWORK=""

Specify the address of your network.

BROADCAST=""

Enter the broadcast address of your network.

network/ifcfg-lo The loopback device.

network/wireless Configuring wireless LANs. Use the YaST2 network
 modules.

news Settings for access to NNTP servers.

ORGANIZATION=""

The text entered here will appear in every news posting sent from this machine.

NNTPSERVER="news"

Address of the news server. If you receive news via UUCP and they are locally stored, set this variable to localhost.

nfs NFS server. The daemons rpc.nfsd and rpc.mountd are started simultaneously.

REEXPORT_NFS="no"

Set this variable to yes to reexport mounted NFS directories or Net-Ware volumes.

onlineupdate Settings for YaST2 Online Update.

YAST2_LOADFTPSERVER="yes"

When starting YOU (YaST2 Online Update), should the default FTP server list be updated via a call from wget to www.suse.de? This list is stored under /etc/suseservers. Set the variable to no if you do not want to reload the FTP server list.

PROXY_USER=""

Users of the proxy.

PROXY_PASSWORD=""

Password for the proxy.

pcmcia PCMCIA System and PC Cards.

PCMCIA_SYSTEM="kernel"

Set the variable to external or kernel. If only one of these systems is installed, this variable will be ignored.

PCMCIA_PCIC=""

Specify socket driver for the selected pcmcia system. Possible values are i82365 or tcic for external pcmcia system or yenta_socket, i82365, or tcic for kernel pcmcia. If it is left empty, the start script will try to determine the correct driver or use a reasonable default.

PCMCIA_PCIC_OPTS=""

Socket driver timing parameters. These parameters are described in man page i82365 (or man tcic).

PCMCIA_CORE_OPTS=""

pcmcia_core options as described in man pcmcia_core. For more information, look for "CORE_OPTS" in the PCMCIA-HOWTO under /usr/doc/packages/pcmcia.

postfix Configuring postfix. Use the YaST2 mail module for this.

postgresql PostgreSQL.

POSTGRES_DATADIR="~postgres/data"

Specify the directory in which the PostgreSQL database is to reside.

POSTGRES_OPTIONS=""

Specify the options given to the PostgreSQL master daemon on startup. See the manual pages for postmoster and postgres for valid options. Do not put -D datadir here since it is set by the start-up script based on the variable (*POSTGRES_DATADIR*) above.

powermanagement apmd.

APMD_WARN_LEVEL="10"

If you like to be warned when battery capacity goes below a certain level, you can set this level here in percent of maximum battery capacity. Set it to 0 to switch this and the following three options off. Default value is 10.

APMD_WARN_ALL="no"

For apmd warnings to be sent to all terminals, set this to yes. Otherwise the warnings will be logged in your syslog file. Default is no.

APMD_WARN_STEP="0"

This warning can be repeated every time the capacity has decreased by $\langle WARN_STEP \rangle \%$ of the maximum battery capacity. 0 means off. Default is 0.

APMD_CHECK_TIME="0"

By default apmd checks the battery status every time it receives an event from the BIOS. For it to be checked more often, set it to a value greater than 0 seconds. Note that this will wake up your disk at every check. Default value is 0.

APMD_DEBUG="no"

Make apmd and the apmd_proxy-script more verbose. Set this variable to yes to see when and how apmd_proxy is called. To see everything printed to stdout and stderr within apmd_proxy, set it to error. If you are interested in every single command within apmd_proxy, set it to all. Anything but no makes apmd itself verbose. Default value is no.

APMD_ADJUST_DISK_PERF="no"

For saving power, you should let your hard disk spin down after an idle time. That is not needed when on wall power. Set $\langle ADJUST_DISK_PERF \rangle$ to yes if apmd should check this. Note that

this does not help much if any process (like an text editor) writes frequently to your disk. Default value is no.

APMD_BATTERY_DISK_TIMEOUT="12"

Specify the time-out for your disk to be spun down when on battery. As this time-out is not just a matter of minutes or seconds, refer to the man page for hdparm (man hdparm). This option will only be valid if $\langle ADJUST_DISK_PERF \rangle$ has been set to yes. The default setting here is 12, which equals a time-out of one minute.

APMD_AC_DISK_TIMEOUT="0"

See $\langle BATTERY_DISK_TIMEOUT \rangle$, only that this setting concerns AC power. Default value is 0 for no spindown.

APMD_BATTERY_LOW_SHUTDOWN="0"

When the battery capacity becomes very low, some laptop BIOSes send a "battery low" message. You can then let your machine shut down a few minutes later. Set the number of minutes here. The minumum is 1 minute. A value of 0 switches off this behavior. The default value is 0.

APMD_SET_CLOCK_ON_RESUME="no"

If you have problems with wrong time settings after a standby or suspend, set $\langle SET_CLOCK_ON_RESUME \rangle$ to yes. The kernel time will be set according to the value stored in the GMT variable. Default is no.

APMD_SUSPEND_ON_AC="yes"

Set $\langle SUSPEND_ON_AC \rangle$ to no to avoid suspend and standby events when your machine is connected to AC power. By default, suspends can occur on either battery or AC power. A suspend requested by the user is executed anyway.

APMD_PCMCIA_SUSPEND_ON_SUSPEND="no"

If PCMCIA is compiled with APM support, cards are normally suspended before your system suspends. If you do not have APM support in PCMCIA, you can let apmd do this job. Default is no.

APMD_PCMCIA_EJECT_ON_SUSPEND="no"

PCMCIA cards can be more or less amenable to an APM suspend event. If you have a card that cannot be suspended properly (such as a SCSI card), it should be "ejected" before entering suspend mode. The cards are not physically ejected. Rather, the power to them is turned off via the cardctl eject command and is reactivated upon resume. Default value is no.

APMD_INTERFACES_TO_STOP=""

If you have a built-in NIC that does not survive a suspend and resume cycle properly, add the interface name to this variable. It will then be shut down before suspend and brought up after resume. Default is "".

APMD_INTERFACES_TO_UNLOAD=""

If it does not help to shut down the network interface via (*APMD_INTERFACES_TO_STOP*), unload the module driving your NIC at suspend and restart the network at resume.

APMD_LEAVE_X_BEFORE_SUSPEND="no"

If your graphic device is not able to return properly from suspend, switch to text console before suspend and return to your X console after resume. Default is no.

APMD_LEAVE_X_BEFORE_STANDBY="no"

Sometime, it is needed for standby. Default is no.

APMD_LOCK_X_ON_SUSPEND="no"

If you like apmd to lock your screen before suspend, set this variable to yes. If only one X server is running and no one is logged in at any virtual terminal, this can be considered a safe state. Together with an encrypted partition for your data, no one can access your data when your laptop is in this state. Default is no.

APMD_STOP_SOUND_BEFORE_SUSPEND="no"

Sometimes the sound modules do not survive a suspend and resume cycle. In this case, everything seems to be OK, but you cannot hear anything. To avoid this, the sound modules can be unloaded before suspend. A reload of these modules will only be done if you use ALSA or OSS. If you use modules from the kernel, they will be reloaded automatically. If you like that, set $\langle APMD_STOP_SOUND_BEFORE_SUSPEND \rangle$ to alsa, oss or kernel, depending on what type of sound system you are using. To unload all sound modules succesfully, all sound applications that are currently using some of them must be killed. Default value is no.

APMD_KBD_RATE=""

It might be neccessary to reset the key repetition rate and delay. You can set the variables to any numeric value. The program kbdrate will select the nearest possible values to these specified. To use the default values, just leave the variable empty. Default for both is "".

APMD_KBD_DELAY=""

APMD_TURN_OFF_IDEDMA_BEFORE_SUSPEND=""

There are some notebooks that do not resume properly from suspend when the hard disk was in DMA mode. Add every disk here that needs DMA turned off. For /dev/hda, set it to hda. Several disks are seperated by spaces. Default is "".

printer Printer

DEFAULT PRINTER="1p"

Name of the printer queue used when lpr is invoked with no -P.

proxy Proxy settings

HTTP_PROXY=""

Some programs (e.g., lynx, arena, or wget) use a proxy server if this environment variable is set. SuSEconfig will set it in /etc/ SuSEconfig/*. Example: "http://proxy.provider.com:3128/"

FTP_PROXY=""

Proxy for FTP. Example: "http://proxy.provider.com:3128/" .

NO PROXY="localhost"

Exclude domains or subdomains from proxy use. Example: "www.me.de, do.main, localhost" .

security Settings for system security

CHECK PERMISSIONS="set"

Should SuSEconfig check file permissions using /etc/permissions? Value set will correct false settings. warn produces warnings. Disable this feature with no.

PERMISSION SECURITY="easy local"

In /etc/permissions.paranoid, /etc/permissions.secure, and /etc/permissions.easy, three security levels are predefined. Enter easy, secure, or paranoid. If you select paranoid, some system sevices might not be available anymore. Explicitly enable them, if needed.

sendmail sendmail variables. Use the YaST2 mail module for configuration.

sound Sound configuration.

LOAD SEQUENCER="yes"

Load ALSA sequencer modules at boot? Sequencer modules are necessary only for handling MIDI devices. If you do not need MIDI, disable this option. The modules can also be loaded automatically later if they are needed.

ssh Before starting the "Secure Shell Daemon", make sure a "host key" exists. Consult the documentation in /usr/share/doc/packages/ssh and the manual pages.

SSHD_OPTS=""

Options for sshd.

suseconfig Settings for SuSEconfig.

ENABLE_SUSECONFIG="yes"

Decide whether SuSEconfig should take care of updating the configuration. Do not disable SuSEconfig if you want to consult our Installation Support.

MAIL_REPORTS_TO="root"

Select the user to which SuSEconfig should send e-mail reports created during the automatic system administration.

MAIL_LEVEL="warn"

Set the variable to warn if only important messages should be sent. Set it to all if the log files should be mailed, too.

CREATE_INFO_DIR="yes"

Set the variable to yes if a perl script should be used to generate the file /usr/share/info/dir automatically. This file is the index for all info pages.

CHECK_ETC_HOSTS="yes"

Defines whether SuSEconfig should check and modify /etc/hosts.

BEAUTIFY_ETC_HOSTS="no"

Should /etc/hosts be sorted by SuSEconfig?

SORT_PASSWD_BY_UID="no"

If this variable is set to yes, SuSEconfig sorts your /etc/passwd and /etc/group by "uid" and "gid".

CWD_IN_ROOT_PATH="no"

Should the current working directory (".") be in the path of user root? For security reasons, this is not recommended. This setting is valid for all users with a "UID" below 100 (system users).

CWD_IN_USER_PATH="yes"

Should the current working directory (".") be in the path for normal users?

CREATE_PERLLOCAL_POD="yes" May SuSEconfig modify your perllocal.pod?

UPDATE_GROFF_CONF="yes" Update DESC to get page sizes correct?

GROFF_PAGESIZE=""

If the correct page size cannot be found in your printcap, this variable can be set to the following values: letter, legal, a4, or b5, supported by both groff and ghostscript

sysctl System control at the kernel level

IP DYNIP="no"

Enable the "dynamic IP patch" at boot?

IP TCP SYNCOOKIES="yes"

Enable "syn flood protection"? See /usr/src/linux/ Documentation/Configure.help.

IP FORWARD="no"

If the host is supposed to forward to two network interfaces, set this variable to yes. This is usually applicable for routers or "masquerading". The script /etc/init.d/boot.proc enables IP forwarding with an entry in the /proc file system.

ENABLE SYSRQ="no"

If you set this to yes, you will have some control over the system even if it crashes, for example, during kernel debugging. Consult /usr/src/linux/Documentation/sysrg.txt for further information.

DISABLE ECN="yes"

If you have trouble connecting to some machines on the Internet with your 2.4 kernel but there are no problems with 2.2, this may be due to broken firewalls dropping network packets with the ECN (early congestion notification) flag set. Set this to yes to disable ECN at boot.

BOOT_SPLASH="yes"

Set to no to turn off the splash screen on console 1 at boot (after kernel load).

syslog Configuring the syslog daemon.

SYSLOGD_ADDITIONAL_SOCKET_DHCP="/var/lib/dhcp/dev/log" The contents of this variable are added by the dhcp-server package. The file name mentioned here is added using -a <filename> as an additional socket via (SYSLOGD_PARAMS) when syslogd is started. This additional socket is needed in case syslogd is restarted. Otherwise, a chrooted dhcpd will not be able to continue logging.

KERNEL LOGLEVEL="1"

Default log level for klogd.

SYSLOGD PARAMS=""

Parameters for syslogd, for example, -r -s my.domain.com.

syslog-ng Configuring syslog-ng.

SYSLOG NG REPLACE="yes"

Replace the default syslog daemon? If set to no, syslog-ng will be started in addition to syslog.

SYSLOG_NG_PARAMS=""

Parameters for syslog-ng. Refer to man 8 syslog-ng for details.

tetex T_EX/LAT_EX.

CLEAR_TEXMF_FONTS="no"

The automatic font generation of the TeX or LaTeX systems locate the bitmap font into the directory /var/cache/fonts/. If (*CLEAR_TEXMF_FONTS*) is set to yes, this directory will be cleared of fonts not used in the last twenty days.

windowmanager Window manager.

DEFAULT_WM="kde"

Here, set the default window manager, such as kde, gnome, or fvwm.

INSTALL_DESKTOP_EXTENSIONS="yes"

Install the SuSE extensions for new users (theme and additional functions).

KDM_SHUTDOWN="auto"

Specifies the users allowed to shut down or reboot the computer via kdm. Possible settings: root, all, none, local, and auto.

KDE_USE_FAM="no"

Should KDE use the fam daemon? It only makes sense on NFS mounted directories.

KDE_USE_FAST_MALLOC="no"

Use the improved malloc?

SUSEWM_UPDATE="yes"

Should SuSEconfig.wm create system-wide configuration files for the window managers?

SUSEWM_WM="all"

Space-separated list of window managers for which configuration files should be generated. Valid values are fvwm, fvwm2, fvwm95, bowman, mwm, ctwm, kwm, and all.

SUSEWM_XPM="yes"

Set $(SUSEWM_XPM)$ to yes for pixmaps in menus. The package 3dpixms must be installed.

xdmsc Using X terminals.

START_RX="no"

First, edit /etc/inittab to remove the comment from the line with /sbin/init.d/rx. Then $\langle RX_XDMCP \rangle$ and $\langle RX_RHOST \rangle$ must be set. Finally, set $\langle START_RX \rangle$ to yes to have an X terminal.

RX XDMCP="broadcast"

xdm control protocol: guery, indirect, or broadcast. For guery or indirect, set $\langle RX_RHOST \rangle$.

RX RHOST=""

xdm host, necessary if $\langle RX_XDMCP \rangle$ is set to query or indirect.

RX DSP=""

Optional DISPLAY number, such as :1 or :2. Default is DISPLAY :0.

RX BPP=""

Optional color depth of the local X server.

RX CLASS=""

This is an optional class name for naming a resource class in remote xdm configuration.

xntp Starts the "Network Time Protocol (NTP) Daemon" of package xntp. Configuration is done in file /etc/ntp.conf.

XNTPD INITIAL NTPDATE="AUTO-2"

A space-separated list of NTP servers to query for current time and date before the local xntpd is started, for example, "sun.cosmos.com". Set the value AUTO to query all servers and peers configured in /etc/ ntpd.conf. The new default value is AUTO-2, which will query only the first two servers listed in /etc/ntpd.conf.

Radio and modem clocks have addresses in the form 127.127.T.U. where T is the clock type and U is a unit number in the range 0–3. Most of these clocks require a serial port or special bus peripheral. The particular device is normally specified by adding a soft link from /dev/device-U to the particular hardware device involved, where U correspond to the unit number above. See /usr/share/doc/ packages/xntp/html/refclock.htm.

ypbind Configuration of an NIS client. Additional information: The domain name is set in /etc/defaultdomain. The server name will be entered in /etc/yp.conf directly during configuration with YaST2.

YPBIND_OPTIONS=""

Extra options for ypbind.

YPBIND LOCAL ONLY="no"

If this option is set, ypbind will only bind to the loopback interface and remote hosts cannot query it.

YPBIND BROADCAST="no"

If this option is set to yes, ypbind will ignore /etc/yp.conf and use a broadcast call to find a NIS server in the local subnet. Avoid using this, as it is a big security risk.

YPBIND_BROKEN_SERVER="no"

Set this to yes if you have a NIS server in your network, which binds only to high ports over 1024. Since this is a security risk, you should consider replacing the NIS server with another implementation.

ypserv Configuration of an NIS server.

YPPWD_SRCDIR="/etc"

Specify the YP source directory where YP will search the source files for the passwd and group tables. Default is /etc

YPPWD_CHFN="no"

Should a user be allowed to change his GECOS field using ypchfn?

YPPWD_CHSH="no"

Should the user be allowed to change his default login shell using ypchsh?

zope Configuration of ZOPE systems.

ZOPE_FTP="yes"

Should Zope be accessible via FTP?

ZOPE_FTP_PORT="8021" If so, on which port?

ZOPE HTTP PORT="8080"

If you run Zope as a stand-alone server, which port should it occupy?

Part III

Networking

10 Linux in the Network

Linux in the Network

Linux, really a child of the Internet, offers all the necessary networking tools and features for integration into all types of network structures. An introduction into the customary Linux protocol, TCP/IP, follows. The various services and special features of this protocol are discussed. Network access using a network card can be configured with YaST2. The central configuration files are discussed and some of the most essential tools described. Only the fundamental mechanisms and the relevant network configuration files are discussed in this chapter.

TCP/IP — The Protocol Used by Linux	232
IPv6 — The Next Generation's Internet	240
Network Integration	245
Manual Network Configuration	247
Routing in SuSE Linux Enterprise Server	254
DNS — Domain Name Service	256
NIS — Network Information Service	266
NFS — Shared File Systems	270
DHCP	274

TCP/IP — The Protocol Used by Linux

Linux and other Unix operating systems use the TCP/IP protocol. It not a single network protocol, but a family of network protocols that offer various services. TCP/IP was developed based on an application used for military purposes and was defined in its present form in an RFC in 1981. RFC stands for "Request for Comments". They are documents that describe various Internet protocols and implementation procedures for the operating system and its applications. Since then, the TCP/IP protocol has been refined, but the basic protocol has remained virtually unchanged.

- Tip

The RFC documents describe the setup of Internet protocols. To expand your knowledge about any of the protocols, the appropriate RFC document is the right place to start: http://www.ietf.org/rfc.html

Tip -

The services listed in Table 10.1 are provided for the purpose of exchanging data between two Linux machines via TCP/IP. Networks, combined by TCP/IP, comprising a world-wide network are also referred to, in their entirety, as "the Internet."

- TCP Transmission Control Protocol: A connection-oriented secure protocol. The data to transmit is first sent by the application as a stream of data then converted by the operating system to the appropriate format. The data arrives at the respective application on the destination host in the original data stream format in which it was initially sent. TCP determines whether any data has been lost during the transmission and that there is no mix-up. TCP is implemented wherever the data sequence matters.
- UDP User Datagram Protocol: A connectionless, insecure protocol. The data to transmit is sent in the form of packets already generated by the application. The order in which the data arrives at the recipient is not guaranteed and data loss is a possibility. UDP is suitable for recordoriented applications. It features a smaller latency period than TCP.

Table 10.1: continued overleaf...

- ICMP Internet Control Message Protocol: Essentially, this is not a user-friendly protocol, but a special control protocol that issues error reports and can control the behavior of machines participating in TCP/IP data transfer. In addition, a special echo mode is provided by ICMP that can be viewed using the program ping.
- IGMP Internet Group Management Protocol: This protocol controls the machine behavior when implementing IP multicast. The following sections do not contain more infomation regarding IP multicasting, because of space limitations.

Table 10.1: Several Protocols in the TCP/IP Protocol Family

Almost all hardware protocols work on a packet-oriented basis. The data to transmit is packaged in "bundles", as it cannot be sent all at once. This is why TCP/IP only works with small data packets. The maximum size of a TCP/IP packet is approximately sixty-four kilobytes. The packets are normally quite a bit smaller, as the network software can be a limiting factor. The maximum size of a data packet on an ethernet is about fifteen hundred bytes. The size of a TCP/IP packet is limited to this amount when the data is sent over an ethernet. If more data is transferred, more data packets need to be sent by the operating system.

Layer Model

IP (Internet Protocol) is where the insecure data transfer takes place. TCP (Transmission Control Protocol), to a certain extent, is simply the upper layer for the IP platform serving to guarantee secure data transfer. The IP layer itself is, in turn, supported by the bottom layer, the hardware-dependent protocol, such as ethernet. Professionals refer to this structure as the "layer model". See Figure 10.1 on the following page.

