
1

Unix Systems: Shell
Scripting (I)

Bruce Beckles

University of Cambridge Computing Service

2

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 2

Introduction
� Who:

! Bruce Beckles, e-Science Specialist, UCS

� What:
! Unix Systems: Shell Scripting (I) course
! Part of the Scientific Computing series of courses

� Contact (questions, etc):
! escience-support@ucs.cam.ac.uk

� Health & Safety, etc:
! Fire exits

� Please switch off mobile phones!

As this course is part of the Scientific Computing series of
courses run by the Computing Service, all the examples that we
use will be more relevant to scientific computing than to system
administration, etc.

This does not mean that people who wish to learn shell scripting
for system administration and other such tasks will get nothing
from this course, as the techniques and underlying knowledge
taught are applicable to shell scripts written for almost any
purpose. However, such individuals should be aware that this
course was not designed with them in mind.

mailto:escience-support@ucs.cam.ac.uk?subject=Shell%20Scripting%20(I)

3

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 3

What we don�t cover
� Different types of shell:

! We are using the Bourne-Again SHell
(bash).

� Differences between versions of bash

� Advanced shell scripting � try these
courses instead:
! �Unix Systems: Shell Scripting (II)�

! �Unix Systems: Shell Scripting (III)�

! �Programming: Python for Absolute Beginners�

bash is probably the most common shell on modern Unix/Linux systems � in fact, on
most modern Linux distributions it will be the default shell (the shell users get if they
don�t specify a different one). Its home page on the WWW is at:

http://www.gnu.org/software/bash/

We will be using bash 3.0 in this course, but everything we do should work in bash
2.05 and later. Version 3.0 and version 2.05 (or 2.05a or 2.05b) are the versions of
bash in most widespread use at present. Most recent Linux distributions will have one
of these versions of bash as one of their standard packages. The latest version of
bash (at the time of writing) is bash 3.2, which was released on 12 October, 2006.

For details of the �Unix Systems: Shell Scripting (II)� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2

For details of the �Unix Systems: Shell Scripting (III)� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#scriptwkshp

For details of the �Programming: Python for Absolute Beginners� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/prog.html#python

http://www.gnu.org/software/bash/
http://www.gnu.org/software/bash/
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2
http://www.cam.ac.uk/cs/courses/coursedesc/prog.html#python
http://www.cam.ac.uk/cs/courses/coursedesc/prog.html#python
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#scriptwkshp
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#scriptwkshp

4

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 4

Outline of Course
1. Prerequistes & recap of Unix

commands
2. Very simple shell scripts

BREAK

3. More useful shell scripts:
! Variables (and parameters)
! Simple command-line processing
! Output redirection
! Loop constructs: for

Exercise (~16:30)

The course officially finishes at 17.00, but the intention is that
the lectured part of the course will be finished by about 16.30
and the remaining time is for you to attempt an exercise that
will be provided. If you need to leave before 17.00 (or even
before 16.30), please do so, but don�t expect the course to have
finished before then. If you do have to leave early, please leave
quietly and please make sure that you fill in a green Course
Review form and leave it at the front of the class for collection
by the course giver.

5

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 5

Follow-on courses

Unix Systems: Shell Scripting (II):
! More advanced shell scripts

Unix Systems: Shell Scripting (III):
! Better, more robust (handle errors!) shell scripts

We strongly encourage you to attend these
follow-on courses.

For details of the �Unix Systems: Shell Scripting (II)� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2

For details of the �Unix Systems: Shell Scripting (III)� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#scriptwkshp

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#scriptwkshp
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#scriptwkshp

6

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 6

Pre-requisites

� Ability to use a text editor under Unix/Linux:
! Try gedit if you aren�t familiar with any other

Unix/Linux text editors

� Familiarity with the Unix/Linux command
line (�Unix System: Introduction� course):
! Common Unix/Linux commands (ls, rm, etc)

! Piping; redirecting input and output

! Simple use of environment variables

! Filename expansion (�pathname expansion�)

For details of the �Unix System: Introduction� course, see:
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

7

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 7

Start a shell

8

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 8

Screenshot of newly started shell

9

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 9

Unix commands (1)
cat Display contents of a file
> cat /etc/motd

Welcome to PWF Linux 2006/2007.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

cd change directory
> cd /tmp

> cd

chmod change the mode (permissions) of
a file or directory

> chmod a+r treasure.txt

If you give the cd command without specifying directory then it
will change the directory to your home directory (the location of
this directory is specified in the HOME environment variable � more
on environment variables later).

The chmod command changes the permissions of a file or directory
(in this context, the jargon word for �permissions� is �mode�). For
instance, the above example gives read access to the file
treasure.txt for all users on the system. Unix permissions were
covered in the �Unix System: Introduction� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

10

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 10

Unix commands (2)

cp copy files and/or directories
> cp /etc/motd /tmp/motd-copy

Options:
-p preserve (if possible) files� owner,

permissions & date
-f if unable to overwrite destination file,

delete it and try again, i.e. forcibly
overwrite destination files

-r copy any directories recursively, i.e.
copy their contents

> cp �p /etc/motd /tmp/motd-copy

Note that the cp command has many other options than the
three listed above, but those are the options that will be most
useful to us in this course.

