
1

Unix Systems: Shell
Scripting (III)

Bruce Beckles

University of Cambridge Computing Service

2

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 2

Introduction
� Who:

! Bruce Beckles, e-Science Specialist, UCS

� What:
! Unix Systems: Shell Scripting (III) course
! Follows on from �Unix Systems: Shell Scripting (II)�
! Part of the Scientific Computing series of courses

� Contact (questions, etc):
! escience-support@ucs.cam.ac.uk

� Health & Safety, etc:
! Fire exits

� Please switch off mobile phones!

As this course is part of the Scientific Computing series of
courses run by the Computing Service, all the examples that we
use will be more relevant to scientific computing than to system
administration, etc.

This does not mean that people who wish to learn shell scripting
for system administration and other such tasks will get nothing
from this course, as the techniques and underlying knowledge
taught are applicable to shell scripts written for almost any
purpose. However, such individuals should be aware that this
course was not designed with them in mind.

For details of the �Unix Systems: Shell Scripting (II)� course, see:
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2

3

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 3

What we don�t cover
� Different types of shell:

! We are using the Bourne-Again SHell
(bash).

� Differences between versions of bash

� Very advanced shell scripting � try this
course instead:
! �Programming: Python for Absolute Beginners�

bash is probably the most common shell on modern Unix/Linux systems � in fact, on
most modern Linux distributions it will be the default shell (the shell users get if they
don�t specify a different one). Its home page on the WWW is at:

http://www.gnu.org/software/bash/

We will be using bash 3.0 in this course, but everything we do should work in bash
2.05 and later. Version 3.0 and version 2.05 (or 2.05a or 2.05b) are the versions of
bash in most widespread use at present. Most recent Linux distributions will have one
of these versions of bash as one of their standard packages. The latest version of
bash (at the time of writing) is bash 3.2, which was released on 12 October, 2006.

For details of the �Programming: Python for Absolute Beginners� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/prog.html#python

4

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 4

Outline of Course
1. Pre-requistes & recap of �Shell Scripting (II)�

course
2. The if statement
3. exit, standard error

SHORT BREAK

3. More tests
4. if�then�else

5. Better error handling, return
4. if�elif�elif�elif�else

SHORT BREAK

6. Manipulating filenames
7. source

Exercise (~16:30)

The course officially finishes at 17.00, but the intention is that
the lectured part of the course will be finished by about 16.30
and the remaining time is for you to attempt an exercise that
will be provided. If you need to leave before 17.00 (or even
before 16.30), please do so, but don�t expect the course to have
finished before then. If you do have to leave early, please leave
quietly and please make sure that you fill in a green Course
Review form and leave it at the front of the class for collection
by the course giver.

5

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 5

Related course

Unix Systems: Commands for
the Intermediate User:
!More advanced Unix/Linux
commands you can use in your
shell scripts

For details of the �Unix Systems: Commands for the Intermediate User� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unixcoms

6

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 6

Pre-requisites (1)

�Ability to use a text editor under
Unix/Linux:
! Try gedit if you aren�t familiar with

any other Unix/Linux text editors

�Familiarity with the Unix/Linux
command line (�Unix System:
Introduction� course)

For details of the �Unix System: Introduction� course, see:
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

7

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 7

Pre-requisites (2)
� Familiarity with material covered in �Unix

Systems: Shell Scripting (I)� and �Unix
Systems: Shell Scripting (II)� courses:
! Shell scripts as linear lists of commands

! Simple use of shell variables and parameters

! Simple command line processing

! Shell functions

! Pipes and output redirection
! Accessing standard input using read

! for and while loops

! (Integer) arithmetic tests

! Command substitution and (integer) arithmetic expansion
! The mktemp command

For details of the �Unix Systems: Shell Scripting (I)� course, see:
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script1

For details of the �Unix Systems: Shell Scripting (II)� course, see:
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2

8

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 8

Start a shell

9

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 9

Screenshot of newly started shell

10

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 10

Recap: What is a shell script?