The diagram provides one or two examples for each layer. As you can see, the layers are ordered according to "degrees of abstraction". The bottommost layer is very close to the hardware. The uppermost layer, however, is almost a complete abstraction of the hardware. Every layer has its own special function, clarified in the following.

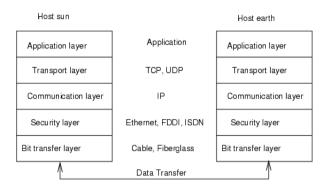


Figure 10.1: Simplified Layer Model for TCP/IP

The special functions of each layer are already implicit in their description. For example, the network used (e.g., ethernet) is depicted by the bit transfer and security layers.

- While layer 1 deals with cable types, signal forms, signal codes, and the like, layer 2 is responsible for accessing procedures (which host may send data?) and correcting errors. Layer 1 is called the bit transfer layer. Layer 2 is called security layer
- Layer 3 is the communication layer and is responsible for remote data transfer. The network layer ensures that the data arrives at the correct remote recipient and can be delivered.
- Layer 4, the transport layer, is responsible for application data. The transport layer ensures the data arrives in the correct order and none is lost. The security layer is only there to make sure that the data that has arrived is correct. The transport layer protects data from being lost.
- Finally, layer 5 is the layer where data is processed by the application itself.

For every layer to serve its designated function, additional information regarding each layer must be saved in the data packet. This takes place in the header of the packet. Every layer attaches a small block of data, called the protocol header, to the front of each emerging packet. A sample TCP/IP data packet travelling over an ethernet cable is illustrated in Figure 10.2 on the next page.

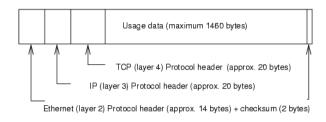


Figure 10.2: TCP/IP Ethernet Packet

The proof sum is located at the end of the packet, not at the beginning. This simplifies things for the network hardware. The largest amount of usage data possible in one packet is 1460 bytes in an ethernet network.

When an application sends data over the network, the data passes through each layer, all implemented in the Linux kernel except layer 1: network card. Each layer is responsible for preparing the data so it can be passed to the next layer below. The lowest layer is ultimately responsible for sending the data.

The entire procedure is reversed when data is received. Like the layers of an onion, in each layer the protocol headers are removed from the usage data. Finally, layer 4 is responsible for making the data available for use by the applications at the destination.

In this manner, one layer only commicates with the layer directly above or below it. For applications, it is irrelevant whether data is being transmitted via a 100 MBit/s FDDI network or via a 56-kbit/s modem line. Likewise, it is also irrelevant for the data transfer what data is being sent, as long as it has been properly compressed.

IP Addresses and Routing

IP Addresses

Every computer on the Internet has a unique 32-bit address. These 32 bits (or 4 bytes) are normally written as illustrated in the second row in Table 10.2 on the following page. In decimal form, the four bytes are written in the decimal number system, separated by periods. The IP address is assigned to a host or a network interface. It cannot be used anywhere else in the world. There are certainly exceptions to this rule, but these play a minimal role in the following passages.

IP Adress (binary):	11000000	10101000	00000000	00010100
IP Adress (decimal):	192	. 168.	. 0.	. 20

Table 10.2: How an IP Address is Written

The ethernet card itself has its own unique address: the MAC (media access control) address. It is 48 bits long, internationally unique, and is programmed into the hardware by the network card vendor. There is, however, an unfortunate disadvantage of vendor-assigned addresses — the MAC addresses do not make up a hierarchical system, but are instead more or less randomly distributed. Therefore, they cannot be used for addressing remote machines. The MAC address plays an important role in communication between hosts in a local network and is the main component of the protocol header from layer 2.

The points in IP addresses indicate the hierarchical system. Until the 1990s, the IP addresses were strictly categorized in classes. However, this system has proven to be too inflexible and therefore was discontinued. Now, "classless routing" (or CIDR, Classless Inter Domain Routing) is used.

Netmasks and Routing

Netmasks were conceived for the purpose of informing the host with the IP address 192.168.0.20 of the location of the host with the IP address 192.168.0.1. To put it simply, the netmask on a host with an IP address defines what is "internal" and what is "external". Hosts located "internally" (professionals say, "in the same subnetwork") respond directly. Hosts located "externally" ("not in the same subnetwork") only respond via a gateway or router. Since every network interface can receive its own IP address, it can get quite complicated.

Before a network packet is sent, the following runs on the computer: the IP address is linked to the netmask via a logical AND, the address of the sending host is likewise connected to the netmask via the logical AND. If there are several network interfaces available, normally all possible sender addresses will be verified. The results of the AND links will be compared. If there are no discrepancies in this comparison, the destination, or receiving host, is located in the same subnetwork. Otherwise, it will have to be accessed via a gateway. That means that the more "1" bits are located in the netmask, the fewer hosts can be accessed directly and the more hosts can be reached via a gateway. Several examples are illustrated in Table 10.3 on the next page.

237

	binary representation
IP address:192.168.0.20	11000000 10101000 00000000 00010100
Netmask: 255.255.255.0	11111111 1111111 11111111 00000000
Result of the link	11000000 10101000 0000000 00000000
In the decimal system	192. 168. O. O
IP address: 213.95.15.200	11010101 10111111 00001111 11001000
Netmask: 255.255.255.0	11111111 1111111 11111111 00000000
Result of the link	11010101 10111111 00001111 00000000
In the decimal system	213. 95. 15. 0
Result of the link In the decimal system IP address: 213.95.15.200 Netmask: 255.255.255.0 Result of the link	11000000 10101000 00000000 00000000 192. 168. 0. 0 11010101 10111111 00001111 11001000 1111111 1111111 1111111 00000000 11010101 10111111 00000000

Table 10.3: Linking IP Addresses to the Netmask

The netmasks appear, like IP addresses, in decimal form divided by periods. Since the netmask is also a 32-bit value, four number values are written next to each other. Which hosts are gateways or which address domains are accessible over which network interfaces must be entered in the user configurations.

To give another example: all machines connected with the same ethernet cable are usually located in the *same subnetwork* and are directly accessible. When the ethernet is divided by switches or bridges, these hosts can still be reached.

However, the economical ethernet is not suitable for covering larger distances. You will have to transfer the IP packets to another hardware (e.g., FDDI or ISDN). Devices for this transfer are called routers or gateways. A Linux machine can carry out this task. The respective option is referred to as ip_forwarding.

If a gateway has been configured, the IP packet will be sent to the appropriate gateway. This will then attempt to forward the packet in the same manner, from host to host, until it reaches the destination host or the packet's TTL (time to live) has expired.

The base network address	This is the netmask AND any address in
	the network, as shown in Table 10.3 under
	Result. This address cannot be assigned to
	any hosts.

Table 10.4: continued overleaf...

The broadcast address	Basically says, "Access all hosts in this sub- network". To generate this, the netmask is inverted in binary form and linked to the base network address with a logical OR. The above example therefore results in 192.168.0.255. This address cannot be assigned to any hosts.
The local host	The address 127.0.0.1 is strictly assigned to the "loopback device" on each host. A connection can be set up to your own ma- chine with this address.

Table 10.4: Specific Addresses

Since IP addresses must be unique all over the world, you cannot just come up with your own random addresses. There are three address domains to use to set up a private IP-based network. With these, you cannot set up any connections to the rest of the Internet, unless you apply certain tricks, because these addresses cannot be transmitted over the Internet. These address domains are specified in RFC 1597 and listed in Table 10.5.

Network, Netmask	Domain
10.0.0., 255.0.0.0	10.x.x.x
172.16.0.0, 255.240.0.0	172.16.x.x - 172.31.x.x
192.168.0.0, 255.255.0.0	192.168.x.x

Table 10.5: Private IP Address Domains

Domain Name System

DNS

DNS serves to alleviate the burden of having to remember IP addresses: DNS assists in assigning an IP address to one or more names and, vice versa, assigning a name to an IP address. In Linux, this conversion is usually carried out by a special type of software known as bind. The machine that takes care of this conversion is called a name server.

The names make up a hierarchical system whereby each name component is divided by points. The name hierarchy is, however, independent of the IP address hierarchy described above.

Examine a complete name like laurent.suse.de. This is written in the format *host.domain*. A full name, referred to by experts as a "fully qualified domain name" or FQDN for short, consists of a host name and a domain name (*suse.de*), including the top level domain or TLD (*de*).

TLD assignment has become, for historical reasons, quite confusing. For instance, three-letter domain names are used in the USA. In the rest of the world, the two-letter ISO national codes are the standard.

In the early days of the Internet (before 1990), there was a file /etc/hosts for the purpose of storing the names of all the machines represented over the Internet. This quickly proved to be impractical in the face of the rapidly growing number of computers connected to the Internet. For this reason, a decentralized database was developed to store the host names in a widely distributed manner. This database, similar to the name server, does not have the data pertaining to all hosts in the Internet readily available, but can dispatch requests to other name servers.

The top of the hierarchy is occupied by "root name servers". These root name servers manage the top level domains. The root name servers are managed by the Network Information Center, or NIC for short. The root name server recognizes the name servers responsible for each top level domain. More information about top level domain NICs is available at http://www.internic.net.

For your machine to resolve an IP address, it has to recognize at least one name server with an IP address. Configure a name server with the help of YaST2. If you have a modem dial-up connection, you may not have to manually configure a name server at all. The dial-up protocol provides the name server address as the connection is being made.

DNS can do more than just resolve host names. The name server also "knows" which host is receiving e-mails for an entire domain, the mail exchanger (MX). The configuration of name server access with SuSE Linux Enterprise Server is described in Section *DNS* — *Domain Name Service* on page 256.

whois

Closely related to DNS is the protocol whois. With this program, you can quickly find out who is responsible for any given domain.

IPv6 — The Next Generation's Internet

A New Internet Protocol

Due to the emergence of the WWW (World Wide Web), the Internet has experienced explosive growth with an increasing number of computers communicating via TCP/IP in the last ten years. Since Tim Berners-Lee at CERN (http://public.web.cern.ch/) invented the WWW in 1990, the number of Internet hosts has grown from a few thousand to about 100 million.

An IP address "only" consists of 32 bits. Since quite a few IP addresses cannot be used due to organizational circumstances, many IP addresses are lost. The Internet is divided into subnetworks. The number of addresses available in your subnet is the number of bits squared minus two. A subnetwork has, for example, two, six, or fourteen addresses available. To connect 128 hosts to the Internet, for instance, you will need a "Class C" subnetwork with 256 IP addresses, from which only 254 are usable. Two IP addresses are subtracted from the subnetwork — the broadcast address and the base network address.

Configuring a host in the TCP/IP network is relatively complicated. As you have already seen, you will have to configure the following items on your host: IP address, subnetmask, gateway address (if available), and a name server. You will already have to know this information or receive it from your provider.

Every IP packet contains a proof total that verifies each routing procedure and will have to be recalculated. This is why very fast routers require a lot of processor performance and are more expensive.

Some services have previously been implemented using broadcasts (for example, the Windows network protocol SMB). Hosts for which this service is irrelevant are, however, forced to process the packets and subsequently ignore them. This could lead to problems in high-speed networks.

The successor of the previous IP, IPv6, is a solution to all these problems. The main goal of its development was to expand significantly the rather limited address space, to simplify the configuration of workstations, and to automate them when possible. In this section, IPv4 or IP will be mentioned in reference to the Internet protocol currently used and IPv6 in reference to the new version 6.

IPv6 is defined in more detail in RFC 1752. IPv6 uses 128-bit addresses so features quadrillions of IP addresses, enough for even more general address distribution. This enormous amount of IPv6 addresses allows you to "enlarge" even the smallest subnetwork to 48 bits.

This enables you, then, to utilize the above mentioned MAC address as an address component. As this address is entirely unique and is strictly defined by the hardware vendor, this will make your host configuration a lot easier. In reality, an EUI-64 token will be consolidated down to the first 64 bits. In doing so, the last 48 bits of the MAC address will be removed and the remaining 24 bits will contain special information on the token type. This also enables the assignment of an EUI-64 token to devices without a MAC address (PPP and ISDN connections).

Furthermore, there has been a new development in IPv6: normally, several IP addresses are assigned to a network interface. This has the advantage that different networks can be made accessible. One of them can be turned into an automatically configured network. Specify the MAC address of the network card and a prefix and you will not have to configure anything else. All hosts in the local network will be accessible right after starting IPv6 ("link-local address").

Moreover, the remaining configuration tasks on a workstation can be carried out automatically to a greater extent. There is a special protocol for this purpose with which workstations can receive an IP address from a router.

All IPv6 supported hosts absolutely require "multicast" support. Multicast can aid several hosts in being accessible at the same time — they do not all have to be set to ("broadcast") or only one to ("unicast"), but, rather, a pair. Which of them that is depends on the application. However, a pair of well-defined multicast groups exists as well, for example, "all name servers multicast group" or "all routers multicast group."

As updating all hosts in the Internet from IPv4 to IPv6 is in no way feasible, there is a compatibility mode. This maps the previous addresses to IPv6 addresses. At the same time, there are mechanisms such as "tunneling" — here, IPv6 packets are sent in the form of IPv4 packets. Of course, it is also possible to convert IPv6 to IPv4. To reach an IPv6 host from a IPv4 host, the IPv6 host absolutely has to have a IPv4 compatibility address.

Structure of an IPv6 Address

An IPv6 address, conditional upon 128 bits, is significantly longer than an IPv4 address with its 32 bits. An IPv6 address is consequently 16 bytes long. Due to the size factor, the new IPv6 addresses are written in a different format than the IPv4 addresses used previously. Look at the examples in Table 10.6 on the next page.

As you can see in the table, IPv6 addresses are represented by hexadecimal numbers. The hexadecimal numbers are represented in two-byte segements separated by a colon. Therefore, there can only be a maximum of eight

Local host	::1
IPv4-compatible IPv6 address	::10.10.11.102
	(IPv6 supported)
IPv4-mapped IPv6 address	::ffff:10.10.11.102
	(IPv6 is not supported)
random address	3ffe:400:10:100:200:c0ff:fed0:a4c3
Link-local address	fe80::10:1000:1a4
Site-local address	fec0:1:1:0:210:10ff:fe00:1a4
Multicast group	ff02:0:0:0:0:0:0:2
"All link-local routers"	

Table 10.6: Representation of Various IPv6 Addresses

groups and seven colons in one address. Zero-bytes in front of a group can be omitted, but not if these are in the middle or at the end of a group. More than four zero-bytes following one another can be skipped by the omission character ::. However, only one omission character is allowed in one address. This omission procedure is technically referred to as "collapsing". IPv4 compatibility addresses are a specific example of collapsing: here, the IPv4 address is simply attached to the predefined prefix for IPv4 compatibility addresses.

Every part of an IPv6 address has a set meaning. The first bytes comprise a prefix and specify the address type. The middle portion addresses a network or has no meaning. The last part of the address comprises the host segment. Table 10.7 on the facing page explains the meaning of some of the more common prefixes.

Prefix (hexadecimal) 00	Usage IPv4 and IPv4 via IPv6 compatibility addresses.
	This is an IPv4-compatible address. The IPv6
	packet will still need to be converted to an IPv4
	packet via an appropriate router. Further special
	addresses (e.g., loopback devices) are likewise
	designated this prefix.
First digit 2 or 3	provider-based unicast addresses. As in the previ- ous example, you can be designated a subnetwork in IPv6 from a provider.

Table 10.7: continued overleaf...

10
Linux in the Network

fe80 to febf	link-local addresses with this prefix cannot be routed and, therefore, cannot be accessed in the same subnetwork.
fec0 to feff	site-local. These addresses can be routed, but only internally within an organization. In this way, these addresses correspond to the previous "pri-
ff	vate" networks (for example, 10.x.x.x). multicast IPv6 addresses beginning with ff are multicast addresses.

Table 10.7: Various IPv6 Prefixes

As you can already see above, special unicast addresses can get quite long. These can no longer simply be memorized. A functional name server is therefore even more important for IPv6 than for IPv4. Name servers are so important that there is even an autoconfiguration protocol for them.

IPv6 Netmasks

Netmasks are represented by IPv6 in a slightly different way. The categorization of networks in classes is no longer practical, since classless routing is used from the beginning and the small subnetwork can already take up any number of hosts. Since netmasks would get quite long if written out in the previous manner, they will now be written in an entirely different format. The format

fec0:1:1:0:210:10ff:fe00:1a4/64

indicates that the last 64 bits make up the host segment and the first 64 bits are the network segment.

To be more precise, the 64 means that the netmask is filled up, as indicated at left, with 1 bits. Therefore, there are 64 one-bits in the netmask. As in IPv4, linking the netmask with the IP address with the logical AND defines whether a host is located in the same or in a different subnetwork.

For More Information About IPv6

Of course, the above overview cannot and is not intended to be a comprehensive introduction to the very extensive topic of IPv6. For a more in-depth introduction in IPv6, refer to http://www.ipv6.org/.

Network Integration

Currently TCP/IP is the standard network protocol. All modern operating systems can communicate via TCP/IP. Nevertheless, Linux also supports other network protocols, such as IPX (previously) implemented by Novell Netware or Appletalk used by Macintosh machines. Only the integration of a Linux machine into a TCP/IP network is discussed here. To integrate "exotic" arcnet, token rings, or FDDI network cards, refer to the kernel sources documentation at /usr/src/linux/Documentation. For information about network configuration changes made in SuSE Linux Enterprise Server version 8.0, read the file /usr/share/doc/packages/sysconfig/README.

Preparing

The machine has to have a supported network card. Normally, the network card will already be recognized during installation and the appropriate driver mounted. See if your card has been integrated properly by entering the command ifstatus eth0. The output should show the status of the network device eth0.

Tip

If the kernel support for the network card is implemented as a module, as is usually the case with the SuSE kernel, the name of the module will have to be entered as an alias in /etc/modules.conf. For example, for the first ethernet card:

alias eth0 tulip

This will occur automatically if the driver support is started in the installation software during the first installation. Otherwise, start it via YoST2 at a later time.

Configuration Assisted by YaST2

To configure the network card with YoST2, start the Control Center and select 'Network/Basic' \rightarrow 'Network card configuration'. With 'Add', configure a new network card. With 'Delete', remove it from the configuration. With 'Edit', modify the network card configuration.

Activate the check box 'Hardware' to modify the hardware data for an already configured network card with 'Edit'. This opens the dialog for changing the settings of the network card, shown in Figure 10.3 on the next page. Normally, the correct driver for your network card is configured during installation and is activated. Therefore, manual hardware parameter settings are only needed if multiple network cards are used or if the network hardware is not automatically recognized. In this case, select 'Add' to specify a new driver module.

YaST		SuSE
Here, set up your networking device. The values will be written into <i>/etc/modules.conf</i> .	Manual network card configuration	
Options for the module should be written in the format <i>option=value</i> . Each entry should be space separated, for example, <i>lo=220</i> <i>lrq=S</i> . Note: If two cards are configured with the same module name, options will be merged while saving.	Network jnterface	•
Get a list of available network cards by pressing Ust. If you have a PCMCIA network card, click on the PCMCIA check box, if you have an USB network card, click on the check box USB.	Kernel module Module name Options C ECMDIA C USB Select from jist	
	Back Abort	<u>N</u> ext

Figure 10.3: Configuring the Hardware Parameters

In this dialog, set the network card type. For some network drivers, also specify special parameters, such as the interface to use or whether it uses an RJ-45 or a BNC connection. For this, refer to the driver module documentation.

After entering the hardware parameters, configure additional network interface data. Select 'Interface' in the dialog 'Network base configuration' to activate the network card and assign it an IP address. Select the card number then click 'Edit'. A new dialog will appear in which to specify the IP address and other IP network data. Find information about assigning addresses to your own network in Section TCP/IP — The Protocol Used by Linux on page 232 and Table 10.5 on page 238. Otherwise, enter the address assigned by your network administrator in the designated fields.

Configure a name server under 'Host Name and name server' so the name resolution functions as described in Section *DNS* — *Domain Name Service* on page 256. Via 'Routing', set up the routing. Select 'Configuration for Experts' to make advanced settings.

With that, the network configuration is complete. YaST2 starts SuSEconfig

and transfers the settings to the corresponding files. For the changes to take affect, the relevant programs must be reconfigured and the required daemons must be restarted. This is done by entering the command rcnetwork restart.