11

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 11

Unix commands (3)

date display/set system date and time
> date

Fri Feb 16 11:52:03 GMT 2007

echo display text
> echo "Hello"

Hello

env With no arguments, display
environment variables (example
later)

Please note that if you try out the date command, you will get a
different date and time to that shown on this slide (unless your
computer�s clock is wrong!). Also, note that usually only the
system administrator can use date to set the system date and
time.

Note that the echo command has a few useful options, but we
won�t be making use of them today, so they aren�t listed.

Note also that the env command is a very powerful command,
but we will not have occasion to use for anything other than
displaying environment variables (see later), so we don�t discuss
its other uses.

12

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 12

Unix commands (4)
grep find lines in a file that match a given

pattern
> grep 'PWF' /etc/motd

Welcome to PWF Linux 2006/2007.

ln create a link between files (almost
always used with the -s option for
creating symbolic links)

> ln �s /etc/motd /tmp/motd

> cat /etc/motd
Welcome to PWF Linux 2006/2007.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

> cat /tmp/motd
Welcome to PWF Linux 2006/2007.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

The patterns that the grep command uses to find text in files are called
regular expressions. We won�t be covering these in this course, but if you are
interested, or if you need to find particular pieces of text amongst a
collection of text, then you may wish to attend the CS �Pattern Matching
Using Regular Expressions� course, details of which are given here:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#regex

The ln command creates links between files. In the example above, we
create a symbolic link to the file motd in /etc and then use cat to display
both the original file and the symbolic link we�ve created. We see that they
are identical.

There are two sort of links: symbolic links (also called soft links or symlinks)
and hard links. A symbolic link is similar to a shortcut in the Microsoft
Windows operating system (if you are familiar with those) � essentially, a
symbolic link points to another file elsewhere on the system. When you try
and access the contents of a symbolic link, you actually get the contents of
the file to which that symbolic link points. Whereas a symbolic link points to
another file on the system, a hard link points to actual data held on the
filesystem. These days almost no one uses ln to create hard links, and on
many systems this can only be done by the system administrator. If you want
a more detailed explanation of symbolic links and hard links, see the
following Wikipedia articles:

http://en.wikipedia.org/wiki/Symbolic_link

http://en.wikipedia.org/wiki/Hard_link

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#regex
http://en.wikipedia.org/wiki/Symbolic_link
http://en.wikipedia.org/wiki/Hard_link

13

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 13

Unix commands (5)
ls list the contents of a directory

> ls
bin examples gnuplot hello.sh iterator scripts source treasure.txt

Options:
-d List directory name instead of its

contents
-l use a long listing that gives lots of

information about each directory entry
-R list subdirectories Recursively, i.e. list

their contents and the contents of any
subdirectories within them, etc

If you try out the ls command, please note that its output may not exactly
match what is shown on this slide � in particular, the colours may be slightly
different shades and there may be additional files and/or directories shown.

Note also that the ls command has many, many more options than the three
given on this slide, but these three are the options that will be of most use to
us in this course.

14

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 14

Unix commands (6)
less Display a file one screenful of text at a

time
more Display a file one screenful of text at a

time
> more treasure.txt
The Project Gutenberg EBook of Treasure Island, by Robert Louis Stevenson

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or

re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

Title: Treasure Island

Author: Robert Louis Stevenson

Release Date: February 25, 2006 [EBook #120]

Language: English

Character set encoding: ASCII

*** START OF THIS PROJECT GUTENBERG EBOOK TREASURE ISLAND ***

--More--(0%)

(Note that the output of the more command may not exactly
match that shown on this slide � in particular, the number of
lines displayed before the �--More--(0%)� message depends on
the number of lines it takes to fill up the window in which you
are running the more command.)

The more and less commands basically do the same thing:
display a file one screenful of text at a time. Indeed, on some
Linux systems the more command is actually just another name
(an alias) for the less command.

Why are there two commands that do the same thing? On the
original Unix systems, the less command didn�t exist � the
command to display a file one screenful of text at a time was
more. However, the original more command was somewhat
limited, so someone wrote a better version and called it less.
These days the more command is a bit more sophisticated,
although the less command is still much more powerful.

For everyday usage though, many users find the two commands
are equivalent. Use whichever one you feel most comfortable
with, but remember that every Unix/Linux system should have
the more command, whereas some (especially older Unix
systems) may not have the less command.

15

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 15

Unix commands (7)
mkdir make directories
> mkdir /tmp/mydir

Options:
-p make any parent directories as required;

also if directory already exists, don�t
consider this an error

> mkdir /tmp/mydir
mkdir: cannot create directory `/tmp/mydir': File exists

> mkdir �p /tmp/mydir

Note that the mkdir command has other options, but we won�t
be using them in this course.

16

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 16

Unix commands (8)
mv move or rename files and directories
> mv /tmp/motd-copy /tmp/junk

Options:
-f do not prompt before overwriting files or

directories, i.e. forcibly move or rename the file or
directory; this is the default behaviour

-i prompt before overwriting files or directories
(be interactive � ask the user)

-v show what is being done (be verbose)

Note that the mv command has other options, but we won�t be
using them in this course. Note also that if you move a file or
directory between different filesystems, move actually copies the
file or directory to the other filesystem and then deletes the
original.