� Text file containing commands
understood by the shell

� Very first line is special:
#!/bin/bash

� File has its executable bit set
chmod +x

Recall that the chmod command changes the permissions on a
file. chmod +x sets the executable bit on a file, i.e. it grants
permission to execute the file. Unix file permissions were
covered in the �Unix System: Introduction� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

11

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 11

Recap: Very simple shell scripts

� Linear lists of commands

� Just the commands you�d type
interactively put into a file

� Simplest shell scripts you�ll write

12

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 12

Recap: Shell variables and
parameters

� Shell variables hold data (like variables in
a program)

� Shell parameters are special variables set
by the shell

� Shell variables and parameters can hold a
list (or collection) of values � you can
perform some group of actions for each
value in the variable (or parameter) using
a for loop

13

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 13

Shell variables and parameters
Shell variables hold data, much like variables

in a program:
> VAR="My variable"

> echo "${VAR}"

My variable

Shell parameters are special variables set by
the shell:
! Positional parameter 0 holds the name of the shell script
! Positional parameter 1 holds the first argument passed to

the script; positional parameter 2 holds the second
argument passed to the script, etc

! Special parameter @ expands to values of all positional
parameters (starting from 1)

! Special parameter # expands to the number of positional
parameters (not including 0)

We create shell variables by simply assigning them a value (as above for the shell variable VAR).
We can access a the value of a shell variable using the construct ${VARIABLE} where VARIABLE
is the name of the shell variable. Note that there are no spaces between the name of the
variable, the equal sign (=) and the variable�s value in double quotes. This is very important as
whitespace (spaces, tabs, etc) is significant in the names and values of shell variables.

Also note that although we can assign the value of one shell variable to another shell variable,
e.g. VAR1="${VAR}", the two shell variables are in fact completely separate from each other, i.e.
each shell variable can be changed independently of the other. Changing the value of one will
not affect the other. So VAR1 (in this example) is not a �pointer� to or an �alias� for VAR.

Shell parameters are special variables set by the shell. Many of them cannot be modified, or
cannot be directly modified, by the user or by a shell script. Amongst the most important
parameters are the positional parameters and the other shell parameters associated with them.

The positional parameters are set to the arguments that were given to the shell script when it
was started, with the exception of positional parameter 0, which is set to the name of the shell
script. So, if myscript.sh is a shell script, and I ran it by typing:

./myscript.sh argon hydrogen mercury

then positional parameter 0 = ./myscript.sh

1 = argon

2 = hydrogen

3 = mercury

and all the other positional parameters are not set.

The special parameter @ is set to the value of all the positional parameters, starting from the
first parameter, passed to the shell script, each value being separated from the previous one by
a space. You access the value of this parameter using the construct ${@}. If you access it in
double quotes � as in "${@}" � then the shell will treat each of the positional parameters as a
separate word (which is what you normally want).

The special parameter # is set to the number of positional parameters not counting positional
parameter 0. Thus it is set to the number of arguments passed to the shell script, i.e. the
number of arguments on the command line when the shell script was run.

14

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 14

Shell parameters
! Positional parameters (${0}, ${1},

etc)
! Value of all arguments passed: ${@}
! Number of arguments: ${#}

> ~/examples/params.sh 0.5 62 38 hydrogen
This script is /home/x241/examples/params.sh

There are 4 command line arguments.

The first command line argument is: 0.5

The second command line argument is: 62
The third command line argument is: 38

Command line passed to this script: 0.5 62 38 hydrogen

In the examples subdirectory of your home directory there is a script
called params.sh. If you run this script with some command line
arguments it will illustrate how the positional parameters and related
shell parameters work. Note that even if you type exactly the command
line on the slide above your output will probably be different as the
script will be in a different place for each user.

The positional parameter 0 is the name of the shell script (it is the
name of the command that was given to execute the shell script).

The positional parameter 1 contains the first argument passed to the
shell script, the positional parameter 2 contains the second argument
passed and so on.

The special parameter # contains the number of arguments that have
been passed to the shell script. The special parameter @ contains all
the arguments that have been passed to the shell script.