Configuring IPv6

To configure IPv6, you will not normally need to make any changes on the individual workstations. However, the IPv6 support will have to be loaded. Do this most easily by entering the command modprobe ipv6.

Because of the autoconfiguration concept of IPv6, the network card is assigned an address in the "link-local" network. Normally, no routing table management takes place on a workstation. The network routers can be inquiried by the workstation, using the "router advertisement protocol", for what prefix and gateways should be implemented.

The radvd program out of package radvd, series n (Network) can be used to set up an IPv6 router. This program informs the workstations which prefix to use for the IPv6 addresses and which routers.

To easily assign a workstation an IPv6 address, it is advisable to install and configure the router using the rodvd program. The workstations will then automatically receive the IPv6 addresses assigned to them.

Manual Network Configuration

Manual configuration of the network software should always be the last alternative. We recommend using YaST2.

Configuration Files

This section provides an overview of the network configuration files and explains their purpose and the format used.

/etc/hosts

In this file (see File 41), IP addresses are assigned to host names. If no name server is implemented, all hosts to which an IP connection will be set up must be listed here. For each host, a line consisting of the IP address, the fully qualified host name, and the host name (e.g., earth) is entered into the file. The IP address has to be at the beginning of the line, the entries divided by blanks and tabs. Comments are always preceeded by the `#' sign.

127.0.0.1 localhost 192.168.0.1 sun.cosmos.com sun 192.168.0.20 earth.cosmos.com earth

File 41: /etc/hosts

/etc/networks

Here, network names are converted to network addresses. The format is similar to that of the hosts file, except the network names preceed the addresses (see File 42).

loopback 127.0.0.0 localnet 192.168.0.0

File 42: /etc/networks

/etc/host.conf

Name resolution — the translation of host and network names via the resolver library — is controlled by this file. This file is only used for programs linked to the libc4 or the libc5. For current glibc programs, refer to the settings in /etc/nsswitch.conf. A parameter must always stand alone in its own line and comments preceeded by a `#' sign. Table 10.8 on the next page shows the parameters available.

order hosts, bind	Specifies in which order the services are accessed for the name resolution. Available
	arguments are (separated by blank spaces or
	commas):
	hosts: Searches the /etc/hosts file
	bind: Accesses a name server
	nis: Via NIS
multi <i>on/off</i>	Defines if a host entered in /etc/hosts can
	have multiple IP addresses.
nospoof on	These parameters influence the name server
alert on/off	spoofing, but, apart from that, do not exert any
	influence on the network configuration.

Table 10.8: continued overleaf...

10 Linux in the Network

trim (domainname) The specified domain name is separated from the host name following the host name resolution (as long as the host name includes the domain name). This option is useful if only names from the local domain are in the /etc/hosts file, but should still be recognized with the attached domain names.

Table 10.8: Parameters for /etc/host.conf

An example for /etc/host.conf is shown in File 43.

We have named running
order hosts bind
Allow multiple addrs
multi on

File 43: /etc/host.conf

/etc/nsswitch.conf

With the GNU C Library 2.0, the "Name Service Switch" (NSS) became more important. See the man page for nsswitch.conf or, for more details, The GNU C Library Reference Manual, Chap. "System Databases and Name Service Switch". Refer to package libcinfo, series doc.

In the /etc/nsswitch.conf file, the order of certain data is defined. An example of nsswitch.conf is shown in File 44. Comments are preceeded by `#' signs. Here, for instance, the entry under "database" hosts means that a request is sent to /etc/hosts (files) via DNS (see Section DNS - Domain Name Service on page 256).

passwd:	compat
group:	compat
hosts:	files dns
110000	
networks:	files dns
services:	db files
protocols:	db files
netgroup:	files

File 44: /etc/nsswitch.conf

The "databases" available over NSS are listed in Table 10.9 on the next page. In addition, automount, bootparams, netmasks, and publickey are expected in the near future.

aliases	Mail aliases implemented by sendmail(8). See also	
	the man page for aliases.	
ethers	Ethernet addresses.	
group	For user groups, used by getgrent(3). See also the	
	man page for group.	
hosts	For host names and IP addresses, used by	
	gethostbyname(3) and similar functions.	
netgroup	Valid host and user lists in the network for the pur-	
	pose of controlling access permissions. See also the	
	man page for netgroup.	

Table 10.9: continued overleaf...

1	()
	Linux in the Network	

networks	Network names and addresses, used by getnetent(3).
passwd	User passwords, used by getpwent(3). See also the man page for passwd.
protocols	Network protocols, used by getprotoent(3). See also the man page for protocols.
rpc	"Remote Procedure Call" names and addresses, used by getrpcbyname(3) and similar functions.
services shadow	Network services, used by getservent(3). "Shadow" user passwords, used by getspnam(3). See also the man page for shadow.

Table 10.9: Available Databases via /etc/nsswitch.conf

The configuration options for NSS databases are listed in Table 10.10.

files db	directly access files, for example, to /etc/aliases. access via a database.
nis	NIS, see also Section <i>NIS</i> — <i>Network Information</i> <i>Service</i> on page 266.
nisplus	
dns	Only usable by hosts and networks as an extension.
compat	Only usable by passwd, shadow, and group as an extension.
also	It is possible to trigger various reactions with cer-
	tain lookup results. Details can be found in the man
	page for nsswitch.conf.

Table 10.10: Configuration Options for NSS "Databases"

/etc/nscd.conf

The nscd (Name Service Cache Daemon) is configured in this file (see the man pages for nscd and nscd.conf). This effects the data resulting from passwd, groups, and hosts. The daemon must be restarted every time the name resolution (DNS) is changed by modifying the /etc/resolv.conf file. Use rcnscd restart to restart it.

Caution

If, for example, the caching for passwd is activated, it will usually take about fifteen seconds until a newly added user is recognized by the system. By resarting nscd, reduce this waiting period.

Caution -

/etc/resolv.conf

As is already the case with the /etc/host.conf file, this file, by way of the *resolver* library, likewise plays a role in host name resolution. The domain to which the host belongs is specified in this file (keyword search). Also listed is the status of the name server address (keyword name server) to access. Multiple domain names can be specified. When resolving a name that is not fully qualified, an attempt is made to generate one by attaching the individual search entries. Multiple name servers can be made known by entering several lines, each beginning with name server. Comments are preceeded by `#' signs.

An example of /etc/resolv.conf is shown in File 45.

Our domain
search cosmos.com
name server 192.168.0.1

File 45: /etc/resolv.conf

Some services like pppd (wvdial), ipppd (isdn), dhcp (dhcpcd and dhclient), pcmcia, and hotplug modify the file /etc/resolv.conf. To do so, they rely on the script modify_resolvconf.

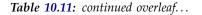
If the file /etc/resolv.conf has been temporarily modified by this script, it will contain a predefined comment giving information about the service by which it has been modified, about the location where the original file has been backed up, and hints on how to turn off the automatic modification mechanism.

If /etc/resolv.conf is modified several times, the file will include modifications in a nested form. These can be reverted in a clean way even if this reversal takes place in an order different from the order in which modifications where introduced. Services that may need this flexibility include isdn, pcmcia, and hotplug.

If it happens that a service was not terminated in a normal, clean way, modify_resolvconf can be used to restore the original file. Also, on system boot, a check will be performed to see whether there is an uncleaned, modified resolv.conf (e.g., after a system crash), in which case the original (unmodified) resolv.conf will be restored.

YaST2 uses the command modify_resolvconf check to find out whether resolv.conf has been modified and will subsequently warn the user that changes will be lost after restoring the file.

Apart from this, YaST2 will not rely on modify_resolvconf, which means that the impact of changing resolv.conf through YaST2 is the same as that of any manual change. In both cases, changes are made on purpose and with a permanent effect, while modifications requested by the above-mentioned services are only temporary.


/etc/HOSTNAME

Here is the host name without the domain name attached. This file is read by several scripts while the machine is booting. It may only contain one line where the host name is mentioned.

Start-Up Scripts

Apart from the configuration files described above, there are also various scripts that load the network programs while the machine is being booted. This will be started as soon as the system is switched to one of the *multiuser runlevels* (see also Table 10.11 on the next page).

/etc/init.d/network	This script takes over the configuration for
	the network hardware and software during
	the system's start-up phase.
/etc/init.d/inetd	Starts inetd. This is only necessary if you
	want to log in to this machine over the
	network.
/etc/init.d/portmap	Starts the portmapper needed for the RPC
	server, such as an NFS server.
/etc/init.d/	Starts the NFS server.
nfsserver	

/etc/init.d/sendmail	Controls the sendmail process.
/etc/init.d/ypserv	Starts the NIS-Server.
/etc/init.d/ypbind	Starts the NIS-Client.

Table 10.11: Some Start-Up Scripts for Network Programs

Routing in SuSE Linux Enterprise Server

The routing table is set up in SuSE Linux Enterprise Server via the configuration files /etc/sysconfig/network/routes and /etc/sysconfig/ network/ifroute-*.

All the static routes required by the various system tasks can be entered in the /etc/sysconfig/network/routes file: routes to a host, routes to a host via a gateway, and routes to a network. For each interface that need individual routing, define an additional configuration file: /etc/sysconfig/ network/ifroute-*. Replace `*' with the name of the interface. The entries in the routing configuration files look like this:

DESTINATIONGATEWAY NETMASKINTERFACE[TYPE][OPTIONS]DESTINATIONGATEWAY PREFIXLENINTERFACE[TYPE][OPTIONS]DESTINATION/PREFIXLENGATEWAY -INTERFACE[TYPE][OPTIONS]

To omit GATEWAY, NETMASK, PREFIXLEN, or INTERFACE, write `-' instead. The entries TYPE and OPTIONS may just be omitted.

- The route's destination is in the first column. This column may contain the IP address of a network or host or, in the case of *reachable* name servers, the fully qualified network or host name.
- The second column contains the default gateway or a gateway through which a host or a network can be accessed.
- The third column contains the netmask for networks or hosts behind a gateway. The mask is 255.255.255.255, for example, for a host behind a gateway.
- The last column is only relevant for networks connected to the local host such as loopback, ethernet, ISDN, PPP, and dummy device. The device name must be entered here.

The following scripts in the directory /etc/sysconfig/network/ scripts/ assist with the handling of routes:

- ifup-route for setting up a route
- ifdown-route for disabling a route
- ifstatus-route for checking the status of the routes

DNS — Domain Name Service

DNS (Domain Name Service) is needed to resolve the domain and host names into IP addresses. In this way, the IP address 192.168.0.20 is assigned to the host name earth, for example. Before setting up your own name server, read the general information on DNS in Section *Domain Name System* on page 238.

Starting the Name Server BIND

The name server BIND is already preconfigured in SuSE Linux, so you can easily start it right after installing the distribution.

If you already have a functioning Internet connection and have entered 127.0.0.1 as name server for the local host in /etc/resolv.conf, you should normally already have a working name resolution without having to know the DNS of the provider. BIND carries out the name resolution via the root name server, a notably slower process. Normally, the DNS of the provider should be entered with its IP address in the configuration file /etc/named.conf under forwarders to ensure effective and secure name resolution. If this works so far, the name server will run as a pure "caching-only" name server. Only when you configure its own zones will it become a proper DNS. A simple example of this can be found under /usr/share/doc/packages/bind8/sample-config. However, do not set up any official domains until assigned one by the responsible institution. Even if you have your own domain and it is managed by the provider, you are better off not to use it, as BIND would otherwise not forward any more requests for this domain. The provider's web server, for example, would not be accessible for this domain.

To start the name server, enter rcnamed start at the command line as root. If "done" appears to the right in green, named, as the name server process is called, has been started successfully. Immediately test the functionality of the name server on the local system with the nslookup program. The local host should appear as the default server with the address 127.0.0.1. If this is not the case, the wrong name server has probably been entered in /etc/resolv.conf or this file does not exist. For the first test, enter nslookup "localhost" or "127.0.0.1" at the prompt, which should always work. If you receive an error message instead, such as "No response from server", check to see if named is actually running using the command rcnamed status. If the name server is not starting or is exhibiting faulty behavior, find the possible causes of this logged in /var/log/messages. If you have a dial-up connection, be sure that BIND8, once it starts, will review the root name server. If it does not manage this because an Internet connection has not been made, this can cause the DNS requests not to be resolved other than for locally-defined zones. BIND9 behaves differently, but requires quite a bit more resources than BIND8.

To implement the name server of the provider or one already running on your network as "forwarder", enter one or more of these in the options section under forwarders. See File 46.

```
options {
    directory "/var/lib/named";
    forwarders { 10.11.12.13; 10.11.12.14; };
    listen-on { 127.0.0.1; 192.168.0.99; };
    allow-query { 127/8; 192.168.0/24; };
    notify no;
    };
```

File 46: Forwarding Options in named.conf

Adjust the IP addresses to your personal environment.

After options follows the zone, "localhost", "0.0.127.in-addr.arpa", and "." entries. At least entries from "type hint" should exist. Their corresponding files never have to be modified, as they function in their present state. Also, be sure that a ";" follows each entry and that the curly braces are properly set.

If you have made changes to the configuration file /etc/named.conf or to the zone files, have BIND reread these files by entering rcnamed reload. Otherwise, completely restart the name server with rcnamed restart. To stop the name server, enter rcnamed stop.

The Configuration File /etc/named.conf

Make all the settings for the name server BIND8 and BIND9 in the /etc/ named.conf file. The zone data, consisting of the host names, IP addresses, and similar, for the domains to administer are stored in separate files in the /var/lib/named directory.

The /etc/named.conf is roughly divided into two areas. One is the options section for general settings and the other consists of zone entries for the individual domains. Additional sections for logging and acl type entries can be added. Comment lines begin with a `#' sign or `//'. A minimalistic /etc/named.conf looks like File 47.

```
options {
        directory "/var/lib/named";
        forwarders 10.0.0.1; ;
        notify no;
};
zone "localhost" in {
       type master;
        file "localhost.zone";
};
zone "0.0.127.in-addr.arpa" in {
        type master;
        file "127.0.0.zone";
};
zone "." in {
       type hint;
        file "root.hint";
};
```

File 47: A Basic /etc/named.conf

This example works for both BIND8 and BIND9, because no special options are used that are only understood by one version or the other. BIND9 accepts all BIND8 configurations and makes note of options not implemented at start-up. Special BIND9 options are, however, not supported by BIND8.

Important Configuration Options

- **directory "/var/lib/named";** specifies the directory where BIND can find the files containing the zone data.
- **forwarders 10.0.0.1; ;** is used to specify the name servers (mostly of the provider) to which DNS requests, which cannot be resolved directly, are forwarded.
- forward first; causes DNS requests to be forwarded before an attempt is made to resolve them via the root name servers. Instead of forward first, forward only can be written to have all requests forwarded and none sent to the root name servers. This makes sense for firewall configurations.

- **listen-on port 53 127.0.0.1; 192.168.0.1; ;** tells BIND to which network interface and port to listen. The port 53 specification can be left out, since 53 is the default port. If this entry is completely omitted, BIND accepts requests on all interfaces.
- **query-source address * port 53;** This entry is necessary if a firewall is blocking external DNS requests. This tells BIND to post requests externally from port 53 and not from any of the ports greater than 1024.
- **allow-query 127.0.0.1; 192.168.1/24; ;** defines the networks from which clients can post DNS requests. The /24 at the end is an abbreviated expression for the netmask, in this case 255.255.255.0.
- **allow-transfer** ! *; ; controls which hosts can request zone transfers. This example cuts them off completely due to the ! *. Without this entry, zone transfers can be requested anywhere without restrictions.
- statistics-interval 0; In the absence of this entry, BIND8 generates several lines of statistical information in /var/log/messages. Specifying 0 suppresses these completely. Otherwise the time in minutes can be given here.
- **cleaning-interval 720;** This option defines at which time intervals BIND8 clears its cache. This triggers an entry in /var/log/messages each time it occurs. The time specification is in minutes. The default is 60 minutes.
- **interface-interval 0;** BIND8 regularly searches the network interfaces for new or no longer existing interfaces. If this value is set to 0, this will not be carried out and BIND8 will only listen at the interfaces detected at start-up. Otherwise, the interval can be defined in minutes. The default is 60 minutes.
- **notify no;** no prevents other name servers from being informed when changes are made to the zone data or when the name server is restarted.

The Configuration Section "Logging"

What, how, and where archiving takes place can be extensively configured in BIND8. Normally, the default settings should be sufficient. File 48 represents the simplest form of such an entry and will completely suppress any logging:

```
logging {
    category default { null; };
};
```

File 48: Entry to Suppress Logging

Zone Entry Structure

```
zone "my-domain.de" in {
    type master;
    file "my-domain.zone";
    notify no;
};
```

File 49: Zone Entry for my-domain.de

After zone, the name of the domain to administer is specified, my-domain.de, followed by in and a block of relevant options enclosed in curly braces, as shown in File 49. To define a "slave zone", the type is simply switched to slave and a name server is specified that administers this zone as master (but can also be a "slave"), as shown in File 50.

```
zone "other-domain.de" in {
    type slave;
    file "slave/other-domain.zone";
    masters { 10.0.0.1; };
};
```

File 50: Zone Entry for other-domain.de

The options:

- **type master**; master indicates that this zone is administered on this name server. This assumes that your zone file has been properly created.
- **type slave;** This zone is transferred from another name server. Must be used together with masters.
- **type hint;** The zone . of the type hint is used for specification of the root name servers. This zone definition can be left alone.
- file "my-domain.zone" or file "slave/other-domain.zone"; This entry specifies the file where zone data for the domain is located. This file is not required by slaves, because its contents is read by another name server. To differentiate master and slave files, the directory slave is specified for the slave files.
- masters { 10.0.0.1; }; This entry is only needed for slave zones. It specifies
 from which name server the zone file should be transferred.
- allow-update { ! *; }; This options controls external write access, which would allow clients to make a DNS entry — something which is normally not desirable for security reasons. Without this entry, zone updates are not allowed at all. Note that with the above sample entry, the same would be achieved because ! * effectively bars any clients from such access.

Structure of Zone Files

Two types of zone files are needed: one serves to assign IP addresses to host names and the other does the reverse — supplies a host name for an IP address.

'.' has an important meaning in the zone files here. If host names are given without ending with a '.', the zone will be appended. Thus, complete host names specified with a complete domain must end with a '.' so the domain is not added to it again. A missing point or one in the wrong place is probably the most frequent cause of name server configuration errors.

The first case to consider is the zone file world.zone, responsible for the domain world.cosmos, as in File 51 on the following page.

1. \$TTL 2D		
2. world.cosmos.	IN SOA	gateway root.world.cosmos. (
3.	2001040901	; serial
4.	1D	; refresh
5.	2Н	; retry
б.	1W	; expiry
7.	2D)	; minimum
8.		
9.	IN NS	gateway
10.	IN MX	10 sun
11.		
12. gateway	IN A	192.168.0.1
13.	IN A	192.168.1.1
14. sun	IN A	192.168.0.2
15. moon	IN A	192.168.0.3
16. earth	IN A	192.168.1.2
17. mars	IN A	192.168.1.3

File 51:	The	File	/var/lib/r	named/wo	rld.zone
----------	-----	------	------------	----------	----------

- **Line 1:** \$TTL defines the standard TTL that applies for all the entries in this file, here 2 days. TTL means "time to live".
- Line 2: The SOA control record begins here:
 - The name of the domain to administer is world.cosmos in the first position. This ends with a `.', because otherwise the zone would be appended a second time. Alternatively, a `@' can be entered here. Then, the zone would be extracted from the corresponding entry in /etc/named.conf.
 - After IN SOA is the name of the name server in charge as master for this zone. The name is extended from gateway to gateway.world.cosmos, because it does not end with a `.'.
 - Afterwards, an e-mail address of the person in charge of this name server will follow. Since the '@' sign already has a special significance, '.' is to be entered here instead, for root@world.cosmos, consequently root.world.cosmos..The '.' sign at the end cannot be neglected, otherwise, the zone will still be added here.
 - A ` (' follows at the end here, including the following lines up until `) ' into the SOA record.