17

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 17

Unix commands (9)
rm remove files or directories
> rm /tmp/junk

Options:
-f ignore non-existent files and do not ever

prompt before removing files or directories, i.e.
forcibly remove the file or directory

-i prompt before removing files or directories
(be interactive � ask the user)

--preserve-root do not act recursively on /
-r remove subdirectories (if any) recursively, i.e.

remove subdirectories and their contents
-v show what is being done (be verbose)

Note that the rm command has other options, but we won�t be
using them in this course.

18

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 18

Unix commands (10)
rmdir remove empty directories
> rmdir /tmp/mydir

touch change the timestamp of a file;
if the file doesn�t exist create
with the specified timestamp
(the default timestamp is the
current date and time)

> touch /tmp/nowfile

The rmdir and touch commands have various options but we
won�t be using them on this course. If you try out the touch
command with the example above, check that it has really
worked the way we�ve described here by using the ls command
as follows:

ls -l /tmp/nowfile

You should see that the file nowfile has a timestamp of the
current time and date.

19

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 19

What is a shell script?

� Text file containing commands
understood by the shell

� Very first line is special:
#!/bin/bash

� File has its executable bit set
chmod +x

Recall that the chmod command changes the permissions on a
file. chmod +x sets the executable bit on a file, i.e. it grants
permission to execute the file. Unix file permissions were
covered in the �Unix System: Introduction� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

20

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 20

Run a simple shell script

> ./hello.sh

Hello! I am a shell script.

Who are you?

>

A common naming convention for shell scripts is for them to have the extension .sh, and all
our shell scripts will follow this convention. This has the advantage that editors like gedit
will automatically recognise our files as shell scripts and highlight them appropriately.

The name of the shell script we are running is �hello.sh�. Since it is in the current
directory, we can tell the shell to execute it by typing �./� in front of its name, as shown on
this slide. This basically means �execute the file hello.sh that is to be found in the current
directory� � if there is no file of that name in the current directory, the shell returns a �No
such file or directory� error. It is useful to know how to use �./� for two reasons:

1) If you ask the shell to run a program by just typing the name of the program and
pressing return, it looks for the program in all the directories specified in the PATH
environment variable (more on environment variables later). If the current directory isn�t
one of those specified in the PATH environment variable, then it wouldn�t find the
hello.sh that we want it to execute. By explicitly telling the shell to look in the current
directory, it finds the hello.sh that we are looking for.

2) There might be another program called �hello.sh� in a directory that is specified in the
PATH environment variable. The shell looks for programs to execute in the directories
specified in the PATH environment variable in the order they are specified in that
environment variable. It then executes the first program it finds that matches the name
given. So if there was a file called �hello.sh� in some other directory specified in the
PATH environment variable, then that might be executed instead.

You can achieve the same effect by asking the shell to run a program and giving it the path
to the program, e.g. if hello.sh was in the directory /home/x241, then typing:

/home/x241/hello.sh

and pressing return would execute hello.sh.

21

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 21

Examining hello.sh

> ls �l hello.sh
-rwxr-xr-x 1 x241 x241 69 2006-11-06 11:35 hello.sh

> cat hello.sh

#!/bin/bash

echo "Hello! I am a shell script."

echo "Who are you?"

> gedit hello.sh &

Remember that the ls command lists the files in a directory and that it
can take options that modify its behaviour. ls -l <file> gives us a lot
of information about the particular file <file>. In particular, it shows us
the file�s permissions (in this case: �-rwxr-xr-x�), and we see that this
file indeed has its execute bits set. Note that the exact text you see
when you execute �ls -l hello.sh� on the computer in front of you
may be slightly different � in particular, the owner (�x241�) and group
(�x241�) of the file will be different.

Recall that cat <file> displays the contents of the file <file>.

gedit <file> starts the editor gedit and loads the file <file>. The �&�
tells the shell to run gedit in the background, so that we go straight back
to the shell prompt and can carry on doing other things rather than
waiting until we quit gedit. Note that because we�re running gedit in the
background, after we quit gedit the shell will print a message saying
�Done� (along with some other text) to indicate that the gedit program
that was running in the background has finished.

You don�t have to use gedit to edit the file, you can use whatever editor
you are most comfortable with.

Remember that the echo command prints out the text that it has been
given on standard output (normally the screen). It is a shell builtin
command, i.e. a command that is implemented by the shell itself as
opposed to an external program that the shell runs on your behalf. For
example, the ls command is not a shell builtin command � it is an
external program that the shell executes when you type �ls�.

22

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 22

Errors in shell scripts (1)

Change:
echo "Hello! I am a shell script."

to:
echoq "Hello! I am a shell script."

> ./hello.sh
./hello.sh: line 3: echoq: command not found

Who are you?

>

(Now change �echoq� back to �echo�.)

Make sure you save the file before running it again, or the
changes won�t take effect.

As you can see, even if there is an error in the shell script, the
shell script simply reports the error and merrily continues
running. There are many different sorts of errors one can make
in writing a shell script, and for most of them the shell will
report the error but continue running. There is one type of
error that will stop the execution of the shell script: a syntax
error (see next slide).