15

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 15

for
Execute some commands once for each value

in a collection of values

for VARIABLE in <collection of values> ; do

<some commands>

done

Examples:
myCOLOURS="red green blue"

for zzVAR in ${myCOLOURS} ; do

echo "${zzVAR}"

done

for zzVAR in * ; do

ls -l "${zzVAR}"

done

We can repeat a set of commands using a for loop. A for loop repeats a set
of commands once for each element in a collection of values it has been
given. We use a for loop like this:

for VARIABLE in <collection of values> ; do

<some commands>

done

where <collection of values> is a set of one or more values (strings of
characters). Each time the for loop is executed the shell variable VARIABLE
is set to the next value in <collection of values>. The two most
common ways of specifying this set of values is by putting them in a another
shell variable and then using the ${} construct to get its value (note that this
should not be in quotation marks), or by using a wildcard (e.g. *) to specify a
collection of file names (pathname expansion). <some commands> is a list of
one or more commands to be executed.

Note that you can put the do on a separate line, in which case you can omit
the semi-colon (;):

for VARIABLE in <collection of values>

do

<some commands>

done

There are some examples of how to use it in the for.sh script in the
examples directory of your home directory.

16

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 16

Recap: Output redirection and
pipes

� Commands normally send their output to
standard output (which is usually the
screen)

� Standard output can be redirected to a
file

� A pipe takes the output of one command
and supplies it to another command as
input.

17

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 17

Redirection (>, >>)
Redirect output to a file, overwriting

file if it exists:

command > file

Redirect output to a file, appending it
to that file:

command >> file

The > operator redirects the output from a command to a file,
overwriting that file if it exists. You place this operator at the
end of the command, after all of its arguments. This is
equivalent to using 1>filename which means �redirect file
descriptor 1 (standard output) to the file filename, overwriting
it if it exists�.

(Unsurprisingly, 2>filename means �redirect file descriptor 2
(standard error) to the file filename, overwriting it if it exists�.
And it will probably come as no shock to learn that
descriptor>filename means �redirect file descriptor
descriptor to the file filename, overwriting it if it exists�,
where descriptor is the number of a valid file descriptor.)

You may think that this �overwriting� behaviour is somewhat
undesirable � you can make the shell refuse to overwrite a file
that exists, and instead return an error, using the set shell
builtin command as follows:

set -o noclobber

or, equivalently:

set �C

The >> operator redirects the output from a command to a file,
appending it to that file. You place this operator at the end of
the command, after all of its arguments. If the file does not
exist, it will be created.

18

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 18

Pipes
A pipe takes the

�output of one command�
�and passes it to another
command as input�

command1 | command2

Pipes can be combined:

command1 | command2 | command3

A set of one or more pipes is known as a
pipeline

A pipe takes the output of one command and feeds it to another
command as input. We tell the shell to do this using the |
symbol. So:

ls | more

takes the the output of the ls command and passes it to the
more command, which displays the output of the ls command
one screenful at a time. We can combine several pipes by taking
the output of the last command of each pipe and passing it to
the first command in the next pipe, e.g.

ls | grep 'fred' | more

takes the output of ls and passes it to grep, which searches for
lines with the string �fred� in them, and then the output of
grep is passed to the more command to display one screenful at
a time. A set of one or more pipes is known as a pipeline. This
pipeline would show us all the files with the string �fred� in
their name, one screenful at a time.

19

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 19

Recap: Shell functions (1)
> cd

> cat hello-function.sh

#!/bin/bash

function hello()

{

This is a shell function.

echo "Hello!"

echo "I am function ${FUNCNAME}."

}

> ./hello-function.sh

>

Shell functions are similar to functions in most high-level programming
languages. Essentially they are �mini-shell scripts� (or bits of shell scripts) that
are invoked (called) by the main shell script to perform one or more tasks. When
called they can be passed arguments (parameters), and when they are finished
they return control to the statement in the shell script immediately after they
were called.

To define a function, you just write the following at the start of the function:

function function_name()

{

where function_name is the name of the function. Then, after the last line of
the function you put a line with just a closing curly brace (}) on it:

}

Note that unlike function definitions in most high level languages you don�t list
what parameters (arguments) the function takes. This is not so surprising when
you remember that shell functions are like �mini-shell scripts� � you don�t
explicitly define what arguments a shell script takes either.