262

- Line 3: The serial number is an arbitrary number that is increased each time this file is changed. It is needed to inform the secondary name servers (slave servers) of changes. For this, a ten-digit number of the date and run number, written as YYYYMMDDNN, has become the customary format.
- Line 4: The refresh rate specifies the time interval at which the secondary name servers verify the zone serial number. In this case, 1 day.
- Line 5: The retry rate specifies the time interval at which a secondary name server, in case of error, attempts to contact the primary server again. Here, 2 hours.
- Line 6: The expiration time specifies the time frame after which a secondary name server discards the cached data if it has not regained contact to the primary server. Here, it is a week.
- Line 7: The minimum time to live states how long the results of the DNS requests from other servers can be cached before they become invalid and have to be requested again.
- Line 9: The IN NS specifies the name server responsible for this domain. The same is true here that gateway is extended to gateway.world.cosmos because it does not end with a `.'. There can be several lines like this, one for the primary and one for each secondary name server. If notify is not set to no in /etc/named.conf, all the name servers listed here will be informed of the changes made to the zone data.
- Line 10: The MX record specifies the mail server that accepts, processes, and forwards e-mails for the domain world.cosmos. In this example, this is the host sun.world.cosmos. The number in front of the host name is the preference value. If there are multiple MX entries, the mail server with the smallest value is taken first and, if mail delivery to this server fails, an attempt will be made with the next higher value.
- Line 12-17: These are now the actual address records where one or more IP addresses are assigned to the host names. The names are listed here without a `.', because they are entered without a domain added and can all be appended with world.cosmos. Two IP addresses are assigned to the host gateway, because it has two network cards.

The pseudodomain in-addr.arpa is used to assist the reverse lookup of IP addresses into host names. This will be appended, for this purpose, to

the network components described here in reverse order. 192.168.1 is thus translated into 1.168.192.in-addr.arpa. See File 52.

1. \$TTL 2D		
2. 1.168.192.in-addr.arpa.	IN SOA gateway	.world.cosmos.
	root	.world.cosmos. (
3.	2001040901	; serial
4.	1D	; refresh
5.	2Н	; retry
6.	1W	; expiry
7.	2D)	; minimum
8.		
9.	IN NS	gateway.world.cosmos.
10.		
11. 1	IN PTR	gateway.world.cosmos.
12. 2	IN PTR	earth.world.cosmos.
13. 3	IN PTR	mars.world.cosmos.

File 52: Reverse Lookup

Line 1: \$TTL defines the standard TTL that applies to all entries here.

- Line 2: 'Reverse lookup' should be activated with this file for the network 192.168.1.0. Since the zone is called '1.168.192.in-addr.arpa' here, it is, of course, undesirable to add this to the host name. Therefore, these are all entered complete with domain and ending with '.'. The rest corresponds to the previous example described for world.cosmos.
- Line 3–7: See the previous example for world.cosmos.
- **Line 9:** This line also specifies the name server responsible for this zone. This time, however, the name is entered completely with domain and ending with `. '.
- Line 11–13: These are the pointer records which are linked to an IP address at the respective host name. Only the last part of the IP address is entered at the beginning of the line missing the last `.'. Now, if the zone is appended to this and the .in-addr.arpa is neglected, the entire IP address will be backwards.

In this form, the zone files are usable both for BIND8 and BIND9. Zone transfers between different versions should not normally be an issue.

For More Information

- Documentation on package bind8: file:/usr/share/doc/ packages/bind8/html/index.html.
- A sample configuration can be found at: /usr/share/doc/packages/bind8/sample-config
- the man page for named (man 8 named) in which the relevant RFCs are named and the the man page for named.conf (man 5 named.conf

NIS — Network Information Service

As soon as multiple UNIX systems in a network want to access common resources, you have to make sure, for example, that all user and group identities are the same for all machines in that network. The network should be transparent to the user: whatever machine a user uses, he will always find himself in exactly the same environment. This is made possible by means of NIS and NFS services. NFS distributes file systems over a network and is discussed in Section *NFS* — *Shared File Systems* on page 270.

NIS (Network Information Service) is a database service that enables access to /etc/passwd, /etc/shadow, and /etc/group across a network. NIS can be used for other, more specialized tasks (such as for /etc/hosts or /etc/services).

NIS Master and Slave Server

For installation, select 'Network/Advanced' in YaST2 then 'Configure NIS server'. If a NIS server does not exist on your network, first activate 'Create NIS Master Server' in the next screen. If you already have a NIS server (a "master"), add a NIS slave server if you are configuring a new subnetwork.

Enter the domain name at the top of the next configuration screen (Figure 10.4 on the next page). In the check box underneath, define whether the host should also be an NIS client.

Activate 'Active NIS Slave Server Exists' if your network has other NIS slave servers. Select 'Fast Map Distribution' to speed up the data transfer from the master to the slave server.

To allow users in your network to change their passwords on the NIS server with the command yppasswd, enable this option as well. "GECOS" means that the user can also change his name and address settings with the command ypchfn. "SHELL" allows a user to modify his default shell with the command ypchsh.

Under 'Other global settings...', a menu appears (Figure 10.5 on page 268) in which to change the default directory (/etc). In addition, passwords and groups can be consolidated here. The setting should be left at 'Yes' so the files (/etc/passwd and /etc/shadow as well as /etc/group and /etc/gshadow) can be synchronized. 'OK' returns to the previous screen. Click 'Next'.

If you previously enabled 'Active NIS Slave Server exists', give the host names to use as slaves. Specify the name and go to 'Next'. The menu that

266

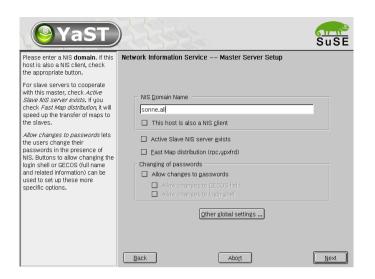


Figure 10.4: YaST2: NIS Server Configuration Tool

follows can be directly accessed, if you had not activated the slave server setting previously. Now the *maps*, the partial databases to transfer from the NIS server to the individual clients, can be configured. The default settings can be applied under most circumstances, so nothing usually needs to be changed here.

'Next' brings you to the last dialog, where you can define which networks are allowed to send requests to the NIS server (see Figure 10.6 on page 269). Normally, this is your internal network. If this is the case, there should be two entries:

255.0.0.0 127.0.0.0 0.0.0.0 0.0.0.0

The first one enables connections to your own host. The second one allows all hosts with access to your network to send requests to the server.

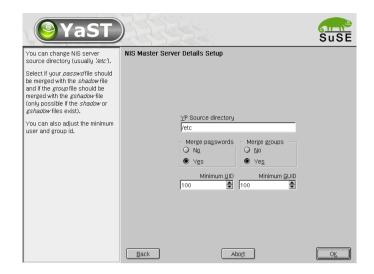


Figure 10.5: YaST2: NIS server: Changing the Directory and Synchronizing Files

The NIS Client Module of YaST2

This module allows you to easily configure the NIS client. Confirm that you want to use NIS. The following dialog prompts for the NIS domain and the IP address of your NIS server. If the selected server does not answer any requests, activate 'Broadcast'. In addition to that, you also have the possibility to specify multiple domains by one default domain. For each single domain, add servers, including the broadcast function.

Manual Installation of an NIS Client

SuSE Linux Enterprise Server contains all the packages needed to install a NIS client. Proceed as follows:

- Set the NIS domain in the file /etc/defaultdomain. The NIS domain name should not be confused with the DNS domain name. They have nothing to do with one another.
- The NIS server is set via /etc/yp.conf:

```
ypserver 192.168.0.1
```

YaST		SuSE
Please enter which hosts are allowed to query the NIS server.	NIS Server Query Hosts Setup	
A host address will be allowed if network is equal to the bitwise <i>AND</i> of the host's address and the netmask .	255.0.00 127.0.0	
The entry with netmask 255.0.0.0 and network 127.0.0.0 must exist to allow connections from the local host.		
Entering netmask 0.0.0.0 and network 0.0.0.0 gives access to all hosts.		
	Add Edit Delete	<u>Einish</u>

Figure 10.6: YaST2: NIS Server: Setting Request Permissions

- NIS uses RPC (Remote Procedure Calls). Therefore, the RPC portmapper needs to be running. This server is started by /etc/init.d/ portmap.
- Complete the entries in /etc/passwd and /etc/group. For a request to be sent to the NIS server, after the local files have been searched, a line beginning with a `+' has to be added to the relevant files.
- NIS allows you to set a multitude of other options in the file /etc/ sysconfig/ypbind.
- The final step in activating the NIS server is to launch ypbind. This is what actually starts the NIS client.
- To activate your changes, either restart your system or enter:

earth: # rcnetwork restart
earth: # rcypbind restart

NFS — Shared File Systems

As mentioned in *NIS* — *Network Information Service* on page 266, NFS (together with NIS) makes a network transparent to the user. With NFS, it is possible to distribute file systems over the network. It does not matter at which terminal a user is logged in. He will always find himself in the same environment.

As with NIS, NFS is an asymmetric service. There are NFS servers and NFS clients. A machine can be both — it can supply file systems over the network (export) and mount file systems from other hosts (import). Generally, these are servers with a very large hard disk capacity, whose file systems are mounted by other clients.

Importing File Systems with YaST2

Any user who is authorized to do so can mount NFS directories from an NFS server into his own file tree. This can be achieved most easily using the YaST2 module 'NFS client'. Just enter the host name of the NFS server, the directory to import, and the mount point at which to mount this directory locally. All this is done after clicking 'Add' in the first dialog.

Importing File Systems Manually

To import file systems from an NFS server, the only requirement is that the RPC portmapper is already running. Starting this server has already been covered in connection with NIS (see *Manual Installation of an NIS Client* on the page before). If this is the case, other file systems can be mounted (as long as they are exported by the server) just as easily as local file systems using the program mount with the following syntax:

```
mount -t nfs (host): (remote path) (local path)
```

If user directories from the machine sun, for example, should be imported, the following command can be used:

earth:/ # mount -t nfs sun:/home /home

Exporting File Systems with YaST2

YaST2 enables you to quickly turn any host on your network into an NFS server. Select 'Network/Advanced' in YaST2 then 'NFS Server'.

Next, activate 'Start NFS Server' and click 'Next'. In the upper text field, enter the directories to export. Below, enter the hosts that should have access to them. This dialog is shown in Figure 10.7. There are four options that can be set for each host: $\langle single \ host \rangle$, $\langle netgroups \rangle$, $\langle wildcards \rangle$, and $\langle IP \ networks \rangle$. A more thorough explanation of these options is provided by the man page for exports (man exports).

YaST		SuSE
The upper box contains all the directories which will be exported. If a directory is selected, the lower box shows the hosts allowed to mount this directory.	Directories to export to the others Directories //con //cr/dil	_
Hosts wildcard sets which hosts can access the selected directory. It can be <i>single host,</i> <i>netgroups, wildcards</i> or <i>IP</i> <i>networks.</i>		
Please have a look at man exports for further information.	Add girectory Edit Delete Ausr/X11 Hosts wildcard Options sonne ro,root_squash,sync	_
	Add host Edit Delete	Einish

Figure 10.7: YaST2: NFS Server: Enter Export Directories and Hosts

'Exit' completes the configuration.

Exporting File Systems Manually

A machine that exports file systems is called an NFS server. On an NFS server, there are a few tools that need to be started:

- RPC portmapper (*rpc.portmap*)
- RPC mount daemon (*rpc.mountd*)
- RPC NFS daemon (*rpc.nfsd*)

These are started by the scripts /etc/init.d/portmap and /etc/init.d/nfsserver at boot. Starting the RPC portmapper was described in Section *Manual Instal-lation of an NIS Client* on page 269. After these daemons have been started, the configuration file /etc/exports decides which directories should be exported to which machines.

For each directory to export, one line is needed to specify which machines may access that directory with what permissions. All subdirectories of this directory will automatically be exported as well. All authorized machines are usually denoted with their full names (including domain name), but it is possible to use wildcards like `*' or `?'. If no machine is specified here, any machine is allowed to import this file system with the given permissions.

Permissions of the file system to export are denoted in brackets after the machine name. The most important options are:

ro	file system is exported with read-only permission (de- fault).
rw	file system is exported with read-write permission.
root_squash	This makes sure that the user root of the given ma- chine does not have root specific permissions on this file system. This is achieved by assigning user ID 65534 to users with user ID 0 (root). This user ID should be set to nobody
no_root_squash	Does not assign user ID 0 to user ID 65534 (default).
link_relative	Converts absolute links (those beginning with $'/'$) to a sequence of $'/'$. This is only useful if the whole file system of a machine is mounted (default).
link_absolute	Symbolic links remain untouched.
map_identity	User IDs are exactly the same on both client and server (default).
map-daemon	Client and server do not have matching user IDs. This tells nfsd to create a conversion table for user IDs. ugidd is required for this to work.

Table 10.12: Permissions for Exported File Systems

Your exports file might look like File 53.

```
#
#
//etc/exports
#
//home sun(rw) venus(rw)
/usr/X11 sun(ro) venus(ro)
/usr/lib/texmf sun(ro) venus(rw)
/ earth(ro,root_squash)
//home/ftp (ro)
# End of exports
```

File 53: /etc/exports

File /etc/exports is read by mountd. If you change anything in this file, restart mountd and nfsd for your changes to take effect. This can easily be done with rcnfsserver restart.

DHCP

The DHCP Protocol

The purpose of the "Dynamic Host Configuration Protocol" is to assign network settings centrally from a server rather than configuring them locally on each and every workstation. A client configured to use DHCP does not have control over its own static address. It is enabled to fully autoconfigure itself according to directions from the server.

One way to use DHCP is to identify each client using the hardware address of its network card (which is fixed in most cases) then supply that client with identical settings each time it connects to the server. DHCP can also be configured so the server assigns addresses to each "interested" host *dynamically* from an address pool set up for that purpose. In the latter case, the DHCP server will try to assign the same address to the client each time it receives a request from it (even over longer periods). This, of course, will not work if there are more client hosts in the network than network addresses available.

With these possibilities, DHCP can make life easier for system administrators in two ways. Any changes (even bigger ones) related to addresses and the network configuration in general can be implemented centrally by editing the server's configuration file. This is much more convenient than reconfiguring lots of client machines. Also it is much easier to integrate machines, particularly new machines, into the network, as they can be given an IP address from the pool. Retrieving the appropriate network settings from a DHCP server can be especially useful in the case of laptops regularly used in different networks.

A DHCP server not only supplies the IP address and the netmask, but also the host name, domain name, gateway, and name server addresses to be used by the client. In addition to that, DHCP allows for a number of other parameters to be configured in a centralized way, for example, a time server from which clients may poll the current time or even a print server.

The following section, gives an overview of DHCP without describing the service in every detail. In particular, we want to show how to use the DHCP server dhcpd in your own network to easily manage its entire setup from one central point.

DHCP Software Packages

SuSE Linux comes with three packages related to DHCP. The first of these is the DHCP server dhcpd distributed by the Internet Software Consortium, or

ISC. This is the program that assigns and manages the corresponding information for the network. Normally with SuSE Linux, there is only this one program available as far as the server is concerned, but you can choose between two different DHCP client programs. SuSE Linux includes both the package dhclient, also from the ISC, and the "DHCP client daemon" provided by the package dhcpcd.

SuSE Linux installs dhcpcd by default. The program is very easy to handle and will be launched automatically on each system boot to watch for a DHCP server. It does not need a configuration file to do its job and should work out of the box in most standard setups.

If you administer a more complex network, you might need the ISC's dhclient, which can be controlled via the configuration file /etc/dhclient.conf. No matter whether you want to include an additional domain in the search list or even to emulate the behavior of a Microsoft DHCP client — if you are knowledgeable about networks, you will find that the dhclient gives all the possibilities to make it function according to your needs, down to the last detail.

The DHCP Server dhcpd

The core of any DHCP system is the *dynamic host configuration protocol daemon.* This server "leases" addresses and watches how they are used, according to the settings as defined in the configuration file /etc/dhcpd.conf. By changing the parameters and values in this file, a system administrator can influence the program's behavior in numerous ways.

Look at a basic sample /etc/dhcpd.conf file:

```
default-lease-time 600;  # 10 minutes
max-lease-time 7200;  # 2 hours
option domain-name "kosmos.all";
option domain-name-servers 192.168.1.1, 192.168.1.2;
option broadcast-address 192.168.1.255;
option routers 192.168.1.254;
option subnet-mask 255.255.255.0;
subnet 192.168.1.0 netmask 255.255.255.0
{
  range 192.168.1.10 192.168.1.20;
  range 192.168.1.100 192.168.1.200;
}
```

File 54: The Configuration File /etc/dhcpd.conf

This simple configuration file should be sufficient to get the DHCP server to assign IP addresses to the hosts of your network. One thing to remember, however, is to include a semicolon (;) at the end of each line. Without that character, dhcpd will not even start.

As you might have noticed, the above sample file can be subdivided into three different sections. The first one defines how many seconds an IP address is "leased" to a requesting host by default (default-lease-time) before it should apply for renewal. The section also includes a statement on the maximum period for which a machine may keep an IP address assigned by the DHCP server without applying for renewal (max-lease-time).

In the second part, some basic network parameters are defined on a global level:

- The line option domain-name defines the default domain of your network.
- With the entry option domain-name-servers, specify up to three values for the DNS servers used to resolve IP addresses into host names (and vice versa). Ideally, configure a name server on your machine or somewhere else in your network before setting up DHCP. That name server should also define a host name for each dynamic address and vice versa. To learn how to configure your own name server, read Section DNS Domain Name Service on page 256.
- The line option broadcast-address defines the broadcast address to be used by the requesting host.
- With option routers, tell the server where to send data packets that cannot be delivered to a host on the local network (according to the source and target host address and the subnet mask provided). In most cases, especially in smaller networks, this router will be identical with the Internet gateway.
- With option subnet-mask, specify the netmask assigned to clients.

The last section of the file is there to define a network, including a subnet mask. To finish, specify the address range that the DHCP daemon should use to assign IP addresses to interested clients. In our example, clients may be given any address between 192.168.1.10 and 192.168.1.20, as well as 192.168.1.100 and 192.168.1.200.

After editing these few lines, you should be able to activate the DHCP daemon by issuing the command rcdhcpd start. The server is ready for use immediately after that. Do a basic check to see whether the configuration file is syntactically correct by entering the command rcdhcpd syntax-check. If you encounter any unexpected problems with your configuration — the server aborts with an error or does not return "done" on start — you should be able to find out what has gone wrong by looking for information either in the main system log /var/log/messages or on console 10 (Ctrl) + (Atr) + (F10)).

Assigning Fixed IP Addresses to Hosts

Now that the server is set up to assign dynamic addresses, it is time to have a closer look at *static* addresses and the way to configure them. As mentioned above, with DHCP it is also possible to assign a predefined, fixed address to one host each time the latter sends a request to the server.

As might be expected, addresses assigned explicitly will always take priority over addresses from the pool of dynamic addresses. Furthermore, a static address will never expire in the way a dynamic address would, such as if there were not enough addresses available so the server needed to redistribute them among hosts.

To identify a host configured to get a *static* address, the DHCP daemon fetches the hardware address of that host. This is a numerical code consisting of six octet pairs, fixed in most cases, and unique to each network device sold in the world, e.g., 00:00:45:12:EE:F4.

If the appropriate lines, like the ones in 55, are added to the configuration file 54 on page 275, the DHCP daemon will assign the same set of data to the corresponding host under all circumstances.

```
host earth {
  hardware ethernet 00:00:45:12:EE:F4;
  fixed-address 192.168.1.21;
}
```

File 55: Entry Added to the Configuration File

The structure of this entry should be almost self-explanatory: The first line sets the DNS name of the newly defined host (host *host name*) and the second one its MAC address. On any network-enabled Linux host, this address can be determined very easily with the command ifstatus plus the network

device, for example, eth0. If the network card is not enabled, use the command ifup eth0 first. The output should contain something like *link/ether* 00:00:45:12:EE:F4.

In the above example, a host with a network card having the MAC address 00:00:45:12:EE:F4 is assigned the IP address 192.168.1.21 and the host name earth automatically.

The type of hardware to enter is ethernet in nearly all cases, though token-ring, which is often found on IBM systems, is also supported.

The Finer Points

As stated at the beginning of this chapter, these pages are only intended to provide a brief survey of what you can do with DHCP. For more information, the page of the *Internet Software Consortium* on the subject (http: //www.isc.org/products/DHCP/) will prove a good source to read about the details of DHCP, including about version 3 of the protocol, currently in beta testing. Apart from that, you can always rely on the man pages for further help. Try man dhcpd, man dhcpd.conf, man dhcpd.leases, and man dhcp-options. Also, several books about *Dynamic Host Configuration Protocol* have been published over the years that take an in-depth look at the topic.

With dhcpd, it is even possible to offer a file to a requesting host, as defined with the parameter *filename*, and that this file may contain a bootable Linux kernel. This allows you to build client hosts which do not need a hard disk — they are enabled to load both their operating system and their network data over the network (*diskless clients*), which could be an interesting option for both cost and security reasons. Now add the package alice to all this and you can do some really amazing things.