Also note that the shell tells us what the error is � �command
not found� (as there is no �echoq� command) � and the line on
which it occurred (line 3). This makes it easier to track down
the error and fix it.

You can force the shell script to quit when it encounters an error
by using the set shell builtin command like this:

set -e

as we will see later.

23

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 23

Errors in shell scripts (2)

Change:
echo "Who are you?"

to:
(echo "Who are you?"

> ./hello.sh
Hello! I am a shell script.

./hello.sh: line 5: syntax error: unexpected end of file

>

(Now remove the extraneous open bracket �(�.)

Make sure you save the file before running it again, or the
changes won�t take effect.

If there is a syntax error in the shell script, the shell script will
abort once it encounters the error, because it doesn�t
understand what it should do.

Note that although the error is actually at line 4, it is not until
line 5 that the shell decides something is wrong and tells us
anything. Get used to this behaviour! � it is very annoying, as
it makes debugging shell scripts painful, but that�s just the way
it is. When the shell tells you there is a syntax error at line n,
you should take that to mean that there is a syntax error
somewhere between the last command the script managed to
execute and line n (inclusive).

24

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 24

Changing how the shell script
is run

Change:
#!/bin/bash

to:
#!/bin/bash -x

> ./hello.sh
+ echo 'Hello! I am a shell script.'

Hello! I am a shell script.

+ echo 'Who are you?'

Who are you?

>

(Now remove the � -x� you added.)

If the shell is started with the -x option, it prints commands and
their arguments as they are executed. You can also get this
behaviour by using the set shell builtin command like this:

set -x

25

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 25

Automating repetitive tasks (1)

Imagine I�m working on a program.
Every time I change it, I save it, then
compile and run it. My editor makes
a backup copy of the file, and the
compiler produces one or more files
that are of no interest to me, as well
as the executable that I actually run.
At some point I need to clean up
these files.

26

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 26

Automating repetitive tasks (2)
How do I do this?:

1. Change into my program directory:
> cd ~/source

2. Create a backup directory:
> mkdir ~/backup

3. Move editor backups to backup
directory:

> mv *~ ~/backup

> mv *.bak ~/backup

Different editors tend to backup files in different ways. gedit�s
backups have the same name as the original file with a ~ added
to the end of the name (e.g. the backup of myprog.c would be
myprog.c~). Some editors� backups will have the same name as
the original file with a .bak added to the end of the name. For
the sake of this example, let�s suppose I sometimes use
different editors as the mood takes me so I want to handle
whatever backup files there might be, regardless of which
editor(s) I�ve been using.

27

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 27

Automating repetitive tasks (3)

4. Delete extraneous compiler files
> rm *.o

If I put those commands together�:
cd ~/source
mkdir ~/backup

mv *~ ~/backup

mv *.bak ~/backup

rm *.o

Instead of typing out those commands each time I want to do
this, I could just put them all together�

28

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 28

Automating repetitive tasks (4)
�I can make a simple shell script:

> gedit cleanup-prog-dir.sh &

#!/bin/bash

cd ~/source

mkdir ~/backup

mv *~ ~/backup

mv *.bak ~/backup

rm *.o

> chmod +x cleanup-prog-dir.sh

�into a very simple shell script. Note that this shell script is
just a linear list of the commands I would type at the command
line in the order I would type them. Now I can just type:

./cleanup-prog-dir.sh

if I�m in my source directory, or:

~/source/cleanup-prog-dir.sh

if I�m in another directory, instead of all those separate
commands. Simple, really.

(After creating the shell script in gedit (or another editor of your
choice) remember to save it and set the executable bit on the
script using chmod before trying to run it.)

29

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 29

Improving my shell script (1)
#!/bin/bash

cd ~/source

mkdir �p ~/backup

mv *~ ~/backup

mv *.bak ~/backup

rm �f *.o

Of course, my shell script is very simple, so it gives me errors if I
run it more than once, or if some of the files I want to handle
don�t exist. I can fix some of these errors quite simply:

! If I use the -p option with mkdir, then it won�t complain if the
backup directory already exists.

! If I use the -f option with rm, then it won�t complain if there
aren�t any .o files.

Unfortunately, there�s no correspondingly easy way to deal with
mv complaining if there aren�t any files ending in ~ or .bak. We
need to know more shell scripting to deal with that problem.

Note, though, that it doesn�t prevent our shell script from
running, it just gives us some annoying error messages when
we do run it. So our shell script is still perfectly usable, if not
very pretty.

(Remember to save your shell script after making these
changes.)

30

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 30

Improving my shell script (2)
#!/bin/bash

Change to my program directory

cd ~/source

Make backup directory

mkdir �p ~/backup

Move editor backups to backup dir

mv *~ ~/backup

mv *.bak ~/backup

Delete compiler object files

rm �f *.o

One of the most important improvements I can make to even
this simple shell script is to add some documentation, in the
form of comments, to it.

Any line that starts with the hash character (#) is ignored by the
shell. Such lines are called comments, and are used to add
notes, explanations, instructions, etc to shell scripts and
programs.