Like functions in a high-level programming language, defining a shell function
doesn�t actually make the shell script do anything � the function has to be called
by another part of the shell script before it will actually do anything.

FUNCNAME is a special shell variable (introduced in version 2.04 of bash) that the
shell sets within a function to the name of that function. When not within a
function, the variable is unset.

20

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 20

Recap: Shell functions (2)
� �mini-shell scripts�

� Usually used for well-defined tasks (often
called repeatedly)

� Specify arguments by listing them after
function name when calling function
hello Dave

� Positional parameters (and related special
shell parameters) set to function�s
arguments within function
In function hello, positional parameter 1 = Dave

If you�ve implemented your shell script entirely as shell functions, there is a really nice trick
you can use when something goes wrong and you need to debug your script, or if you want
to re-use some of those functions in another script. As you�ve implemented the script
entirely as a series of functions, you have to call one of those functions to start the script
actually doing anything. For the purposes of this discussion, let�s call that function main. So
your script looks something like:

function start()

{

�

}

function do_something()

{

�

}

function end()

{

�

}

function main()

{

�

}

main

By commenting out the call to the main function, you now have a shell script that does
nothing except define some functions. You can now easily call the function(s) you want to
debug/use from another shell script using the source shell builtin command (as we�ll see
later). This makes debugging much easier than it otherwise might be, even of really long
and complex scripts.

21

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 21

Recap: More input and output, and
while loops

� Command substitution $(command) can be used
to get the output of a command into a shell
variable

� Use mktemp (see Appendix) to make temporary
files and directories

� read gets values from standard input

� while loops repeat some commands while
something is true � can be used to read in
multiple lines of input with read

� A command is considered to be true if its exit
status is 0.

22

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 22

Command substitution
Sometimes we want to get the output of a

command and use it in our shell script, for
instance, we might want a shell variable to
hold the output of a command. How do we do
this?:

$(command)

> cd /tmp

> myDIRECTORY="$(pwd)"

> echo "I will use directory: ${myDIRECTORY}"

I will use directory: /tmp

Command substitution is the process whereby the shell runs a command and
substitutes the command�s output for wherever the command originally appeared
(in a shell script or on the command line).

So, for example, the following line in a shell script:

myDIR="$(pwd)"

would set the shell variable myDIR to the full path of the current working directory.
(We don�t have to surround the $(pwd) in quotes, but it is a good idea: the path
may contain spaces.) This is how it works:

1. The shell runs the pwd command. The pwd command prints out the full path of
current working directory, i.e. its output is the full path of the current
working directory. Let�s suppose we were in /tmp, so the output of the pwd
command would be �/tmp�.

2. The shell takes this output (�/tmp�) and substitutes it for where the
original expression $(pwd) appeared. So what we now have is:

myDIR="/tmp"

3. As you probably by now now, this is just the normal way of assigning a
value to a shell variable, and, sure enough that�s exactly what the shell
does: it assigns the value �/tmp� to the shell variable myDIR.

Instead of the $() construct you can also use backquotes, i.e. you can use
`command` instead of $(command), and you are likely to come across these in many
shell scripts. However, the use of backquotes is generally a very bad idea for two
reasons: (1) it�s very easy to misplace or overlook a backquote (with catastrophic
results) as the backquote character (`) is so small, and (2) it�s very difficult to use
backquotes to do nested command substitution.

23

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 23

read
Get input from standard input�

�try to put each word (value) in as many
separate variables as are provided�

read VAR1 VAR2 VAR3

Options:
-p Use the following string as a prompt for

the user

> read -p "What is the answer?:" myANSWER

What is the answer?: 42

> echo "${myANSWER}"
42

The read shell builtin command takes input from standard
input (usually the keyboard) and returns it in the specified shell
variable. If you don�t specify a shell variable, it will return it in a
shell variable called REPLY.

The -p option gives read a string that it displays as a prompt
for the user.