Heterogenous Networks

This chapter will provide the informations needed to let your Linux systems communicate with the Windows and Macintosh world.

Samba			•		•	•				•	•	•	•	•		•	•	•	•	•	280
Netatall	ς.		•		•			•		•	•		•		•	•	•	•		•	287

Samba

With the program package Samba, convert any UNIX machine into a powerful file and print server for DOS, Windows, and OS/2 machines. The *Samba Project* is run by the *Samba Team* and was originally developed by the Australian Andrew Tridgell.

Samba has now become a fully-fledged and rather complex product. This section presents an overview of its basic functionality. Samba offers plenty of online documentation. Enter apropos samba at the command line to display some manual pages or just browse the /usr/share/doc/packages/ samba directory if Samba is installed. There, find some more online documentation and examples. A commented example configuration (smb.conf. SuSE) can be found in the examples subdirectory.

Samba uses the SMB protocol (Server Message Block) from the company Microsoft, based on the NetBIOS services. Due to pressure from IBM, Microsoft released the protocol so other software manufacturers could establish connections to a Microsoft domain network. Samba sets the SMB protocol on top of the TCP/IP protocol, so the TCP/IP protocol must also be installed on all clients.

NetBIOS

NetBIOS is a software interface (API) designed for communication between machines. Here, a name service is provided. It enables machines connected to the net to reserve names for themselves. After reservation, these machines can be addressed by name. There is no central process that checks names. Any machine on the network can reserve as many names as it wants, provided the name is not already in use. The NetBIOS interface can now be implemented for different network architectures. An implementation that works relatively closely with network hardware is called NetBEUI, but this is often referred to as NetBIOS. Network protocols implemented with NetBIOS are IPX from Novell (NetBIOS via TCP/IP) and TCP/IP.

The NetBIOS names sent via TCP/IP have nothing in common with the names used in /etc/hosts or those defined by DNS. NetBIOS uses its own, completely independent naming convention. However, it is recommended to use names that correspond to DNS host names to make administration easier. This is the default used by Samba.

Clients

All standard operating systems, such as DOS, Windows, and OS/2, support the SMB protocol. The TCP/IP protocol must be installed on all computers.

Samba can also be used with all the various UNIX "flavors".

SMB servers provide hardware space to their clients by means of shares. Here, a share includes a directory and its subdirectories. It is exported by means of a name and can be accessed by its name. The share name can be set to any name — it does not have to be the name of the export directory. A printer is also assigned a name. Clients can access the printer by its name.

Installing and Configuring the Server

First, install the package samba. The SMB services are started when the computer is booted. The services can be started manually with rcsmb start. With rcsmb stop, the services can be stopped.

The main configuration file of Samba is /etc/samba/smb.conf. Here, the entire service is configured. Basically, smb.conf is divided into two separate sections. In the [global] section, the central and general settings are made. The second section is the [share] section. Here, define the file and printer shares. If a specific value from the [share] section should be made valid for all shares, this can be taken over into the [global] section, making it valid for all shares system-wide and securing clarity of the configuration file. Since this central configuration file is accessed often, it is recommended to keep it as short and free of comments as possible. The shorter this file, the faster the server can respond.

The following sections provide an overview of some selected parameters.

The (global) Section

The following parameters of the [global] section need some adjustment to match the requirements of your network setup to let other machines access your Samba server via SMB in a Windows environment.

workgroup = TUX-NET This line assigns the Samba server to a work group. Replace TUX-NET with an appropriate work group of your networking environment. Your Samba server will appear under its DNS name unless this name has been assigned to any other machine in the net.

If the DNS name is not available, set the server name using netbiosname=MYNAME. See man smb.conf for more details about this parameter.

os level = 2 This parameter triggers whether your Samba server tries to become LMB "Local Master Browser" for its work group. Choose a

very low value to spare the existing Windows net from any disturbances caused by a misconfigured Samba server. More information about this important topic can be found in the files BROWSING.txt and BROWSING-Config.txt under the textdocs subdirectory of the package documentation.

As long as there is no other SMB server present in your network, such as a Windows NT or 2000 server, and the Samba server should keep a list of all systems present in the local environment, set the os level to a higher value (for example, 65). Your Samba server will thus be chosen as LMB for your local network.

When changing this setting, consider carefully how this could affect an existing Windows network environment. A misconfigured Samba server can cause severe trouble when trying to become LMB for its work group. Contact your administrator and subject your configuration to some heavy testing either in an isolated network or at a noncritical time of day.

wins support and wins server If your Samba server should integrate into an existing Windows network with a running WINS server, remove the leading semicolon in front of the wins server parameter and adjust the IP address to the requirements of your network. If your Windows machines run in separate subnets, they should "see" each other, your Windows network does not have a WINS server running, and your Samba server should become the WINS server, uncomment the line holding the wins support = yes parameter. Make sure you activate this setting solely on a Samba server. Keep wins server inactive in this configuration.

Shares

The following examples illustrate how a CD-ROM drive and the user directories (home directories) are made available to the SMB clients.

CD-ROM

```
;[cdrom]
; comment = Linux CD-ROM
; path = /media/cdrom
; locking = no
```

File 56: A CD-ROM Share

To avoid having the CD-ROM drive accidentally made available, these lines are commented by default.

- [cdrom] and comment [cdrom] is the name of the share that can be seen by all SMB clients on the net. An additional comment can be added to further describe the share.
- path=/media/cdrom exports the directory /media/cdrom.

By means of a very restrictive default configuration, this kind of share is only made available to the users present on this system. If this share should be made available to everybody, add a line guestok=yes to the configuration. This setting gives read permissions to anyone on the network. It is recommended to handle this parameter with great care. This applies even more to the use of this parameter in the [global] section.

[homes]

The [home] share is of special importance here. If the user has a valid account and password for the Linux file server and his own home directory, he can be connected to it.

```
[homes]
    comment = Home Directories
    valid users = %S
    browseable = no
    writeable = yes
    create mask = 0640
    directory mask = 0750
```

File 57: The [homes] Share

- [homes] As long as there is no other share using the share name of the user connecting to the SMB server, a share is dynamically generated using the [homes] share directives. The resulting name of the share is identical to the user name.
- valid users=%S %S is replaced by the concrete name of the share as soon as a connection has been successfully established.
 For a [homes] share, this is always identical to the user's name.
 As a consequence, access rights to a user's share are restricted exlusively to the user.
- browseable = no This setting enables the share to be invisible in the network environment.

- writeable = yes By default, Samba prohibits write access to any exported share by means of the read only = yes parameter. If a share should be made available as writeable, you must explicitly state this using the writeable = yes parameter. This is normally desired for user directories.
- create mask = 0640 Windows machines do not understand the concept of UNIX permissions, so cannot assign permissions when creating a file. The parameter create mask assigns what permissions to use when a new file is created. This only applies to shares with write permissions. In detail, this setting means that the owner of this file holds both read and write permissions. The members of his group have read access to this file. valid users
 %S prevents read access by the other members of the group.

Security Levels

The SMB protocol comes from the DOS and Windows world and directly takes into consideration the problem of security. Each share access can be protected with a password. SMB has three possible ways of achieving this:

- Share Level Security: A password is firmly allocated to a share. Everyone who knows this password has access to that share.
- User Level Security: This variation introduces the concept of the user in the SMB. Each user must register with the server with his own password. After registering, the server can grant access to individual exported shares independently of user names.
- Server Level Security: To its clients, Samba pretends to be working in User Level Mode. However, it passes on all password queries to another User Level Mode Server, which takes care of authentication. This setting expects an additional parameter (password server =).

The differentiation between share, user, and server level security must be made for the entire server. It is not possible to export some shares by Share Level Security and others by User Level Security. More information on this subject can be found in the file /usr/share/doc/packages/samba/ textdocs/security_level.txt.

Tip

For simple administration tasks with the Samba server, there is also the program swat. It provides a simple web interface with which to conveniently configure the Samba server. In a web browser, open http://localhost:901 and log in as user root. swat is also activated in the files /etc/inetd.conf and /etc/services. More information about swat can be found in its man page.

Tip 🗌

Samba as Login Server

In networks where predominantly Windows clients are found, it is often preferable that users may only register with a valid account and password. This can be brought about with the help of a Samba server. In a pure Windows network, a Windows NT server takes on this task. This is configured as a Primary Domain Controller (PDC). The following entries must be made in the [global] section of the smb.conf.

```
[global]
workgroup = TUX-NET
domain logons = yes
domain master = yes
```

File 58: [Global] Section in smb.conf

If encrypted passwords are used for verification purposes, the Samba server must be able to handle these. The entry encrypt passwords = yes in the [global] section enable this functionality. In addition, it is necessary to prepare user accounts and passwords in an encryption format that conforms with Windows. This is done with the command smbpasswd -a name. Since, in accordance with the Windows NT domain concept, the computers themselves need a domain account, this is created with the following commands: useradd -m machinename smbpasswd -a -m machinename

File 59: Adding a Machine Account

With the useradd command, a dollar sign, masked by a backslash, is added. The command smbpasswd includes this automatically when the -m parameter is used. See the commented sample configuration for the settings needed to automate this task.

add user script = /usr/sbin/useradd -g machines \
 -c "NT Machine Account" -d
/dev/null -s /bin/false %m\$

File 60: Automated Adding of a Machine Account

Installing Clients

First, it should be mentioned that clients can only access the Samba server via TCP/IP. NetBEUI and NetBIOS via IPX are not available at the moment. Since TCP/IP is becoming more and more popular, even with Novell and Microsoft, it is not certain whether this is going to change in the near future.

Windows 9x/ME

Windows 9x/ME already has built-in support for TCP/IP. However, this is not installed as the default. To add TCP/IP, go to 'Control Panel' \rightarrow 'System' and choose 'Add' \rightarrow 'Protocols' \rightarrow 'TCP/IP from Microsoft'. Be sure to enter your network address and network mask correctly. After rebooting your Windows machine, find the properly configured Samba server in networks (double-click the network icon on your desktop).

- Tip

To use a printer on the Samba server, install the standard or Apple-PostScript printer driver from the corresponding Windows version. It is best to link this to the Linux printer queue, which includes an automatic apsfilter recognition.

Tip -

Optimization

socket options is one possible optimization provided with the sample configuration that ships with your Samba version. Its default configuration refers to a local Ethernet network. To get further information about socket options, refer to the man page for smb.conf (man smb.conf), section "socket options" and to the man page for socket (man 7 socket). Additional optimization tips regarding speed can be found under /usr/share/doc/packages/samba/textdocs/Speed.txt and /usr/share/doc/packages/samba/textdocs/Speed2.txt.

The standard configuration under /etc/samba/smb.conf is designed to provide sensible settings for most purposes. The settings here differ from all default settings made by the Samba team. Providing reasonable settings is very difficult or rather impossible with regards to the network configuration or the name of the work group. Check the commented sample configuration under examples/smb.conf.SuSE for further directions about the adjustment of the configuration to local requirements.

Tip

The Samba team offers textdocs/DIAGNOSIS.txt, which is a stepby-step guide to check your configuration.

Netatalk

With the package netatalk, obtain a high-performance file and print server for MacOS clients. With it, access data on a Linux machine from a Macintosh or print to a connected printer.

Netatolk is a suite of Unix programs that run on kernel-based DDP (Datagram Delivery Protocol) and implement the AppleTalk protocol family (ADSP, ATP, ASP, RTMP, NBP, ZIP, AEP, and PAP). AppleTalk is, in effect, an equivalent to the more familiar protocol known as TCP (Transmission Control Protocol). It has counterparts to many services available on TCP/IP, including services for resolving host names and time synchronization. For example, the command nbplkup (NBP, Name Binding Protocol) is used instead of nslookup (DNS, Domain Name Service) and aecho (AEP, AppleTalk Echo Protocol) instead of ping (ICMP ECHO_REQUEST, Internet Control Message Protocol).

The three daemons described below are normally started on the server:

- atalkd ("AppleTalk Network Manager") that somewhat correlates with the programs ifconfig and routed
- afpd (AppleTalk Filing Protocol daemon), which provides an interface for Macintosh clients to Unix file systems
- papd (Printer Access Protocol daemon), which makes printers available in the (AppleTalk) network.

Of course, you can export server directories not only via Netatalk, but also, at the same time, via Samba for Windows clients (see Section *Clients* on page 280) and via NFS (see *NFS* — *Shared File Systems* on page 270), which is very useful in heterogeneous network environments. This centralizes the management of data backup and user permissions on the Linux server. Note:

- Due to Macintosh client restrictions, the user passwords on the server cannot be longer than eight characters.
- Macintosh clients cannot access Unix files with names longer than 31 characters.
- File names may not contain colons (`:') because they serve as path name separators in MacOS.

The package netatalk has to be installed.

Configuring the File Server

In the default configuration, Netotolk is already fully functional as a file server for home directories of the Linux system. To use the extended features, define some settings in the configuration files. These are located in the /etc/atalk directory.

All configuration files are pure text files. Text that follows a hash mark `#' (comments) and empty lines can be disregarded.

Configuring the Network — atalkd.conf

Define, in /etc/atalk/atalkd.conf, over which interfaces services are provided. This is usually eth0, which means that it suffices if the only value entered here is eth0. In the example file that comes with Netotolk, this is the case. Enter additional interfaces to use several network cards at the same time. When the server is started, it will search the network for already existing zones and servers and modify the corresponding lines by entering the set AppleTalk network addresses. You will then find a line such as

289

eth0 -phase 2 -net 0-65534 -addr 65280.57

at the end of the file. To make more complex configurations, find examples for this in the configuration file. Find documentation on additional options in the manual page of afpd.

Defining File Servers — afpd.conf

The afpd.conf file contains definitions for how your file server appears on MacOS machines as an item under the 'Chooser' dialog. As is the case with the other configuration files, these also contain detailed comments explaining the wide variety of options.

If you do not change anything here, the default server will simply be started and displayed with the host name in the 'Chooser'. Therefore, you do not necessarily have to enter anything. However, you can give additional file servers a variety of names and options here. For instance, to provide a specific "guest server" where everybody can save files as "guest",

"Guest server" -uamlist uams_guest.so

Define a server that denies guests access, but which is only accessible for users who already exist in the Linux system with:

"Font server" -uamlist uams_clrtxt.so,uams_dhx.so

This behavior is controlled by the option uamlist, followed by a list of authentication modules to use, separated by commas. If you do not provide this option, all procedures are active by default.

An AppleShare server not only provides its services by default via AppleTalk, but also ("encapsulated") via TCP/IP. The default port is 548. Assign dedicated ports to additional AppleShare servers (on the same machine) if these are to likewise run via TCP. The availability of the service via TCP/IP enables access to the server even over non-AppleTalk networks, such as the Internet.

In this case, the syntax would read:

```
"Font server" -uamlist uams_clrtxt.so,uams_dhx.so -port 12000
```

The AppleShare server, set to the port 12000, then appears in the network with the name "Font server" and will not allow guest access. In this way, it is also accessible via TCP/IP routers.

The file AppleVolumes.default (described in detail below) defines which directories located on the server are made available by each AppleShare server as network "volumes". Define other files containing unique descriptions for each AppleShare server using the option -defaultvol, such as with (in one line):

"Guest server" -uamlist uams_guest.so -defaultvol /etc/atalk/AppleVolumes.guest

Further options are explained in the afpd.conf file itself.

Directories and Access Permissions — AppleVolumes.default

Here, define directories to export. The access permissions are defined via the customary Unix user and group permissions. This is configured in the AppleVolumes.default file.

Note

Here, the syntax has partially changed. Take this into consideration if you are updating this version from a previous one. For example, it is now allow: instead of access= (a typical symptom would be if, instead of the drive descriptions, you were to see a display of the drive options on the Mac clients in the 'Chooser'.) Since the new files are created with the .rpmnew endings during an update, it is possible that your previous settings may no longer function as a result of the modified syntax. We recommend creating backups of your configuration files, copying your old configurations from them into your new files, then renaming these files to the proper names. This way, you will benefit from the current comments contained in the configuration files, which provide a detailed explanation of the diverse options.

Note -

Along with AppleVolumes.default, additional files can be created, such as AppleVolumes.guest, used by some servers (by giving the option -defaultvol in the afpd.conf file — see previous section).

The syntax

/usr/local/psfonts "PostScript Fonts"

indicates that the Linux directory /usr/local/psfonts located in the root directory is available as an AppleShare volume with the name "PostScript Fonts".

Options are separated by a space and attached to the end of a line. A very useful option is the access restriction:

/usr/local/psfonts "PostScript Fonts" allow:User1,@group0

which restricts access to the volume "PostScript Fonts" to the user "User1" and all members of the group "group0". The users and groups entered here have to be known, of course, to the Linux system. Likewise, explicitly deny users access with deny:User2.

These restrictions only apply to access via AppleTalk and not to the normal access rights users have if they can log in to the server itself.

Netatalk maps the customary Resource Fork of MacOS files to .AppleDouble directories in the Linux file system. Using the noadouble option, set these directories to be created only when they are actually needed. Syntax:

```
/usr/local/guests "Guests" options:noadouble
```

Additional options and features can be found in the explanations included in the file itself.

The tilde (`~') in this configuration file stands for the home directory for each and every user on the server. This way, every user can easily access his home directory without each one having to be explicitly defined here. The example file installed already includes a tilde, which is why Netatolk makes the home directory available by default as long as you do not modify anything in this file.

ofpd also searches for a file Applevolumes or .Applevolumes in the home directory of a user logged on to the system. Entries in this file supplement the entries in the server files AppleVolumes.system and AppleVolumes. default to enable individual type and creator file specifications and to access specific directories. These entries are extensions and do not allow access for the user for whom access permission is denied from the server side.

The netatalk.pamd file is used, via PAM (pluggable authentication modules), for authentication purposes. Using PAM is, however, irrelevant in this context.

File Specifications — AppleVolumes.system

In the AppleVolumes.System file, define which customary MacOS type and creator specifications are assigned to certain file endings. An entire series of

default values are already predefined. If a file is displayed by a generic white icon, there is not yet an entry for it in this file. If you encounter a problem with a text file belonging to another system, which cannot be opened properly in MacOS or vice versa, check the entries there.

Configuring the Print Server

A laserwriter service is made available by configuring the papd.conf file. The printer must be already functioning locally via lpd, so configure a printer as described in the Reference Manual. If you can print a text file locally using the command lpr file.txt, the first step has been successfully completed.

You do not necessarily need to enter anything in papd.conf if a local printer is configured in Linux, because print jobs can simply be forwarded to the print daemon lpd without additional specifications. The printer registers itself in the AppleTalk network as Laserwriter. You can, however, extend your printer entries by referring to File 61.

Printer_Reception:pr=lp:pd=/etc/atalk/kyocera.ppd

File 61: papd.conf

This causes the printer named Printer_Reception to appear as a 'Chooser' item. The corresponding printer description file is usually provided by the vendor. Otherwise, refer to the file Laserwriter located in the 'System Extensions' folder. However, using this file, often you cannot use all of the printer's features.

Starting the Server

The server can be started at system boot time via its "init script" or manually with rcatalk start. The init script is located at /etc/init.d/atalk.

The actual starting of the server takes place in the background. It takes about a minute until the AppleTalk interfaces are set up and responsive. Check for the status as shown in the following (all servers are running if OK is reported three times):

```
earth:~ # rcatalk status
Checking for service atalk:OKOKOK
```

Now it is time to go to a Mac running MacOS. Check for AppleTalk activation, choose 'Filesharing', double-click 'AppleShare'. The names of the servers should then appear in the window. Double-click a server and log in. Choose the volume and there is your shared net volume, accessible from within MacOS.

The procedure is a bit different for AppleShare servers configured to use TCP only (and no DDP). To connect, press the 'Server IP address' button and enter the respective IP address. If necessary, append the port number, separated by a colon (': ').

Additional Information

To take full advantage of all the options netatork offers, read the corresponding manual pages. Find them by entering the command

```
earth:~ # rpm -qd netatalk
```

The /etc/atalk/netatalk.conf file is not used in our netatalk version, so disregard it.

Helpful URLs:

- http://netatalk.sourceforge.net/
- http://www.umich.edu/~rsug/netatalk/
- http://thehamptons.com/anders/netatalk/
- http://cgi.zettabyte.net/fom-serve/netatalk/cache/1. html

We do not currently recommend trying to access an AppleShare file system hosted on a Macintosh from a Linux machine. Software is available, but it is in early development stages. For more information, refer to

```
http://www.panix.com/~dfoster/afpfs/
```

12 Internet

Internet

This chapter will provide details on the configuration of a proxy server, Squid. This service will accelerate your access to the resources of the world wide web.