This is very important, because I may well have forgotten what
this shell script is supposed to do in several months when I
come to use it again. If I�ve put sensible comments in it though,
then it is immediately obvious.

This also makes it easier to debug if I�ve made a mistake: the
comment tells me what the shell script is supposed to be doing
at that point, so if there is a discrepancy between that and what
it actually does when I run it, then it is clear there�s a bug in the
script, probably somewhere around that point.

(Remember to save your shell script after adding the comments.)

31

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 31

First exercise (1)

We have a program, iterator, that
takes four parameters and produces
some output (on the screen and also
in a file). We want to run it several
times with different parameters,
storing the output in the file from
each run.

The iterator program is in your home directory. It is a
program written specially for this course, but this is a pretty
general task you might want to do with many different
programs. Think of iterator as just some program that takes
some input on the command line and then produces some
output in a file, e.g. a scientific simulation or data analysis
program.

32

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 32

Know Your Enemy (1)
> ./iterator
Wrong number of arguments!

4 expected, 0 found.

Usage: ./iterator Nx Ny n_iterations epsilon

> ls
hello.sh iterator

> ./iterator 10 10 100 0.1
x dimension of grid: 10

y dimension of grid: 10

Number of iterations: 100

Epsilon: 0.100000

Output file: output.dat

Iterations took 0.000 seconds

The iterator program, which is located in your home
directory, takes 4 numeric arguments: 3 positive integers and 1
floating-point number. It always writes its output to a file called
output.dat in the current working directory, and also writes
some informational messages to the screen, which we�ll ignore
for now.

Please note that the output of the ls command may not exactly
match what is shown on this slide � in particular, the colours
may be slightly different shades and there may be additional
files and/or directories shown.

33

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 33

Know Your Enemy (2)
> ls
hello.sh iterator output.dat running

> ./iterator 10 10 100 0.2
Already running in this directory!

> rm running

> ./iterator 10 10 100 0.2
x dimension of grid: 10

y dimension of grid: 10

Number of iterations: 100

Epsilon: 0.200000

Output file: output.dat

Iterations took 0.000 seconds

Again, please note that the output of the ls command may not
exactly match what is shown on this slide � in particular, the
colours may be slightly different shades and there may be
additional files and/or directories shown.

The iterator program is not as well behaved as we might like:
every time it runs it creates a file called running in the current
directory, and it will not run if this file is already there (because
it thinks that means it is already running). Unfortunately, it
doesn�t remove this file when it has finished running, so we
have to do it manually if we want to run it multiple times in the
same directory.

Of course, if we run it multiple times in the same directory, we
will overwrite any file called output.dat each time. So if we
want to keep the output of each run we�ll need to rename the
output.dat file or copy it to somewhere else before we run the
program again.

34

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 34

First exercise (2)
What we want to do is:

1. Delete any file called running
> rm running

2. Run iterator with some parameters
> ./iterator 100 100 1000 0.05

3. Rename output.dat
> mv output.dat output-0.05.dat

4. Repeat for the above steps for the following
parameter sets:

100 100 1000 0.1

100 100 1000 0.15

Your task is to create a simple shell script that does the above
task. Basically, you want to run the iterator program three
times with a different parameter set each time. Note that only
the last parameter changes between each run, and that is the
parameter we insert into the output file name when we rename
it to stop it being overwritten by the next run.

We have gone through everything you need to do this exercise
(remember the shell script should be very simple, nothing
fancy). You should comment your shell script, preferably as you
are writing it, and you should try to avoid it producing errors if
you can. (However, the important thing is to produce a shell
script that completes the above task, even if it produces some
error messages along the way.)

When you�ve finished this exercise, take a break from the
computer � and I do mean �from the computer� � sitting at a
computer for too long is bad for you! Don�t check your e-mail,
get up, stretch, move around, get something to drink.

35

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 35

Recap: very simple shell scripts

� Linear lists of commands

� Just the commands you�d type
interactively put into a file

� Simplest shell scripts you�ll write

36

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 36

Shell Variables
> VAR="My variable"

> echo "${VAR}"

My variable

> VAR1="${VAR}"

> VAR="567"

> echo "${VAR}"

567

> echo "${VAR1}"

My variable

We create shell variables by simply assigning them a value (as
above for the shell variables VAR and VAR1). We can access a the
value of a shell variable using the construct ${VARIABLE} where
VARIABLE is the name of the shell variable. Note that there are
no spaces between the name of the variable, the equal sign (=)
and the variable�s value in double quotes. This is very
important as whitespace (spaces, tabs, etc) is significant in the
names and values of shell variables.

Also note that although we can assign the value of one shell
variable to another shell variable, e.g. VAR1="${VAR}", the two
shell variables are in fact completely separate from each other,
i.e. each shell variable can be changed independently of the
other. Changing the value of one will not affect the other. VAR1
is not a �pointer� to or an �alias� for VAR.