You can give read more than one shell variable in which to
return its input. What happens then is that the first word it
reads goes into the first shell variable, the second word into the
second shell variable and so on.

If there are more words than shell variables, the extra words all
are put into the last shell variable.

If there are more shell variables than words, each of the extra
variables are set to the empty string.

As far as read is concerned a �word� is a sequence of characters
that does not contain a space, i.e. it considers spaces as the
thing that separates one word from another. (The technical
term for �thing that separates one thing from another� is
�delimiter�.)

24

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 24

while

Repeat while some expression is true

while <expression> ; do

<some commands>

done

We can repeat a collection of commands using a while loop. A
while loop repeats a collection of commands as long as the
result of some test or command is true (what�s a test? � we�ll do
a recap of tests in a minute). The result of a command is
considered to be true if it returns an exit status (see next slide)
of 0 (i.e. if the command succeeded). We use a while loop like
this:

while <expression> ; do

<some commands>

done

where <expression> is either a test or a command, and
<some commands> is a collection of one or more commands.

As with a for loop, you can put the do on a separate line, in
which case you can omit the semi-colon (;).

There are some examples of how to use while loops in the
following files in the examples directory:

while1.sh

while2.sh

25

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 25

Exit Status (1)
� Every program (or shell builtin command)

returns an exit status when it completes

� Number between 0 and 255

� Not the same as the program�s (or shell
builtin command�s) output

� By convention:
! 0 means the command succeeded

! Non-zero value means the command failed

� Exit status of the last command ran
stored in special shell parameter named ?

The exit status of a program is also called its exit code, return
code, return status, error code, error status, errorlevel or error
level.

26

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 26

Exit Status (2)
> ls
bin hello-function.sh iterator.gplt scripts

examples hello.sh lissajous.py source
gnuplot iterator run-iterator.sh treasure.txt

> echo "${?}"

0

> ls zzzzfred
/bin/ls: zzzzfred: No such file or directory

> echo "${?}"

2

You get the value of the special parameter ? by using the
construct ${?}, as in the above example.

Note that when the ls command is successful, its exit status is
0. When, however, it fails (for example because the file does not
exist, as here), its exit status is non-zero (�2�, in this case). In
our shell scripts, we will make significant use of the fact that a
non-zero exit status of a program (or a shell builtin command)
means that there was an error.

Please note that the output of the ls command may not exactly
match what is shown on this slide � in particular, the colours
may be slightly different shades and there may be additional
files and/or directories shown.

27

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 27

Recap: Shell arithmetic

� The shell can do integer arithmetic �
this is known as arithmetic
expansion

� The shell can also perform
arithmetic tests on integers (>, ≥, =,
≤, <)

28

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 28

Arithmetic Expansion: $(())
� Returns the value of an integer

arithmetic operation
� Operands must be integers (so no

decimals, e.g. 2.5, etc)
� Do not use quotes in the arithmetic

expression

$((<arithmetic-expression>))

Example:
$((${VAR} + 56))

The shell can do (primitive) integer arithmetic.

The construct $((<arithmetic-expression>)) means replace
$((<arithmetic-expression>)) with the result of the integer
arithmetic expression <arithmetic-expression>. This is
known as arithmetic expansion. (The arithmetic expression is
evaluated as integer arithmetic.) Note that we don�t use quotes
around our variables in our arithmetic expression as that would
cause the shell to treat the values as strings rather than
numbers (this is, alas, somewhat inconsistent with the shell�s
behaviour elsewhere).

29

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 29

Tests
Test to see if something is true:

[<expression>]

or: test <expression>

where <expression> can be any of a
number of things such as:

["a" �eq "b"]

["a" �le "b"]

["a" �gt "b"]

A test is basically the way if which the shell evaluates an expression to see if it is
true. (Recall that they can be used with while.) There are many different tests
that you can do, and we only list a few here:

"a" �lt "b" true if and only if the integer a is less than the integer b

"a" �le "b" true if and only if the integer a is less than or equal to the integer b

"a" �eq "b" true if and only if the integer a is equal to the integer b

"a" �ne "b" true if and only if the integer a is not equal to the integer b

"a" �ge "b" true if and only if the integer a is greater than or equal to the integer b

"a" �gt "b" true if and only if the integer a is greater than the integer b

You can often omit the quotation marks, particularly for arithmetic tests (we�ll
meet other sorts of tests later), but it is good practice to get into the habit of
using them, since there are times when not using them can be disastrous.