Furthermore, the manual configuration of ADSL will be discussed, in case the configuration via YaST2 fails.

Configuring an ADSL or T-DSL Connection	296
Proxy Server: Squid	297

Configuring an ADSL or T-DSL Connection

Default Configuration

Currently, SuSE Linux supports DSL connections which work with the pointto-point over ethernet protocol (PPPoE) used by most major providers. If you are not sure what protocol is used for your DSL connections, ask your provider.

If you have a single-user workstation with a graphical interface, the DSL connection should be set up with the YaST2 modules ADSL/T-DSL .

- 1. The ppp and smpppd packages must be installed. It is best to use YaST2 for this purpose.
- 2. Configure your network card with YaST2. Do not activate dhcp, but set a fixed IP address instead, e.g. 192.168.2.22.
- 3. The parameters set with YaST2 will be saved in the file /etc/ sysconfig/network/providers/dsl-provider0. In addition, there are configuration files for the SuSE meta ppp daemon and its frontends kinternet and cinternet. Please consult the man page man smpppd.
- 4. Start the network with the command rcnetwork start.
- 5. With the commands cinternet -start and cinternet -stop the connection can be established or terminated on a non graphical system and On a graphical desktop use kinternet that is started automatically if you used YaST2 to set up DSL. Click on the gear icon in the control panel. Select 'Communication/Internet' → 'Internet Tools' → 'kinternet'. A plug icon will appear in the control panel. Start the connection by clicking on it once and, by clicking on it again, terminate the connection.

DSL Connection by Dial-on-Demand

Dial-on-demand means that the connection will automatically be set up when the user goes online, for example, when visiting a web site in a browser or when sending an e-mail. After a certain amount of idle time when no data is being sent or received, the connection will automatically be dropped. Since the dial-up connection via PPPoE, the protocol for ADSL, is quite fast, it is almost as if you had an ongoing Internet connection.

296

However, this really only makes sense if you have a flat-rate connection. If your Internet access is billed by the length of time online, make sure that there are not any interval processes, such as a cronjob, which may be periodically establishing a connection. This could get quite expensive.

Although a permanent online connection would also be possible using a DSL flat-rate connection, there are certain advantages to having a connection which only exists for a short amount of time when needed:

- Most providers drop the connection after a certain period of time.
- A permanent connection can be considered as a drain on resources (e.g. IP addresses).
- Being online permanently is a security risk, because hackers may be able to systematically comb the system for vulnerable areas. A system that is only accessible over the Internet when necessary and is always changing IP addresses is significantly more difficult to attack.

Dial-on-demand can be enabled using YaST2 (also refer to the *User Guide*) or set it up manually:

Set the parameter DEMAND="yes" in the /etc/sysconfig/network/ providers/dsl-provider0 file then define an idle time via the variable IDLETIME="60". This way, an unused connection will be dropped after 60 seconds.

Proxy Server: Squid

The following chapter describes how caching web sites assisted by a proxy server works and what the advantages of using proxy servers are. The most popular proxy cache for Linux and UNIX platforms is Squid. We will discuss its configuration, the specifications required to get it running, how to configure the system to do transparent proxying, how to gather statistics about the cache's use with the help of programs like Calamaris and cachemgr, and how to filter web contents with squidgrd.

About Proxy Caches

Squid acts as a proxy cache. It behaves like an agent that receives requests from clients, in this case web browsers, and passes them to the specified

server provider. When the requested objects arrive at the agent, it stores a copy in a disk cache.

Benefits arise when different clients request the same objects: these will be served directly from the disk cache, much faster than obtaining them from the Internet and, at the same time, saving overall bandwidth for the system.

Tip

Squid covers a wide range of features, including intercommunicating hierarchies of proxy servers to divide the load, defining strict access control lists to all clients accessing the proxy, and, with the help of other applications, allowing or denying access to specific web pages. It also can obtain statistics about the most visited web sites, user usage of the Internet, and others.

Tip_

Squid is not a generic proxy. It proxies normally only between HTTP connections. It does also support the protocols FTP, Gopher, SSL, and WAIS, but it does not support other Internet protocols, such as Real Audio, news, or videoconferencing. Because Squid only supports the UDP protocol to provide communication between different caches, many other multimedia programs will not be supported.

Some Facts About Cache Proxying

Squid and Security

It is also possible to use Squid together with a firewall to secure internal networks from the outside using a proxy cache. The firewall denies all external services except for Squid, forcing all World Wide Web connections to be established by the proxy.

If it is a firewall configuration including a DMZ, set the proxy there. In this case, it is important that all computers in the DMZ send their log files to hosts inside the secured network.

One way to implement this feature is with the aid of a "transparent" proxy. It will be covered in Section *Transparent Proxy Configuration* on page 307.

Multiple Caches

"Multiple Caches" means configuring different caches so objects can be exchanged between them, reducing the total system load and increasing the chances of finding an object already in the local network. It enables the configuration of cache hierarchies so a cache is able to forward object requests to sibling caches or to a parent cache. It can get objects from another cache in the local network or directly from the source.

Choosing the appropriate topology for the cache hierarchy is very important, because we do not want to increase the overall traffic on the network. For example, in a very large network, it is possible to configure a proxy server for every subnetwork and connect it to a parent proxy, connected in its turn to the proxy cache from the ISP.

All this communication is handled by ICP (Internet Cache Protocol) running on top of the UDP protocol. Data transfers between caches are handled using HTTP (Hyper Text Transmission Protocol) based on TCP, but for these kinds of connections, it is preferable to use faster and simpler protocols capable of reacting to incoming requests within a maximum of one or two seconds.

To find the most appropriate server from which to get the objects, one cache sends an ICP request to all sibling proxies. These will answer the requests via ICP responses with a HIT code if the object was detected or a MISS if it was not. If multiple HIT responses were found, the proxy server will decide which server to download depending on factors such as which cache sent the fastest answer or which one is closer. If no satisfactory responses have been sent, the request will be sent to the parent cache.

Tip

To avoid duplication of objects in different caches in our network, other ICP protocols are used such as CARP (Cache Array Routing Protocol) or HTCP (HyperText Cache Protocol). The more objects maintained in the network, the greater the possibility of finding the one we want.

Caching Internet Objects

Not all objects available in our network are static. There are a lot of dynamically generated CGI pages, visitor counters, or encrypted SSL content documents. This is the reason objects like this are not cached: every time you access one, it will have changed.

The question remains as to how long all the other objects stored in the cache should stay there. To determine this, all objects in the cache are assigned one of three states.

Web and proxy servers find out the status of an object by adding headers to these objects such as "Last modified" or "Expires" and the corresponding date. Other headers specifying that objects must not be cached are used as well.

Objects in the cache are normally replaced, due to a lack of free hard disk space, using algorithms such as LRU (Last Recently Used). It consists of first replacing the less requested objects.

System Requirements

The most important thing is to determine the maximum load the system will have to bear. It is, therefore, important to pay more attention to the load picks, because these might be more than four times the day's average. When in doubt, it would be better to overestimate the system's requirements, because having Squid working close to the limit of its capabilities could lead to a severe loss in the quality of the service.

Speed: Choosing Fast Hard Disks

Speed plays an important role in the caching process, so should be of utmost concern. In hard disks, this parameter is described as "random seek time", measured in milliseconds. As a rule of thumb, the lower this value, the better.

Size of the Disk Cache

It depends on a few factors. In a small cache, the probability of a HIT (finding the requested object already located there) will be small, because the cache is easily filled so the less requested objects will be replaced by newer ones. On the other hand, if 1 GB is available for the cache and the users only surf 10 MB a day, it will take more than 100 days to fill the cache.

Probably the easiest way to determine the needed cache size is to consider the maximum transfer rate of our connection. With a 1 MB/s connection, the maximum transfer rate will be 125 KB/s. If all this traffic ends up in the cache, in one hour it will add up to 450 MB and, assuming that all this traffic is generated in only 8 working hours, it will reach 3.6 GB in one day. Because the connection was not used up to its maximum capacity, we could assume that the total amount of data going through the cache is about 2 GB. In the example, to keep all the browsed data of *one* day in the cache, we will require 2 GB of disk space for Squid. Summing up, Squid tends to read and write smaller blocks from or to the disk, making it more important how fast it detects these objects on the disk than having a fast disk.

12 Internet

RAM

The amount of memory required by Squid directly correlates to the amount of objects allocated in the cache. Squid also stores cache object references and frequently requested objects in memory to speed up the retrieving of this data. The memory is one million times faster than a hard disk. Compare the seek time of a hard disk, about 10 milliseconds, with the 10 nanoseconds access time of the newer RAM memories.

It is very important to have more than enough memory for the Squid process, because the system performance will be dramatically reduced if it has to be swapped to disk. To assist in cache memory management, use the tool cachemgr.cgi, as discussed in Section *cachemgr.cgi* on page 311.

CPU

Squid is not a program that requires intensive CPU usage. The load of the processor is only increased while the contents of the cache are being loaded or checked. Using a multiprocessor machine does not increase the performance of the system. To increase efficiency, it is better to buy faster disks or add more memory.

Some examples of configured systems running Squid are available at http: //www.cache.ja.net/servers/squids.html.

Starting Squid

Squid is already preconfigured in SuSE Linux Enterprise Server, so you can start it easily right after installation. A prerequisite for a smooth start is an already configured network, at least one name server and, of course, Internet access. Problems can arise if a dial-up connection is used with dynamic DNS configuration. In cases such as this, at least the name server should be clearly entered, since Squid will not start if it does not detect a DNS in the /etc/resolv.conf.

To start Squid, enter rcsquid start at the command line as root. For the initial start-up, the directory structure must first be defined in /var/squid/ cache. This is done by the start script /etc/init.d/squid automatically and can take a few seconds or even minutes. If done appears to the right in green, Squid has been successfully loaded. Test Squid's functionality on the local system by entering localhost and Port 3128 as proxy in the browser. To allow all users to access Squid and thus the Internet, change the entry in the configuration file /etc/squid.conf from http_access deny all to http_access allow all. However, in doing so, consider

that Squid is made completely accessible to anyone by this action. Therefore, define ACLs that control access to the proxy. More on this is available in Section *Options for Access Controls* on page 305.

If you have made changes in the configuration file /etc/squid.conf, instruct Squid to load the changed file. Do this by entering rcsquid reload or restart Squid with rcsquid restart. With rcsquid status, determine whether the proxy is running and with rcsquid stop halt Squid. The latter can take a while, since Squid waits up to half a minute (shutdown_lifetime option in /etc/squid.conf) before dropping the connections to the clients then will still have to write its data to the disk. If Squid is halted with kill or killall, this can lead to the destruction of the cache, which will then have to be fully removed to restart Squid.

If Squid dies after a short period of time, although it has seemingly been started successfully, it can be the result of a faulty name server entry or a missing /etc/resolv.conf file. The cause of the start failure would then be logged by Squid in the /var/squid/logs/cache.log file.

If Squid should be loaded automatically when the system boots, reset the entry START_SQUID=no to START_SQUID=yes in the /etc/sysconfig/ squid file.

An uninstall of Squid will neither remove the cache or the log files. Manually delete the /var/cache/squid directory.

Local DNS Server

Setting up a local DNS server, such as BIND-8 or BIND-9, makes absolute sense even if the server does not manage its own domain. It will then simply act as a "caching-only DNS" and will also be able to resolve DNS requests via the root name server without requiring any special configuration. If you enter this in the /etc/resolv.conf with the IP address 127.0.0.1 for localhost, Squid will detect a valid name server when it starts up. Configuring a name server is discussed in Section DNS — Domain Name Service on page 256. It is sufficient, however, to install the package and to boot it. The name server of the provider should be entered in the configuration file /etc/named.conf under forwarders along with its IP address. If you have a firewall running, even if it is just personal-firewall, make sure the DNS requests will be sent.

The Configuration File /etc/squid.conf

All Squid proxy server settings are made in the /etc/squid.conf file. To start Squid for the first time, no changes will be necessary in this file, but

external clients will initially be denied access. The proxy needs to be made available for the localhost, usually with 3128 as port. The options are extensive and therefore provided with ample documentation and examples in the preinstalled /etc/squid.conf file. Nearly all entries begin with a # sign (the lines are commented out) and the relevant specifications can be found at the end of the line. The given values almost always correlate with the default values, so removing the comment signs without changing any of the parameters actually has little effect in most cases. It is better to leave the sample as it is and reinsert the options along with the modified parameters in the line below. In this way, easily interpret the default values and the changes.

If you have updated an earlier Squid version, it is recommended to edit the new /etc/squid.conf and only apply the changes made in the previous file. If you try to implement the old squid.conf again, you are running a risk that the configuration will no longer function, because options are sometimes modified and new changes added.

General Configuration Options

- http_port 3128 This is the port where Squid listens for client requests. The default port is 3128, but 8080 is also common. You have the option here of specifying several port numbers separated by blank spaces.
- cache_peer <hostname> <type> <proxy-port> <icp-port> Here, enter a parent proxy as "parent", for example, or use that of the provider. As <hostname>, the name and IP address of the proxy to use are entered and, as <type>, parent. For <proxy-port>, enter the port number that is also specified by the operator of the parent for use in the browser, usually 8080. Set the <icp-port> to 7 or 0 if the ICP port of the parent is not known and its use is irrelevant to the provider. In addition, default and no-query should be specified after the port numbers to strictly prohibit the use of the ICP protocol. Squid will then behave like a normal browser as far as the provider's proxy is concerned.
- cache_mem 8 MB This entry defines the amount of memory Squid can use for the caches. The default is 8 MB.
- cache_dir ufs /var/cache/squid/ 100 16 256 The entry cache_dir defines
 the directory where all the objects are stored on disk. The numbers at
 the end indicate the maximum disk space in MB to use and the number
 of directories in the first and second level. The ufs parameter should
 be left alone. The default is 100 MB occupied disk space in the /var/

cache/squid directory and creation of 16 subdirectories inside it, each containing 256 more subdirectories. When specifying the disk space to use, leave sufficient reserve disk space. Values from a minimum of fifty to a maximum of eighty percent of the available disk space make the most sense here. The last two numbers for the directories should only be increased with caution, because too many directories can also lead to performance problems. If you have several disks that share the cache, enter several cache_dir lines.

- cache_access_log /var/squid/logs/access.log path for log messages
- cache_log /var/squid/logs/cache.log path for log messages
- cache_store_log /var/squid/logs/store.log path for log messages

These three entries specify the path where Squid will log all its actions. Normally, nothing is changed here. If Squid is experiencing a heavy usage burden, it might make sense to distribute the cache and the log files over several disks.

- **emulate_httpd_log off** If the entry is set to on, obtain readable log files. Some evaluation programs cannot interpret this, however.
- client_netmask 255.255.255.255 With this entry, mask the logged IP addresses in the log files to hide the clients' identity. The last digit of the IP address will be set to zero if you enter 255.255.255.0 here.
- ftp_user Squid@ With this, set the password Squid should use for the anonymous FTP login. It can make sense, however, to specify a valid e-mail address here, because some FTP servers can check these for validity.
- cache_mgr webmaster An e-mail address to which Squid sends a message if it unexpectedly crashes. The default is webmaster.
- logfile_rotate 0 If you run squid -k rotate, Squid can rotate secured log files. The files will be enumerated in this process and after reaching the specified value, the oldest file at that point will be overwritten. This value here normally stands for 0 because archiving and deleting log files in SuSE Linux Enterprise Server is carried out by a cronjob found in the configuration file /etc/logrotate.d/syslog. The period of time after which the files are deleted is defined in the /etc/sysconfig/aaa_base file via the MAX_DAYS_FOR_LOG_FILES entry.

- **append_domain <domain>** With append_domain, specify which domain to append automatically when none is given. Usually, your own domain is entered here, so entering www in the browser accesses your own web server.
- **forwarded_for on** If you set the entry to off, Squid will remove the IP address and the system name of the client from the HTTP requests.
- negative_ttl 5 minutes; negative_dns_ttl 5 minutes Normally, you do not need to change these values. If you have a dial-up connection, however, the Internet may, at times, not be accessible. Squid will make a note of the failed requests then refuse to issue new ones, although the Internet connection has been reestablished. In a case such as this, change the minutes to seconds then, after clicking on Reload in the browser, the dial-up process should be reengaged after a few seconds.
- never_direct allow <acl_name> To prevent Squid from taking requests directly from the Internet, use the above command to force connection to another proxy. You need to have previously entered this in cache_peer. If all is specified as the <acl_name>, force all requests to be forwarded directly to the parent. This might be necessary, for example, if you are using a provider that strictly stipulates the use of its proxies or denies its firewall direct Internet access.

Options for Access Controls

Squid provides an intelligent system that controls access to the proxy. By implementing ACLs, it can be configured easily and comprehensively. This involves lists with rules that are processed sequentially. ACLs must be defined before they can be used. Some default ACLs, such as all and localhost, already exist. After defining an ACL, implement it, for example, in conjunction with http_access.

acl <acl_name> <type> <data> An ACL requires at least three specifications to define it. The name <acl_name> can be chosen arbitrarily. For <type>, select from a variety of different options which can be found in the ACCESS CONTROLS section in the /etc/squid.conf file. The specification for <data> depends on the individual ACL type and can also be read from a file, for example, via host names, IP addresses, or URLs. The following are some simple examples:

acl mysurfers srcdomain .my-domain.com acl teachers src 192.168.1.0/255.255.255.0 acl students src 192.168.7.0-192.168.9.0/255.255.255.0 acl lunch time MTWHF 12:00-15:00

http_access allow <acl_name> http_access defines who is allowed to use the proxy and who can access what on the Internet. For this, ACLs will have to be given. localhost and all have already been defined above, which can deny or allow access via deny or allow. A list containing any number of http_access entries can be created, processed from top to bottom, and, depending on which occurs first, access will be allowed or denied to the respective URL. The last entry should always be http_access deny all. In the following example, the localhost has free access to everything while all other hosts are denied access completely.

http_access allow localhost
http_access deny all

Another example, where the previously defined ACLs are used: The group teachers always has access to the Internet. The group students only gets access Monday to Friday during lunch time.

http_access deny localhost
http_access allow teachers
http_access allow students lunch time
http_access deny all

The list with the http_access entries should only be entered, for the sake of readability, at the designated position in the /etc/squid.conf file. That is, between the text

INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS

and the last

http_access deny all

redirect_program /usr/bin/squidGuard With this option, a redirector, such as SquidGuard, which is able to block unwanted URLs, can be specified. Internet access can be individually controlled for various user groups with the help of proxy authentication and the appropriate ACLs. SquidGuard is a package in and of itself that can be separately installed and configured. authenticate_program /usr/sbin/pam_auth If users must be authenticated on the proxy, a corresponding program, such as pam_auth, can be specified here. When accessing pam_auth for the first time, the user will see a login window where the user name and password must be entered. In addition, an ACL is still required so only clients with a valid login can use the Internet:

acl password proxy_auth REQUIRED http_access allow password http_access deny all

The REQUIRED after proxy_auth can be replaced with a list of permitted user names or with the path to such a list.

ident_lookup_access allow <acl_name> With this, have an ident request run for all ACL-defined clients to find each user's identity. If you apply all to the <acl_name>, this will be valid for all clients. Also, an ident daemon must be running on all clients. For Linux, install the pidentd package for this purpose. For Windows, there is free software available to download from the Internet. To ensure that only clients with a successful ident lookup are permitted, a corresponding ACL will also have to be defined here:

acl identhosts ident REQUIRED http_access allow identhosts http_access deny all

Here, too, replace the REQUIRED with a list of permitted user names. Using ident can slow down the access time quite a bit, because ident lookups will be repeated for each request.

Transparent Proxy Configuration

The usual way of working with proxy servers is the following: the web browser sends requests to a certain port in the proxy server and the proxy provides these required objects, whether they are in its cache or not. When working in a real network, several situations may arise:

- For security reasons, it is recommended that all clients use a proxy to surf the Internet.
- All clients must use a proxy whether they are aware of it or not.
- In larger networks already using a proxy, it is possible to spare yourself the trouble of reconfiguring each machine whenever changes are made in the system.

In all these cases, a transparent proxy may be used. The principle is very easy: the proxy intercepts and answers the requests of the web browser, so that the web browser receives the requested pages without knowing from where they are coming. This entire process is done transparently, hence the name.