37

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 37

Improving my shell script (3)
#!/bin/bash
myPROGS=~/source

myBACKUPS=~/backup

Change to my program directory

cd "${myPROGS}"

Make backup directory

mkdir �p "${myBACKUPS}"

Move editor backups to backup dir

mv *~ "${myBACKUPS}"
mv *.bak "${myBACKUPS}"

Delete compiler object files

rm �f *.o

I can use shell variables to store (almost) any values I like, much
as I can use variables in a program. I can define my program
directory and backup directory in shell variables, and then use
those variables in the rest of my shell script wherever I would
have previously used the corresponding values. This has the
huge advantage that if I want to change the location of my
program directory or backup directory, I only need to do it in
one place. (Whilst in this shell script I only use the location of
my program directory in one place, I use the location of the
backup directory in three places, and previously I would have
needed to change it in all three places if I decided to store my
backups somewhere else.)

Another advantage is, if I am disciplined and define all my
important shell variables at the start of my shell script, I know
immediately, just by looking at the start of the shell script, what
values are important to my shell script. Note that I�ve used
variable names that have some relation to what their values
represent rather than generic variable names like VAR1, VAR2,
etc. Using sensible variable names can be a huge help in
figuring out what the shell script is supposed to do.

(Remember to save your shell script after making the changes
above.)

38

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 38

Environment Variables (1)
> env
LESSKEY=/etc/lesskey.bin

INFODIR=/usr/local/info:/usr/share/info:/usr/info
·
·
·

> set
ACLOCAL_FLAGS='-I /opt/gnome/share/aclocal'

BASH=/bin/bash
·
·
·

> set | more
ACLOCAL_FLAGS='-I /opt/gnome/share/aclocal'

BASH=/bin/bash
·

·
·

When used with no arguments, the env command displays the environment variables
(and their values). The environment variables are simply a collection of variables and
values that are passed to a program (including the shell and any shell scripts) when
the program starts up. Typically they contain information that may be used by the
program or that may modify its behaviour. Two environment variables you may have
already met are PATH and HOME. PATH specifies which directories the system should
search for executable files when you ask it to execute a program and don�t give it a
path to the executable. HOME is usually set by the system to the location of the user�s
home directory.

The set shell builtin command (when issued with no arguments) displays all the
environment variables, shell variables, various shell parameters and any shell functions
that have been defined. (We�ll be meeting shell parameters in context a little later,
which should make clear what they are, and shell functions are covered in the �Unix
Systems: Shell Scripting (II)� course.). Thus set displays many more variables than the
env command.

So many more, in fact, that we probably want to pipe its output through the more
command. (The more command displays its input on the screen one screenful (page)
at a time.) Piping is the process whereby the output of one command is given to
another command as input. We tell the shell to do this using the | symbol. So:

set | more

takes the the output of the set shell builtin command and passes it to the more
command, which displays it for us one screen at a time.

Note that the output of env and set may be different from that shown here, and also,
since both commands produce so much output, not all of their output is shown on this
slide, as is indicated by the three dots on separate lines:

·

·

·

39

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 39

Environment Variables (2)
> env | grep 'zzTEMP'

> zzTEMP="Temp variable"

> env | grep 'zzTEMP'

> set | grep 'zzTEMP'

zzTEMP='Temp variable'

> export zzTEMP

> env | grep 'zzTEMP'

zzTEMP=Temp variable

Recall that we create shell variables by simply assigning them a
value (as above for the shell variable zzTEMP). A shell variable is
not the same as an environment variable however, as we can see
by searching for the shell variable zzTEMP in the output of the
env command. However, we have indeed created a shell
variable with that name, as we see by examining the output of
the set shell builtin command.

The grep command searches for strings of text in other text. In
the example above we are using it to search for the text
�zzTEMP� in the output of various commands.

The export shell builtin command adds a shell variable to the
shell�s environment. Once we�ve done this, we see that if we
run the env command we will find the zzTEMP variable. It is has
become an environment variable.

40

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 40

Environment Variables (3)
> export �n zzTEMP

> env | grep 'zzTEMP'

> set | grep 'zzTEMP'

zzTEMP='Temp variable'

> export zzVAR="Another variable"

> env | grep 'zzVAR'

zzVAR=Another variable

We can remove a variable from the shell�s environment by using
the export shell builtin command with the -n option. Note that
this does not destroy the variable, and it remains a shell
variable, but is no longer an environment variable.

Once a shell variable has been added to the shell�s environment,
it remains an environment variable even if we change its value.
Thus we do not have to keep using the export shell builtin
command on a variable every time we change its value.

We can also set a shell variable and add it to the shell�s
environment all in one go using the export shell builtin
command, as in the above example with the zzVAR variable.

41

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 41

Positional parameters

Shell parameters are special variables set
by the shell

! Positional parameter 0 holds the name of
the shell script

! Positional parameter 1 holds the first
argument passed to the script

! Positional parameter 2 holds the second
argument passed to the script, etc

Shell parameters are special variables set by the shell. Many of
them cannot be modified, or cannot be directly modified, by the
user or by a shell script. Amongst the most important
parameters are the positional parameters and the other shell
parameters associated with them.

The positional parameters are set to the arguments that were
given to the shell script when it was started, with the exception
of positional parameter 0, which is set to the name of the shell
script. So, if myscript.sh is a shell script, and I ran it by
typing:

./myscript.sh argon hydrogen mercury

then positional parameter 0 = ./myscript.sh

1 = argon

2 = hydrogen

3 = mercury

and all the other positional parameters are not set.