In the above tests, a and b can be any integers. Recall that shell variables can
hold pretty much any value we like � they can certainly hold integer values, so a
and/or b in the above expressions could come from shell variables, e.g.

["${VAR}" �eq "5"]

Or, equivalently:

test "${VAR}" �eq "5"

is true if and only if the shell variable VAR contains the value �5�.

30

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 30

Sample program: iterator

> ./iterator 100 100 1000 0.05
x dimension of grid: 100

y dimension of grid: 100

Number of iterations: 1000

Epsilon: 0.050000

Output file: output.dat

Iterations took 2.100 seconds

The iterator program is in your home directory. It is a
program written specially for this course, but we�ll be using it as
an example program for pretty general tasks you might want to
do with many different programs. Think of iterator as just
some program that takes some input on the command line and
then produces some output (on the screen, or in one or more
files, or both), e.g. a scientific simulation or data analysis
program.

The iterator program takes 4 numeric arguments on the
command line: 3 positive integers and 1 floating-point number.
It always writes its output to a file called output.dat in the
current working directory, and also writes some informational
messages to the screen.

The iterator program is not as well behaved as we might like
(which, sadly, is also typical of many programs you will run).
The particular way that iterator is not well behaved is this:
every time it runs it creates a file called running in the current
directory, and it will not run if this file is already there (because
it thinks that means it is already running). Unfortunately, it
doesn�t remove this file when it has finished running, so we
have to do it manually if we want to run it multiple times in the
same directory.

31

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 31

Exercise from Shell Scripting (II):
Part One

Improve the run_program function in
multi-run-while.sh so that as well
as running iterator it also runs
gnuplot (using the iterator.gplt
file) to plot a graph of the output.

The multi-run-while.sh shell script (in the scripts subdirectory of your
home directory) runs the iterator program (via a shell function called
run_program) once for each parameter set that it reads in from standard
input. This exercise requires you to modify the run_program shell function
of that script so that, as well as running the iterator program it also runs
gnuplot to turn the output of the iterator program into a graph.

One sensible way of doing this would be as follows:

1. Figure out the full path of the iterator.gplt file. Store it a
shell variable (maybe called something like myGPLT_FILE).

2. Immediately after running iterator, run gnuplot:

gnuplot "${myGPLT_FILE}"

3. Rename the output.png file produced by gnuplot along the
same lines as the output.dat file produced by iterator is
renamed.

This exercise highlights one of the advantages of using functions: we can
improve or change our functions whilst leaving the rest of the script
unchanged. In particular, the structure of the script remains unchanged.
This means two things: (1) if there are any errors after changing the script
they are almost certainly in the function we changed, and (2) the script is still
doing the same kind of thing (as we can see at a glance) � we�ve just changed
the particulars of one of its functions.

32

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 32

Solution to Part One
#!/bin/bash -e

function run_program()

{

�
Remove left over running file

rm �f running

Run gnuplot

gnuplot "$(myGPLT_FILE)"

�
Rename files

mv output.dat "output-${1}-${2}-${3}-${4}.dat"
mv output.png "output-${1}-${2}-${3}-${4}.png"

Write to logfile
echo "Output file: output-${1}-${2}-${3}-${4}.dat" >> logfile

echo "Plot of output file: output-${1}-${2}-${3}-${4}.png" >> logfile

�
}

Program to run: iterator
myPROG="$(pwd -P)/iterator"

Location of gnuplot file

myGPLT_FILE="$(pwd �P)/iterator.gplt"

�

If you examine the multi-run-while.sh script in the scripts
subdirectory of your home directory, you will see that it has been
modified as shown above to run gnuplot after running iterator.

You should be able to tell what all the highlighted parts of the shell
script above do � if there is anything you don�t understand, or if you
had any difficulty with this part of the exercise, please let the course
giver or demonstrator know.