Kernel Configuration

First, make sure the proxy server's kernel has support for transparent proxying. Otherwise, add this option to the kernel and compile it again. More on this topic is available in *The Kernel* on page 171.

Kernel modules change sometimes from version to version. Check the current state in the Transparent Proxy mini-howto installed in your SuSE Linux Enterprise Server system at /usr/share/doc/howto/en/html/mini/ TransparentProxy-3.html or online at the Linux Documentation Project web page (http://www.tldp.org/HOWTO/mini/TransparentProxy-3. html).

Now, save the new configuration, compile the new kernel, install it, and reconfigure GRUB or LILO, if necessary. Finally, restart the system.

Configuration Options in /etc/squid.conf

The options to activate in the /etc/squid.conf file to get the transparent proxy up and running are:

- httpd_accel_host virtual
- httpd_accel_port 80 # the port number where the actual HTTP server is located
- httpd_accel_with_proxy on
- httpd_accel_uses_host_header on

Firewall Configuration with SuSEfirewall2

Now redirect all incoming requests via the firewall with help of a port forwarding rule to the Squid port.

To do this, use the SuSE-provided tool SuSEfirewall2. Its configuration file can be found in /etc/sysconfig/scripts/SuSEfirewall2-custom. Again, the configuration file consists of well-documented entries. Even to set only a transparent proxy, you must configure a couple firewall options In our example:

- Device pointing to the Internet: FW_DEV_WORLD="eth1"
- Device pointing to the network: FW_DEV_INT="eth0"

Set ports and services (see /etc/exports) on the firewall being accessed from untrusted networks such as the Internet. In this example, only web services are offered to the outside:

FW_SERVICES_EXTERNAL_TCP="www"

Define ports or services (see /etc/exports) on the firewall to be accessed from the secure network, both TCP and UDP services:

FW_SERVICES_INTERNAL_TCP="domain www 3128"

FW_SERVICES_INTERNAL_UDP="domain"

We are accessing web services and Squid (whose default port is 3128).

The service "domain" specified before stands for DNS or Domain Name Server. It is most common to use this service, otherwise we simply take it out of the above entries and set the following option to no:

```
FW_SERVICE_DNS="yes"
```

The most important option is number 15:

```
#
#
15.)
# Which accesses to services should be redirected to a localport
# on the firewall machine?
#
This can be used to force all internal users to surf via your
# squid proxy, or transparently redirect incoming webtraffic to
# a secure webserver.
#
Choice: leave empty or use the following explained syntax of
# redirecting rules, separated by a space.
# A redirecting rule consists of 1) source IP/net,
# 2) destination IP/net, 3) original destination port and
# 4) local port to redirect the traffic to, separated by a colon,
# e.g. "10.0.0/8,0/0,80,3128 0/0,172.20.1.1,80,8080"
#
```

File 62: Option 15 der Firewallkonfiguration

The comments above show the syntax to follow. First, the IP address and the netmask of the "internal networks" accessing the proxy firewall. Second, the IP address and the netmask to which these clients "send" their requests. In the case of web browsers, specify the networks 0/0, a wild card that means "to everywhere". After that, enter the "original" port to which these requests are sent and, finally, the port to which all these requests are "redirected". As Squid supports more protocols than HTTP, redirect requests from other ports to our proxy, such as FTP (port 21), HTTPS, or SSL (port 443). The example uses the default port 3128. If there are more networks or services to add, they only need to be separated by a single blank character in the corresponding entry.

```
FW_REDIRECT_TCP="192.168.0.0/16,0/0,80,3128 192.168.0.0/16,0/0,21,3128"
```

```
FW_REDIRECT_UDP="192.168.0.0/16,0/0,80,3128 192.168.0.0/16,0/0,21,3128"
```

To start the firewall and the new configuration with it, change an entry in the /etc/sysconfig/SuSEfirewall2 file. The entry START_FW must be set to "yes".

Start Squid as shown in Section *Starting Squid* on page 301. To check if everything is working properly, take a look at the Squid logs in /var/log/ squid/access.log.

To verify that all ports are correctly configured, perform a port scan on the machine from any computer outside your network. Only the web services

port (80) should be open. Do the port scan with nmap:

```
nmap -0 IP_address
```

Squid and Other Programs

In the following section, see how other applications interact with Squid. cachemgr.cgi enables the system administrator to check the amount of memory needed for caching objects. squidgrd filters web pages. Calamaris is a report generator for Squid.

cachemgr.cgi

The cache manager (cachemgr.cgi) is a CGI utility for displaying statistics about the memory usage of a running Squid process. It is also a more convenient way to manage the cache and view statistics without logging the server.

Setup

First, a running web server on your system is required. To check if Apache is already running, type, as root, rcapache status.

If a message like this appears:

Checking for service httpd: OK Server uptime: 1 day 18 hours 29 minutes 39 seconds

Apache is running on your machine. Otherwise, type rcapache start to start Apache with the SuSE Linux default settings.

The last step to set it up is to copy the file cachemgr.cgi to the Apache directory cgi-bin:

```
cp /usr/share/doc/packages/squid/scripts/cachemgr.cgi
/usr/local/httpd/cgi-bin
```

Cache Manager ACLs in /etc/squid.conf

There are some default settings in the original file required for the cache manager:

```
acl manager proto cache_object
acl localhost src 127.0.0.1/255.255.255.255
```

With the following rules:

http_access allow manager localhost
http_access deny manager

the first ACL is the most important, as the cache manager tries to communicate with Squid over the cache_object protocol.

The following rules assume that the web server and Squid are running on the same machine. If the communication between the cache manager and Squid originates at the web server on another computer, include an extra ACL as in Figure 63.

acl manager proto cache_object
acl localhost src 127.0.0.1/255.255.255.255
acl webserver src 192.168.1.7/255.255.255.255 # IP of webserver

File 63: Access Rules

Then add the rules as in Figure 64.

http_access allow manager localhost http_access allow manager webserver http_access deny manager

File 64: Access Rules

Configure a password for the manager for access to more options like closing the cache remotely or viewing more information about the cache. For this, configure the entry cachemgr_passwd with a password for the manager and the list of options to view. This list appears as a part of the entry comments in /etc/squid.conf.

Restart Squid with the option -k reconfigure every time the configuration file is changed.

Viewing the Statistics

Go to the corresponding web site: http://webserver.example.org/cgi-bin/cachemgr.cgi

Press 'continue' and browse through the different statistics. More details on each entry shown by the cache manager is in the Squid FAQ at http: //www.squid-cache.org/Doc/FAQ/FAQ-9.html

12 Internet

SquidGuard

This section is not intended to go through an extensive configuration of SquidGuard, only to introduce it and give some advice on using it. For more in-depth configuration issues, refer to the SquidGuard web site at http://www.squidguard.org

SquidGuard is a free (GPL), flexible, and fast filter, redirector, and access controller plug-in for Squid. It lets you define multiple access rules with different restrictions for different user groups on a Squid cache. SquidGuard uses Squid's standard redirector interface.

SquidGuard can be used for the following:

- limit the web access for some users to a list of accepted or well-known web servers or URLs
- block access to some listed or blacklisted web servers or URLs for some users
- block access to URLs matching a list of regular expressions or words for some users
- redirect blocked URLs to an "intelligent" CGI-based info page
- redirect unregistered users to a registration form
- redirect banners to an empty GIF
- have different access rules based on time of day, day of the week, date, etc.
- have different rules for different user groups
- and much more

Neither SquidGuard or Squid can be used to:

- Edit, filter, or censor text inside documents
- Edit, filter, or censor HTML-embedded script languages such as JavaScript or VBscript

Using SquidGuard

Install the package squidgrd. Edit a minimal configuration file /etc/ squidguard.conf. There are plenty of configuration examples in http: //www.squidguard.org/config/. Experiment later with more complicated configuration settings.

The following step is to create a dummy "access denied" page or a more or less intelligent CGI page to redirect Squid if the client requests a blacklisted web site. Using Apache is strongly recommended.

Now, tell Squid to use SquidGuard. Use the following entry in the /etc/ squid.conf file:

```
redirect_program /usr/bin/squidGuard
```

There is another option called redirect_children configuring how many different "redirect" (in this case SquidGuard) processes are running on the machine. SquidGuard is fast enough to cope with lots of requests (SquidGuard is quite fast: 100,000 requests within 10 seconds on a 500MHz Pentium with 5900 domains, 7880 URLs, 13780 in sum). Therefore, it is not recommended to set more than 4 processes, because this may lead to an unnecessary increase of memory for the allocation of these processes.

```
redirect_children 4
```

Last of all, send a HUP signal to Squid to have it read the new configuration:

squid -k reconfigure

Test your settings with a browser.

Cache Report Generation with Calamaris

Calamaris is a Perl script used to generate reports of cache activity in ASCII or HTML format. It works with native Squid access log files. The Calamaris Home Page is located at http://Calamaris.Cord.de/

The use of the program is quite easy. Log in as root, then:

cat access.log.files | calamaris [options] > reportfile

It is important when piping more than one log file that the log files are chronologically ordered, with older files first.

The various options:

-a normally used for the output of available reports

-w an HTML report

-l a message or logo in the header of the report

More information on the various options can be found in the manual page man calamaris.

A typical example is:

This puts the report in the directory of the web server. Apache is required to view the reports.

Another powerful cache report generator tool is SARG (Squid Analysis Report Generator). More information on this can be found in the relevant Internet pages at http://web.onda.com.br/orso/

More Information on Squid

Visit the home page of Squid at http://www.squid-cache.org/. Here, find the Squid User Guide and a very extensive collection of FAQs on Squid.

```
There is a Mini-Howto regarding transparent proxies in the package howtoen, under /usr/share/doc/howto/en/mini/TransparentProxy.gz
```

In addition, mailing lists are available for Squid at: squid-users@squid-cache.org.

The archive for this is located at: http://www.squid-cache.org/mail-archive/squid-users/

E2FSCK(8)

E2FSCK(8)

NAME

e2fsck - check a Linux second extended file system

SYNOPSIS

e2fsck [-pacnyrdfvstFSV] [-b superblock] [-B blocksize] [-l|-L bad_blocks_file] [-C fd] [-j externaljournal] [device

Manual Page of e2fsck

DESCRIPTION

e2fsck is used to check a Linux second extended file system (e2fs). E2fsck also supports ext2 filesystems countaining a journal, which are also sometimes known as ext3 filesystems.

device is the special file corresponding to the device (e.g /dev/hdcl).

OPTIONS

-a This option does the same thing as the -p option. It is provided for backwards compatibility only; it is suggested that people use -p option whenever possible.

-b superblock

Instead of using the normal superblock, use an alternative superblock specified by superblock. This option is normally used when the primary superblock has been corrupted. The location of the backup superblock is dependent on the filesystem's blocksize. For filesystems with 1k blocksizes, a backup superblock can be found at block 8193; for filesystems with 2k blocksizes, at block 16384; and for 4k blocksizes, at block 32768.

Additional backup superblocks can be determined by using the mke2fs program using the -n option to print out where the superblocks were created. The -b option to mke2fs, which specifies blocksize of the filesystem must be specified in order for the superblock locations that are printed out to be accurate.

If an alternative superblock is specified and the filesystem is not opened read-only, e2fsck will make sure that the primary superblock is updated appropriately upon completion of the filesystem check.

-B blocksize

Normally, e2fsck will search for the superblock at various different block sizes in an attempt to find the appropriate block size. This search can be fooled in some cases. This option forces e2fsck to only try locating the superblock at a particular blocksize. If the superblock is not found, e2fsck will terminate with a fatal error.

- -c This option causes e2fsck to run the badblocks(8) program to find any blocks which are bad on the filesystem, and then marks them as bad by adding them to the bad block inode.
- -C This option causes e2fsck to write completion information to the specified file descriptor so that the progress of the filesystem check can be monitored. This option is typically used by programs which are running e2fsck. If the file descriptor specified is 0, e2fsck will print a completion bar as it goes about its business. This requires that e2fsck is running on a video console or terminal.
- -d Print debugging output (useless unless you are debugging e2fsck).
- -f Force checking even if the file system seems clean.
- -F Flush the filesystem device's buffer caches before beginning. Only really useful for doing e2fsck time trials.

-j external-journal Set the pathname where the external-journal for this filesystem can be found.

-l filename

Add the blocks listed in the file specified by filename to the list of bad blocks. The format of this file is the same as the one generated by the badblocks(8) program.

-L filename

Set the bad blocks list to be the list of blocks specified by filename. (This option is the same as the -l option, except the bad blocks list is cleared before the blocks listed in the file are added to the bad blocks list.)

- -n Open the filesystem read-only, and assume an answer of 'no' to all questions. Allows e2fsck to be used non-interactively. (Note: if the -c, -l, or -L options are specified in addition to the -n option, then the filesystem will be opened read-write, to permit the bad-blocks list to be updated. However, no other changes will be made to the filesystem.)
- -p Automatically repair ("preen") the file system without any questions.
- -r This option does nothing at all; it is provided only for backwards compatibility.
- -s This option will byte-swap the filesystem so that it is using the normalized, standard byte-order (which is i386 or little endian). If the filesystem is already in the standard byte-order, e2fsck will take no action.
- -S This option will byte-swap the filesystem, regardless of its current byte-order.
- -t Print timing statistics for e2fsck. If this option is used twice, additional timing statistics are printed on a pass by pass basis.
- -v Verbose mode.
- -V Print version information and exit.
- -y Assume an answer of 'yes' to all questions; allows e2fsck to be used non-interactively.

EXIT CODE

The exit code returned by e2fsck is the sum of the following conditions:

- 0 No errors
- 1 File system errors corrected
- 2 File system errors corrected, system should be rebooted if file system was mounted
- 4 File system errors left uncorrected

8 - Operational error16 - Usage or syntax error

128 - Shared library error

SIGNALS

The following signals have the following effect when sent to e2fsck.

SIGUSR1

This signal causes e2fsck to start displaying a completion bar. (See discussion of the -C option.)

SIGUSR2

This signal causes e2fsck to stop displaying a completion bar.

REPORTING BUGS

Almost any piece of software will have bugs. If you manage to find a filesystem which causes e2fsck to crash, or which e2fsck is unable to repair, please report it to the author.

Please include as much information as possible in your bug report. Ideally, include a complete transcript of the e2fsck run, so I can see exactly what error messages are displayed. If you have a writeable filesystem where the transcript can be stored, the script(1) program is a handy way to save the output of e2fsck to a file.

It is also useful to send the output of dumpe2fs(8). If a specific inode or inodes seems to be giving e2fsck trouble, try running the debugfs(8) command and send the output of the stat(1u) command run on the relevant inode(s). If the inode is a directory, the debugfs dump command will allow you to extract the contents of the directory inode, which can sent to me after being first run through uuen code(1).

Always include the full version string which e2fsck displays when it is run, so I know which version you are running.

AUTHOR

This version of e2fsck was written by Theodore Ts'o <tytso@mit.edu>.

SEE ALSO

mke2fs(8), tune2fs(8), dumpe2fs(8), debugfs(8)

E2fsprogs version 1.25 September 2001 E2FSCK(8)

The GNU General Public License

GNU General Public License

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Foreword

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the *GNU General Public License* is intended to guarantee your freedom to share and change free software — to make sure the software is free for all its users. This *General Public License* applies to most of the *Free Software Foundation's* software and to any other program whose authors commit to using it. (Some other *Free Software Foundation* software is covered by the *GNU Library General Public License* instead.) You can apply it to your programs, too.

When we speak of *"free" software*, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change

the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU General, Public License

Terms and Conditions for Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this *General Public License*. The "Program", below, refers to any such program or work, and a *work based on the Program* means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

- a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
- b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
- c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a

whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

- a) Accompany it with the complete corresponding machine–readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
- b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine–readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
- c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, "complete source code" means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or

binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty–free redistribution of the Program by all those who receive copies directly or indirectly through you, then the

only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The *Free Software Foundation* may publish revised and/or new versions of the *General Public License* from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the *Free Software Foundation*. If the Program does not specify a version number of this License, you may choose any version ever published by the *Free Software Foundation*.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the *Free Software Foundation*, write to the *Free Software Foundation*; we sometimes make exceptions for this.

Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no warranty for the program, to the extent permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or other parties provide the program "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the program is with you. Should the program prove defective, you assume the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in writing will any copyright holder, or any other party who may modify and/or redistribute the program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

End of Terms and Conditions

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

> one line to give the program's name and a brief idea of what it does. Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19*yy* name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details.

The hypothetical commands show w and show c should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than show w and show c; they could even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision' (which makes passes at compilers) written by James Hacker.

Signed by Ty Coon, 1 April 1989 Ty Coon, President of Vice

This *General Public License* does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the *GNU Library General Public License* instead of this License.

Bibliography

[Alm94]	ALMESBERGER, Werner: LILO User's guide, 1994. – (see file /usr/ doc/lilo/user.dvi)
[Bai97]	BAILEY, Edward C.: <i>Maximum RPM</i> . Red Hat, 1997. – (ISBN 1-888172-78-9)
[CAR93]	COSTALES, Bryan; ALLMAN, Eric ; RICKERT, Neil: <i>sendmail</i> . O'Reilly & Associates, Inc., 1993. – (ISBN 1-56592-056-2)
[CB96]	CHESWICK, William R.; BELLOVIN, Steven M.: <i>Firewalls und Sicher-</i> <i>heit im Internet</i> . Addison Wesley GmbH, 1996. – (ISBN 3-89319-875- x)
[CR91]	CAMERON, Debra; ROSENBLATT, Bill: Learning GNU Emacs. O'Reilly & Associates, Inc., 1991. – (ISBN 0 937175-84-6)
[CZ96]	CHAPMAN; ZWICKY: Einrichten von Internet Firewalls. Sicherheit im Internet gewährleisten O'Reilly & Associates, Inc., 1996. – (ISBN 3-930673312)
[Daw95]	DAWSON, Terry: Linux NET-2/NET-3 HOWTO, v2.8, 07 Jan 1995. – (see file /usr/doc/howto/NET-2-HOWTO)
[FCR93]	FANG, Chin; CROSSON, Bob ; RAYMOND, Eric S.: The Hitchhiker's Guide to X386/XFree86 Video Timing (or, Tweaking your Monitor for Fun and Profit), 1993. – (see file /usr/X11/lib/X11/doc/VideoModes.doc)
[Fri93]	FRISCH, Æleen: Essential System Administration. O'Reilly & Asso- ciates, Inc., 1993. – (ISBN 0-937175-80-3)
[Gil92]	GILLY, Daniel: UNIX in a nutshell: System V Edition. O'Reilly & Associates, Inc., 1992. – (ISBN 1-56592-001-5)

- [GMS93] GOOSSENS, Michel; MITTELBACH, Frank ; SAMARIN, Alexander: The LATEX Companion. Addison Wesley GmbH, 1993. – (ISBN 3-54199-8)
- [Gri94] GRIEGER, W.: Wer hat Angst vorm Emacs?. Addison Wesley GmbH, 1994. (ISBN 3-89319-620-X)
- [GS93] GARFINKEL, Simson; SPAFFORD, Gene: *Practical UNIX Security*. O'Reilly & Associates, Inc., 1993. – (ISBN 0-937175-72-2)
- [Her92] HEROLD, H.: UNIX Grundlagen. Addison Wesley GmbH, 1992. (ISBN 3-89319-542-8)
- [HHMK96]HETZE, Sebastian; HOHNDEL, Dirk; MÜLLER, Martin ; KIRCH, Olaf: Linux Anwenderhandbuch. 6. LunetIX Softfair, 1996. – (ISBN 3-929764-05-9)
- [Hof97] HOFFMANN, Erwin: EMail-Gateway mit qmail. In: *iX* 12 (1997), S. 108ff
- [Hun95] HUNT, Craig: TCP/IP Netzwerk Administration. O'Reilly & Associates, Inc., 1995. – (ISBN 3-930673-02-9)
- [Kie95] KIENLE, Micheal: TIS: Toolkit für anwendungsorientierte Firewall-Systeme. In: *iX* 8 (1995), S. 140ff
- [Kir95] KIRCH, Olaf: LINUX Network Administrator's Guide. O'Reilly & Associates, Inc., 1995. – (ISBN 1-56592-087-2)
- [Kof95] KOFLER, M.: Linux. Addison Wesley GmbH, 1995. (ISBN 3-89319-796-6)
- [Kop94] KOPKA, Helmut: *ШE*X-*Einführung*. Addison Wesley GmbH, 1994. – (ISBN 3-89319-664-1)
- [Kun95] KUNITZ, Ulrich: Sicherheit fast kostenlos: Einrichtung eines kostenlosen Firewall-Systems. In: *iX* 9 (1995), S. 176ff
- [Lam90] LAMB, Linda: Learning the vi Editor. O'Reilly & Associates, Inc., 1990. – (ISBN 0-937175-67-6)
- [Lam94] LAMPORT, Leslie: *LT_EX User's Guide and Reference Manual*. Addison Wesley GmbH, 1994. – (ISBN 0-201-52983-1)
- [Lef96a] LEFFLER, Sam: HylaFAX Home Page, 1996
- [Lef96b] LEFFLER, Sam: TIFF Software, 1996