42

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 42

@, #
� @ expands to values of all positional

parameters (starting from first)

In double quotes each parameter is
treated as a separate word (value)

"${@}"

� # expands to the number of positional
parameters (not including 0)

${#}

The special parameter @ is set to the value of all the positional
parameters, starting from the first parameter, passed to the
shell script, each value being separated from the previous one
by a space. You access the value of this parameter using the
construct ${@}. If you access it in double quotes � as in "${@}"
� then the shell will treat each of the positional parameters as a
separate word (which is what you normally want).

The special parameter # is set to the number of positional
parameters not counting positional parameter 0. Thus it is set
to the number of arguments passed to the shell script, i.e. the
number of arguments on the command line when the shell
script was run.

43

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 43

Shell parameters
! Positional parameters (${0}, ${1},

etc)
! Value of all arguments passed: ${@}
! Number of arguments: ${#}

> ~/examples/params.sh 0.5 62 38 hydrogen
This script is /home/x241/examples/params.sh

There are 4 command line parameters.

The first command line parameter is: 0.5

The second command line parameter is: 62
The third command line parameter is: 38

Command line passed to this script: 0.5 62 38 hydrogen

In the examples subdirectory of your home directory there is a script
called params.sh. If you run this script with some command line
arguments it will illustrate how the shell parameters introduced earlier
work. Note that even if you type exactly the command line on the slide
above your output will probably be different as the script will be in a
different place for each user.

The positional parameter 0 is the name of the shell script (it is the
name of the command that was given to execute the shell script).

The positional parameter 1 contains the first argument passed to the
shell script, the positional parameter 2 contains the second argument
passed and so on.

The special parameter # contains the number of arguments that have
been passed to the shell script. The special parameter @ contains all
the arguments that have been passed to the shell script.

44

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 44

Using positional parameters
#!/bin/bash

Remove left over running file

rm �f running

Run iterator with passed arguments

./iterator "${@}"

Remove left over running file

rm �f running

Rename output file

mv output.dat "output-${4}.dat"

The file run-once.sh in the scripts directory (shown above)
accepts some command line arguments and then tries to run the
iterator program with them. (Note that it does no checking of
the arguments it is given whatsoever.) On the assumption that
only the fourth argument will change between runs, it renames
the output file to a new name based on that argument. Change
to your home directory and try this:

scripts/run-once.sh 100 100 1000 0.05

Do an ls of your home directory and see what it has produced.

45

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 45

Redirection (>)
Redirect output to a file, overwriting file if

it exists:

command > file

Equivalently:

command 1>file

Redirect standard error to a file,
overwriting file if it exists:

command 2>file

The > operator redirects the output from a command to a file,
overwriting that file if it exists. You place this operator at the
end of the command, after all of its arguments. This is
equivalent to using 1>filename which means �redirect file
descriptor 1 (standard output) to the file filename, overwriting
it if it exists�.

Unsurprisingly, 2>filename means �redirect file descriptor 2
(standard error) to the file filename, overwriting it if it exists�.
And it will probably come as no shock to learn that
descriptor>filename means �redirect file descriptor
descriptor to the file filename, overwriting it if it exists�,
where descriptor is the number of a valid file descriptor.

You may think that this �overwriting� behaviour is somewhat
undesirable � you can make the shell refuse to overwrite a file
that exists, and instead return an error, using the set shell
builtin command as follows:

set -o noclobber

or, equivalently:

set -C

46

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 46

Using redirection
#!/bin/bash

Remove left over running file

rm �f running

Run iterator with passed arguments

./iterator "${@}" > "stdout-${4}"

Remove left over running file

rm �f running

Rename output file

mv output.dat "output-${4}.dat"

Modify the file run-once.sh in the scripts directory as shown
above (remember to save it when you�ve finished). Now it
captures what the iterator program outputs to the screen
(standard output) as well (hurrah!). Change to your home
directory and try this:

scripts/run-once.sh 100 100 1000 0.05

Do another ls of your home directory and see what it has
produced.

47

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 47

Appending output (>>)
� Redirect output of a command�

� �to a file�

� �appending it to that file

command >> file

The >> operator redirects the output from a command to a file,
appending it to that file. You place this operator at the end of
the command, after all of its arguments. If the file does not
exist, it will be created.

48

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 48

Keeping a record
#!/bin/bash

Remove left over running file

rm �f running

Write to logfile

echo "" >> logfile

date >> logfile

echo "Running iterator with ${@}" >> logfile

Run iterator with passed arguments

./iterator "${@}" > "stdout-${4}"

Remove left over running file

rm �f running

Rename output file

mv output.dat "output-${4}.dat"

Write to logfile

echo "Output file: output-${4}.dat" >> logfile

echo "Standard output: stdout-${4}" >> logfile

Modify the file run-once.sh in the scripts directory as shown
above (remember to save it when you�ve finished). Now every
time it runs it stores a record of what it is doing in the file
logfile in the current directory. Making your shell scripts keep
a record of what they are doing is an extremely good idea,
especially if they are going to run for a long time or on a remote
machine or when you are not around.