You can test that this script works by doing the following:

> cd

> rm �f *.dat *.png stdout-* logfile

> cat scripts/param_set | scripts/multi-run-while.sh

> ls

You should see that there is a PNG file for each of the renamed .dat
output files. You should also inspect logfile to see what it looks
like now.

33

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 33

Exercise from Shell Scripting (II):
Part Two

Now create a new shell script based on
multi-run-while.sh that will run iterator
three times for each parameter set the script
reads in on standard input, changing the third
parameter each time as follows:

For a given parameter set a b c d, first your script
should run iterator with the parameter set:

a b 10 d
�then with the parameter set:

a b 100 d
�and then with the parameter set:

a b 1000 d

An example may help to make this task clearer. Suppose your script reads in the
parameter set:

10 10 50 0.5

�it should then run the iterator program 3 times, once for each of the
following parameter sets:

10 10 10 0.5

10 10 100 0.5

10 10 1000 0.5

Now, currently the script will read in a parameter set and then call the
run_program function to process that parameter set. Clearly, instead of passing
all four parameters that the script reads in, the new script will now only be
passing the first (myNX), second (myNY), and fourth (myEPSILON) parameters that
it has read in. However, the iterator program requires 4 parameters (and it
cares about the order in which you give them to it), so the new script still needs
to give it 4 parameters, it is just going to ignore the third parameter it has read
(myN_ITER) and substitute values of its own instead.

There are two obvious approaches you could have taken in performing this task.
One would be to call the run_program function 3 times, once with 10 as the
third parameter, once with 100 as the third parameter and once with 1000 as the
third parameter. The other would be to use some sort of loop that calls the
run_program function, using the appropriate value (10, 100 or 1000) for the
third parameter on each pass of the loop. I wanted you to use the loop approach.

34

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 34

Solution to Part Two (1)
#!/bin/bash -e

�
Read in parameters from standard input

and then run program with them

and run it again and again until there are no more

while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,

use 10, then 100, then 1000.

for zzITER in 10 100 1000 ; do

Run program

run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"

done

�

If you examine the multi-10-100-1000.sh script in the scripts
subdirectory of your home directory, you will see that it is a version
of the multi-run-while.sh script that has been modified as
shown above.

You should be able to tell what all the highlighted parts of the shell
script above do, and you should be able to see why this is a solution
to this part of the exercise � if there is anything you don�t
understand, or if you had any difficulty with this part of the
exercise, please let the course giver or a demonstrator know.

You can test that this script works by doing the following:

> cd

> rm �f *.dat *.png stdout-* logfile

> cat scripts/param_set | scripts/multi-10-100-1000.sh

> ls

You should see that a number of PNG and .dat files have been
produced. You could view some of the PNG files to make sure they
were what was expected by using Eye of GNOME (eog) or another
PNG viewer (such as Firefox).

35

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 35

Solution to Part Two (2)
#!/bin/bash -e

�
Read in parameters from standard input

and then run program with them

and run it again and again until there are no more

while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,

use 10, then 100, then 1000.

zzITER=1

while ["${zzITER}" -lt "1000"] ; do

zzITER=$((${zzITER} * 10))

Run program

run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"

done

�

There is another way you could have achieved the same thing, also using a
loop, but this time using a while loop instead of a for loop. This may seem a
somewhat perverse way of doing things, but if you had a parameter that was an
integer that you wished to increase by some constant factor a large number of
times, e.g. 2, 4, 8, 16, 32, 64, etc. then this would be a better way of doing it
than trying to type them all out as a list of values for a for loop.

If you examine the multi-10-100-1000-alternate.sh script in the scripts
subdirectory of your home directory, you will see that it is a version of the
multi-run-while.sh script that has been modified as shown above.

You should be able to tell what all the highlighted parts of the shell script
above do, and you should be able to see why this is a solution to this part of
the exercise � if there is anything you don�t understand, or if you had any
difficulty with this part of the exercise, please let the course giver or a
demonstrator know.