- [OT92] O'REILLY, Tim; TODINO, Grace: *Manging UUCP and Usenet*. O'Reilly & Associates, Inc., 1992. – (ISBN 0-937175-93-5)
- [Per94] PERLMAN, G.: Unix For Software Developers. Prentice-Hall, 1994. (ISBN 13-932997-8)
- [Pug94] PUGH, K.: UNIX For The MS-DOS User. Prentice-Hall, 1994. (ISBN 13-146077-3)
- [SB92] SCHOONOVER, M.; BOWIE, J.: GNU Emacs. Addison Wesley GmbH, 1992. (ISBN 0-201-56345-2)
- [Sch98] SCHEIDERER, Jürgen: Sicherheit Kostenlos Firewall mit Linux. In: *iX* 12 (1998)
- [Sto98] STOLL, Clifford: Kuckucksei; Die Jagd auf die deutschen Hacker, die das Pentagon knackten. Fischer-TB.-Vlg., 1998. – (ISBN 3596139848)
- [SuS02a] SuSE Linux. Basics. 1. Nürnberg : SuSE Linux AG, 2002
- [SuS02b] SuSE Linux. User Guide. 1. Nürnberg : SuSE Linux AG, 2002
- [SuS02c] SuSE Linux. Applications. 1. Nürnberg : SuSE Linux AG, 2002
- [The96] THE XFREE86[™]-TEAM: XF86Config(4/5) Configuration File for Xfree86[™], 1996. – Manual-Page zu XFree86[™]
- [TSP93] TODINO, Grace; STRANG, John ; PEEK, Jerry: Learning the UNIX operating system. O'Reilly & Associates, Inc., 1993. – (ISBN 1-56592-060-0)
- [Wel94] WELSH, Matt: Linux Installation and Getting Started. 2. SuSE Linux AG, 1994. (ISBN 3-930419-03-3)
- [WK95] WELSH, Matt; KAUFMAN, Lars: Running Linux. O'Reilly & Associates, Inc., 1995. – (ISBN 1-56592-100-3)

Index

symbols

/etc/conf.modules	172
/etc/modules.conf	172
3D 53	3–57
- testing	56
- troubleshooting	. 56
3Ddiag 55	, 56

Α	
addresses	
- IP 2	235
- MAC 2	235
ADSL	
- configuring 2	296
- dial-on-demand 2	296
- starting 2	296
Apache 1	77
- Squid 3	
APM	219
AppleTalk see Netata	alk

B Bash

Dasii	
bashrc	
profile	177
- profile	177
BIND	256–264
- BIND8	258
- BIND9	258
BIOS	140
- LILO and	144
booting	139–169, 191–227
- BIOS	
- boot graphics	151
- boot managers	
- boot sectors	

- chaining 141
- CMOS 140
- concepts 141
- DOS 141
- floppy, from 141
- GRUB 158–160
- LILO 143
- loadlin 162–169
- logical partitions 145
- message files 151
- sample configurations 155
- securing 148, 152
- viruses
- Windows 141

C cards

curus
- graphics 40
- network
• testing 245
clients
- diskless 278
CMOS 140
commands
- free
- lpr 74
conf.modules 172
configuration files 247
bashrc 177, 180
lpoptions 107, 109
profile 177
- afpd.conf 289
- AppleVolumes.default 290
- AppleVolumes.system 291
- atalk
- atalkd.conf 288

-	crontab	177
-	csh.cshrc	184
-	cups	
	· lpoptions	109
-	cupsd.conf	103
_	defaultdomain	268
_	dhcpd.conf	275
_	exports	309
_	group	223
_	groups	269
	0 1	248
	• alert	248
	• multi	248
	• nospoof	248
	• order	248
	• trim	249
-		253
-	,	247
-	httpd.conf	177
-	inetd.conf 107, 135,	285
-	inittab 181, 192, 194,	225
-	language 183,	184
-		152
-	localtime	205
-	logrotate.conf	178
_	lpd.conf	82
_	lpd.perms	82
_	lpdfilter	
_	menu.lst	158
_	modules.conf	
_		302
		293
-		293
-		
-		251
-		250
-		226
-		292
-		269
-		223
-	profile 177, 180,	184
-	rc.config 28, see configuration fi	iles,
	sysconfig	
-		301
-	routes	254
-	sendmail.cf	213
-	services	285
-		281
-	squid	302
-	squid.conf 301–309, 311,	314
-	1 , , ,	314
_	suseconfig	199
_		218
_	sysconfig 198–	

	- TextConfig	206
	- XF86Config 37	, 44
	• device	48
	• monitor	49
	· screen	46
	- yp.conf 226,	268
	- ypbind	269
config		198
	- DHCP	275
	- DNS	256
	- graphics cards	40
	- IPv6	
	- Netatalk	288
	- networks	
	• manually 247-	255
	- printing 67	
	- routing	254
	- Samba 281-	286
	- Squid	302
	- system	199
	- YaST2	. 9
conso	oles	
	- assigning	181
	- fonts	
	- framebuffer	205
	- switching	181
core f	files	180
cron	177,	206
	- removing core files	207
	- removing temporary files	206

D

daemons
- autofs 204
- lpd 82
- ssh 222
depmod 172
DHCP 215, 274–278
- configuring 275–278
- dhcpd 275–277
- packages 274
- server
- starting 276
- static 277
Direct3D 53
disks
- boot
• creating 160
display configuration 15
DMA
- disabling 209
- enabling 209
DNS 238–239

- BIND
- configuring 256–265
- forwarding 257
- logging 260
- mail exchanger 239
- NIC
- options 258
- reverse lookup 264
- server
- Squid and 302
- starting 256
- top level domain 239
- troubleshooting 256
- zones
· files
DOS
- sharing files 280
driver CD see YaST2,driver CD
DVB cards 208
Dynamic Host Configuration Protocol see
DHCP

Ε

e-mail
- configuring with YaST2 19
e2fsck
- man page 317
environment variables
- CUPS_SERVER 101
- PRINTER 83
- PKINTER 83

F

FHS see file systems, FHS
file systems
- FHS 176
- intermezzo 210
- TeX and 176
files
- printing 83, 85, 108
Firewall
firewalls
- Squid and 309
- SuSEfirewall2 201
fonts
- Asian 50
- encodings 51
- LaTeX
- TeX
- Unicode 51
- X 50
FTP
- servers 176

G

GDM 208
Ghostscript 111
- drivers
GLIDE
GNU
- GPL
graphical interface 15
graphics
- 3D
· diagnosing 56
• testing 56
• troubleshooting 56
graphics adapter 15
graphics cards
- 3D 53–57
• drivers 53
• support for 53
group administration see YaST2,group
administration
gs see Ghostscript

Н

hardware see YaST2, hardware information	
- DMA 209	
- hotplug 209	
- pcmcia 218	
- power management 219	
help	
- info pages 179	
- man pages 179	
- X 49	

L

I18N	3
id 54	5
info pages 179	9
- index 22	3
init 192	2
- inittab 192	2
- scripts 195–199	7
initrd	1
insmod 172	2
installation source see YaST2,installation	n
source	
installing	
- autoinstaller 20-	4
Internet	
- ADSL 1	7
- ISDN 1	7
- T-DSL 1	7
IP addresses 235–23	9
- classes	6

- dynamic	224
- IPv6 240–	244
· configuring	247
• netmasks	
· prefixes	242
• structure	241
- netmasks 236–	238
- private	238
IrDA	210

J

Java	211
joysticks	
- configuring	211

Κ

KDM 208
- shut down from 24
- shutting down 225
kernel 171
- modules 171
kernels
- caches
- modules
· loading 211
• network card 245
• parport
- transparent proxies and
keyboard
- CapsLock
- delay 212
- layout 182, 212
- mapping 182
· compose
• multikey 182
- NumLock
- repetition rate
*

L

L10N
LANs
- configuring 245–255
LILO 143–157
- BIOS and 144
- boot sector, in 145
- booting DOS 155
- booting Windows 95/98 155
- booting with another boot manager .
145
- components 143
- configuring 145–152
- floppy, from 144

- installing 152–153
- lilo.conf 146–152
- locations for
- map files 144
- MBR 145
- memory test 149
- message files 144, 151
- other systems 149
- overview
- parameters 147
- passwords 152
- reinstalling 153–154
- sample configurations 155
1 0
- troubleshooting 157
- uninstalling 154–155
- Windows 2000 156
- Windows NT 156
- YaST2 146
Linux
- networks and 231
- sharing files with another OS 280,
287
Linux Standard Base 176
loadlin 162–169
loadlin 162–169 - files 163
loadlin
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212
loadlin
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178 Logical Volume Manager see YaST2,Logical
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178 Logical Volume Manager see YaST2,Logical Volume Manager see YaST2,Logical
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178 Logical Volume Manager see YaST2,Logical Volume Manager logrotate 10 see YaST2,Logical
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178 Logical Volume Manager see YaST2,Logical Volume Manager 178 logrotate 178 logrotate 178 Nolume Manager 178 logrotate 178
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178 Logical Volume Manager see YaST2,Logical Volume Manager logrotate 10 see YaST2,Logical
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178 Logical Volume Manager see YaST2,Logical Volume Manager 178 logrotate 178 logrotate 178 Nolume Manager 178 logrotate 178
loadlin 162–169 - files 163 Local Area Networks see LANs locale 212 locate 213 - updatedb 213 log files 178 - Argus 204 - boot.msg 77 - messages 256 - Squid 302, 304, 310 - XFree86.0.log 37 logging - logrotate - configuring 178 Logical Volume Manager see YaST2,Logical Volume Manager 81 LSB see Linux Standard Base

М

M	
MacOS	
- sharing files	287
mail	
- mail relay	208
man pages	179
- database	

masquerading
- IP forwarding 224
Master Boot Record see MBR
MBR 140
- LILO 145
memory
- RAM 181
modems
- ISDN
modprobe 172
modules 171
- handling 172
modules.conf 172
mountd 273
mouse
- interface 214

Ν

name servers see DNS
Name Service Cache Daemon 251
Netatalk 287-293
- afpd 288
- AppleDouble 291
- atalkd 288
- configuring 288–292
- guest servers
- papd 288
- permissions 290
- printing 292
- restrictions
- starting 292
- TCP/IP and 289
network 16
- configuration files 247
- DHCP relay agent 207
- DHCP server 207
- YaST2 and 16
network card 16
Network File System see NFS
Network Information Service see NIS
network monitors
- Argus 203
networks 231
- base network address 237
- broadcast address 238
- configuring 214, 245, 247–255
· IPv6 247
- DNS 238–239
- integrating 245-255
- IP addresses 235–239
- ISDN 210
- local host 238
- mail 213

	- monitors	
	· ArgoUPS	203
	- netmasks	236
	- NFS	218
	- printing	103
	- printing in	124
	- routing 235-	-238
	- SSH	222
	- TCP/IP	232
	- testing cards	
nev	ws	
	- servers	218
NF	'S 270-	-273
	- clients	270
	- exporting	271
	- importing	270
	- mounting	
	- permissions	
	- RPC	
	- server	
	- servers	
	'S servers	
	d	
NIS		
	- client	
	- installing	
	- masters 266-	
	- server	
	- Server	
	- slaves 266-	-267
NN	NTP	
	- servers	
NS	-	
	- databases	
nVi	idia	. 53

0

online update see YaST2,online	update
OpenGL ⁻	53–57
- drivers	53
- testing	56
OpenOffice	
- printing	
· CUPS	106
OS/2	
- sharing files	280

Ρ

•	
package	
- 3dpixms 22	5
- a2ps 69	9
- aaa_base 178	8
- alice 278	3

- bind8 265
- binutils 171
- cups 68, 102, 106, 107, 135
- cups-client 68, 69, 75, 107, 126,
135
- cups-drivers 69, 73, 102
- cups-drivers-stp 69, 73, 103,
106
- cups-libs 68,69
- dhclient
- dhcpcd 275
- fhs
- file
- findutils-locate 207
- ftpdir 176
- gcc 171
- ghostscript-fonts-std 69
5 1 1
- ghostscript-x11
- glibc-devel 171
- glibc-info 185
- glx 57
- howtoen 315
- isapnp 77
- kernel-source 171
- libcinfo 250
- logrotate 178
- lpdfilter 69
- lprng 69, 82, 125, 127, 135
- mesa 57
- mesa3dfx 57
- mesasoft 55
- netatalk
- psutils 89, 117
- radvd
- samba-client 104, 106, 128
- squidgrd 314
- SuSEfirewall2 201
- syslinux 161
- ttmkfdir
- xf86
- xfsetup 36
- xntp 226
- yudit
Patch CD update see YaST2,patch CD
Patch CD update see YaST2,patch CD update
Patch CD update see YaST2,patch CD update PBX

- I	rDA	80–81
	oarallel	
	canning	
	erial	
	JSB	
	QL	
	nanagement	
	ipmd	210
	nstallation	
	pplications, from	
	anners	
	pasics	
	command line, from	
- 0	configuring	67–74
	· CUPS	
	· LPRng and lpdfilter	
	· ports	75–81
	· YaST2	
- (CUPS	
	· OpenOffice	106
- 0	lefault queue	
	lrivers	
	iles	
	ilters	
1	· configuring	
	• custom	
	· custom	97-101
	• customizing	
	· lpdfilter	
,	• troubleshooting	
- (GDI printers	
	• configuring	
	• supported	66
- (Ghostscript	
	· drivers	63–65
- I	РР	101
- j	obs	61
	· processing	104
	· removing	. 83, 86, 108
	• status	
- 1	anguages	
	pc	
	pq	
	pr	
	prsetup	
	network	
- 1		120
-	 troubleshooting 	132
- 1	network printers networks	103
	PD	
	print server	
- r	print server box	124
- F	printer languages	60

· ASCII
• ESC 60
• PCL 60
• PostScript 60
- processing 61, 104
- protocols 125
- queues 60, 67–68
• controlling 84–85
· lp 68
• managing 83–86, 108
• names
• options 109
• raw
• remote
• removing jobs 83, 86
• selecting queues 74
• status
- requirements 63
- Samba
- spoolers
*
· lpd
- supported printers
- systems 61
- troubleshooting 62–63, 86–87
protocols
- IPP 101
- SMB 280
proxies
- advantages 298
- caches
- FTP 222
- HTTP 222
- Squid 297–315
- transparent
R
RFCs 232
rmmod 172
root
- locale 213
- working directory 223
routing 235, 254–255
- IP forwarding 224
- netmasks 236–238
- routes
- static
RPM
- database
run level editor
runlevels 192–194
1011EVEIS 192–194

- changing 193–194

- editing in YaST2 197

Samba	
-	clients
-	configuring
	help
-	installing 281
-	login
-	names 280
-	NetBIOS 280
	optimizing 287
	permissions 284
	printers 281
	printing 286
-	security
-	servers
-	shares
-	SMB 280
-	starting 281
-	stopping 281
-	swat
-	TCP/IP and 280
SaX2	
-	3D graphics 55
-	multihead 42
scripts	
-	init.d 192, 195–197, 253
	• atalk 292
	• boot 196
	· boot.local 196
	• boot.proc 224
	• boot.setup 196
	• halt 196
	• inetd 253
	· lpd 82
	notwork 253

S

- SMB 280
- starting 28
- stopping 28
- swat
- TCP/IP and
SaX2
- 3D graphics 55
- multihead 42
scripts
- init.d 192, 195–197, 253
• atalk 292
• boot 19
· boot.local 19
• boot.proc 224
• boot.setup 190
• halt 190
• inetd 253
· lpd
• network 250
• nfsserver 253, 272
• portmap 253, 269, 272
• rc 194–190
• sendmail 254
• skeleton 19
• squid 30
- lpdfilter 82
• guess 82
• if
- modify_resolvconf 181, 252
- running from current directory . 22
- SuSEconfig
· disabling 199, 22
- switch2mesasoft 200
- ypbind
security settings 20
security 28
- Samba 284

- Squid 298
sendmail 222
series
- doc 250
- n 247
- x
- x 3d 57
Skript
- init.d
• ypbind 254
· ypserv
SMB see Samba
Soft RAID see YaST2,Soft RAID
software installing/removing see
YaST2,software
sound
- configuring
spell checker 210
Squid
- access controls 305, 311
- Apache
- cachemgr.cgi 311–312
- caches
- Calamaris 314–315
- configuring 302–307
- CPU and 301
- directories 301
- DNS 302
- features 298
- firewalls and 309
- log files 302, 304, 310
- object status 299
- permissions 301, 305
- protocols 298
- RAM and
- reports
- SARG 315
- security
5
- SquidGuard 313–314
- starting 301
- statistics 311–312
- stopping 302
- system requirements 300
- transparent proxies 307–311
- troubleshooting 302
- uninstalling 302
SSH
- sshd 222
start protocol
SuSEconfig 223
switch2mesasoft
switch2nv

8	syslog 224
2	syslog-ng 224
	system
0	- configuring 199
7	- limiting resource use 180
7	- localizing 183
7	- time
	system protocol 33
	system security see YaST2, system security
4	5 5 5

Т

T-DSL	see ADSL
TCP/IP	232–235
- ICMP	233
- IGMP	233
- layer model	233–235
- packets	233, 234
- services	232
- TCP	232
- UDP	232
time zone selection	32
time zones	205
Tridgell, Andrew	280
U	
ulimit	180

ulimit	180
- options	180
user administration see YaST2,	user
administration	
users	
- nobody	178

- working director	y	223

V
Variable
- CUPS_SERVER 101
- LANG 212
- LC_* 212
- PATH iv
- PRINTER
variables
- environment 183
viruses
- AIRCOP 144

W

WDM	208
web servers	
- Apache	201
- setting up	177
whois	239
Windows	
- booting Linux from 162-	-169

- sharing files 28	28		• • •		• •				nies	- snaring
--------------------	----	--	-------	--	-----	--	--	--	------	-----------

Х		
Χ		. 35
	- 3D	41
	- color depth	. 226
	- control protocols	
	- default window manager	
	- display managers	208
	- display numbers	
	- drivers	
	- fonts	50
	- GDM	. 208
	- history	35
	- KDM	. 208
	- multihead	. 42
	- optimizing	44
	- shutdown	225
	- virtual screen	48
	- WDM	208
	- XFree86	35
X Wir	ndow System	see X
	ettings	

Y Yast

- hardware information 15
- installation source 11
- ISDN 17
- language selection 32
- Logical Volume Manager 30
- LVM 30
- network 16
- network configuration 245–247
- NFS server 21
- NIS clients 268
- NIS server 21
- online update from console 12
- partitioning 29
- patch CD update 15
- postfix 19
- printer installation 15
- printing 15, 68–74
 suppressing autodetection 68
- rc.config
- routing 22, see YaST2, routing
- routing 22, see YaST2, routing
- routing 22, see YaST2, routing - runlevel editor 29, 197
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19
- routing 22, see YaST2, routing - runlevel editor
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12
- routing 22, see YaST2, routing - runlevel editor
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17 - time zone selection 32
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17 - time zone selection 32 - update 14
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17 - time zone selection 32 - uydate 14 - vendors driver CD 33 - YaST Online Update 11
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17 - time zone selection 32 - uydate 14 - user administration 22 - YaST Online Update 11 - Yellow Pages see YaST2, NIS server
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17 - time zone selection 32 - uydate 14 - user administration 22 - YaST Online Update 11 - Yellow Pages see YaST2, NIS server - YOU 11
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17 - time zone selection 32 - uydate 14 - user administration 22 - YaST Online Update 11 - Yellow Pages see YaST2, NIS server
- routing 22, see YaST2, routing - runlevel editor 29, 197 - sendmail 19 - Soft RAID 31 - software installation 12 - software removal 12 - sysconfig editor 28, 199 - system security 23 - T-DSL 17 - time zone selection 32 - uydate 14 - user administration 22 - YaST Online Update 11 - Yellow Pages see YaST2, NIS server - YOU 11

Z Zope

<i>c</i>		
	- configuring	 227

Article Number: HB2103-3ADMIN-INT