Notice that we have something written to the logfile before
we start running the iterator program and something after it
is finished. This means that if the shell script crashes or is
stopped before it is finished there is a very good chance we�ll be
able to tell from the log file as it will not have the �Output
file:� or �Standard output:� lines in it. There are better,
more sophisticated ways of checking whether things have gone
wrong, but this is a nice simple one that is well worth
remembering.

Now change to your home directory and try this:

scripts/run-once.sh 100 100 1000 0.05

cat logfile

49

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 49

for
Execute some commands once for each value

in a collection of values

for VARIABLE in <collection of values> ; do

<some commands>

done

Examples:
myCOLOURS="red green blue"

for zzVAR in ${myCOLOURS} ; do

echo "${zzVAR}"

done

for zzVAR in * ; do

ls -l "${zzVAR}"

done

We can repeat a set of commands using a for loop. A for loop
repeats a set of commands once for each element in a collection
of values it has been given. We use a for loop like this:

for VARIABLE in <collection of values> ; do

<some commands>

done

where <collection of values> is a set of one or more values
(strings of characters). Each time the for loop is executed the
shell variable VARIABLE is set to the next value in <collection
of values>. The two most common ways of specifying this set
of values is by putting them in a another shell variable and then
using the ${} construct to get its value (note that this should
not be in quotation marks), or by using a wildcard (e.g. *) to
specify a collection of file names (pathname expansion). <some
commands> is a list of one or more commands to be executed.

There are some examples of how to use it in the for.sh in the
examples directory of your home directory.

50

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 50

Multiple runs
#!/bin/bash

Parameters that stay the same each run

myFIXED_PARAMS="100 100 1000"

Run iterator program once for each argument

Note: *no* quotes around ${myFIXED_PARAMS}

or they'll be interpreted as one argument!

for zzARGS in "${@}" ; do

~/scripts/run-once.sh ${myFIXED_PARAMS} ${zzARGS}

done

> cd

> rm �f *.dat stdout-* logfile

> scripts/multi-run.sh 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

The file multi-run.sh in the scripts directory (shown above) takes one
or more command line arguments and then runs the run-once.sh script
(which in turn runs the iterator program) with 4 arguments � 3 that are
always the same and that are hard-coded into the script, and one of its
command line arguments. It does this repeatedly until there are no more
of its command line arguments. This script is much more versatile than
the script we wrote for the earlier exercise. Modifying that script for each
different set of values we might want to run would have rapidly become
extremely tedious, whereas we don�t need to modify this script at all � we
just run it with different arguments.

Note that when we use the value of the shell variable myFIXED_PARAMS
we don�t surround it with quotes � if we did then it would be treated as a
single value instead of as 3 separate values (when the shell treats spaces
in this way � as a separator between values � it is called word splitting).

Give it a try � change to your home directory and type the following
commands (the rm command is to remove the files produced by our
previous runs of earlier scripts):

rm �f *.dat stdout-* logfile

scripts/multi-run.sh 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

more logfile

And finally do a ls of your home directory and see what files have been
produced.

51

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 51

Final exercise (1)

We have a directory that contains the
output of several runs of the iterator
program in separate files. We have a file
of commands that will turn the output
into a graph (using gnuplot). We want
to turn the output from each run into a
graph.

We are specifically using the gnuplot program and the output
of the iterator program we�ve met before. (gnuplot is a
program that creates graphs, histograms, etc from numeric
data.) Think of this task as basically: I have some data sets and I
want to process them all in the same way. My processing might
produce graphical output, as here, or it might produce more
data in some other format.

If you haven�t met gnuplot before, you may wish to look at its
WWW page:

http://www.gnuplot.info/

http://www.gnuplot.info/
http://www.gnuplot.info/

52

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 52

Let�s take a closer look� (1)
> cd

> cp gnuplot/iterator.gplt .

> cp output-0.05.dat output.dat

> ls output.png
/bin/ls: output.png: No such file or directory

> gnuplot iterator.gplt

> rm output.dat

> ls output.png
output.png

> eog output.png &

Note that the output of �ls output.png� may look slightly
different � in particular, the colours may be slightly different
shades.

53

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 53

Let�s take a closer look� (2)

54

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (I) 54

Final exercise (2)
What we want to do is, for each output file:

1. Rename (or copy) the output file we want to
process to output.dat

> mv output-0.05.dat output.dat

2. Run gnuplot with the iterator.gplt file
> gnuplot iterator.gplt

3. Rename (or delete if you copied the original
output file) output.dat

> mv output.dat output-0.05.dat

4. Rename output.png
> mv output.png output-0.05.dat.png

Your task is to create a shell script that does the above task.
Basically, for each of the .dat files we�ve just produced, you
want to run gnuplot on it to create a graph (which will be
stored as a .png file). The iterator.gplt file you�ve been
given will only work if the .dat file is called output.dat and is
in the current directory. Also, you don�t want gnuplot to
overwrite each .png file, so you�ll need to rename it after
gnuplot�s created it.

We have gone through everything you need to do this exercise.
You should comment your shell script, preferably as you are
writing it.

Hint: the best way to do this is with a for loop over all the .dat files in the directory � we
haven�t used that kind of for loop much yet, but you�ve seen the syntax for it, and there is an
example of that sort of for loop in the for.sh file in the examples directory.