You can test that this script works by doing the following:

> cd

> rm �f *.dat *.png stdout-* logfile

> cat scripts/param_set | scripts/multi-10-100-1000-alternate.sh

> ls

�and examining the files produced.

36

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 36

Exercise from Shell Scripting (II):
Part Three

Now create a new shell script, based on the script you created in the
previous part of the exercise, that does the following:

Instead of running iterator three times for each parameter set it reads
in, this script should accept a set of values on the command line, and
use those instead of the hard-coded 10, 100, 1000 previously used.

Thus, for each parameter set it reads in on standard input, it should run
iterator substituting, in turn, the values from the command line for
the third parameter in the parameter set it has read in.

So, if the script from the previous part of the exercise was called
multi-10-100-1000.sh, and we called this new script
multi-iterations.sh (and stored both in the scripts directory of
our home directory), then running the new script like this:

> cat ~/scripts/param_set | ~/scripts/multi-iterations.sh 10 100 1000

should produce exactly the same output as running the old script
with the same input file:

> cat ~/scripts/param_set | ~/scripts/multi-10-100-1000.sh

You may be wondering what the point of the previous script and this script are.
Consider what these scripts actually do: they take a parameter set, vary one of its
parameters and then run some program with the modified parameter sets. Why
would we want to do this?

Well, in this example the parameter we are varying specifies the number of
iterations for which our program will run. You can easily imagine that we might
have a simulation or calculation for which, for any given parameter set,
interesting things happened after various numbers of iterations. These scripts
allow us to take each parameter set and run it several times for different numbers
of iterations. We can then look at each parameter set and see how varying the
number of iterations affects the program�s output for that parameter set.

If we were using the parameter sets in the scripts/param_set file, we might
notice that these parameters are the same except for the fourth parameter which
varies. So if we pipe those parameter sets into one of these scripts, we are now
investigating how the output of the iterator program varies as we vary two of
its input parameters, which is kinda neat, doncha think? ☺

37

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 37

Solution to Part Three
#!/bin/bash -e

�
Read in parameters from standard input

and then run program with them

and run it again and again until there are no more

while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,

cycle through command line arguments.

for zzITER in "${@}" ; do

Run program

run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"

done

�

If you examine the multi-iterations.sh script in the scripts
subdirectory of your home directory, you will see that it is a version
of the multi-10-100-1000.sh script that has been modified as
shown above.

You should be able to tell what all the highlighted parts of the shell
script above do, and you should be able to see why this is a solution
to this part of the exercise � if there is anything you don�t
understand, or if you had any difficulty with this part of the
exercise, please let the course giver or a demonstrator know.

You can test that this script works by doing the following:
> cd

> rm �f *.dat *.png stdout-* logfile

> cat scripts/param_set | scripts/multi-iterations.sh 10 100 1000

> ls

You should see that a number of PNG and .dat files have been
produced.

38

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 38

What else are tests good for?

We have seen that we can use tests in
while loops. What else are they good
for?

Suppose we know some (valid) parameters
for our program produce no interesting
output. Could we use some tests to filter
these out?

39

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 39

Using tests (1)
We�ve met (integer) arithmetic tests.

Suppose we�d like to test to see whether
some of our parameters are within a
certain range (say 1 to 10000). If they are
not, we shouldn�t do anything, i.e.

If parameter ≤ 1 or parameter ≥ 10000 stop
executing the script�

How do we do this?

40

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 40

if

Do something only if some expression
is true

if <expression> ; then

<some commands>

fi

We can decide whether a collection of commands should be
executed using an if statement. An if statement executes a
collection of commands if and only if the result of some test or
command is true. (Recall that the result of a command is
considered to be true if it returns an exit status of 0 (i.e. if the
command succeeded)). We use an if statement like this:

if <expression> ; then

<some commands>

fi

where <expression> is either a test or a command, and
<some commands> is a collection of one or more commands.

In a similar manner to for and while loops, you can put the then
on a separate line, in which case you can omit the semi-colon (;),
i.e.

if <expression>

then

<some commands>

fi

Now, we just need to know how to tell our script to stop executing
and we will have all the pieces we need to modify our script to
behave the way we want�

41

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 41

exit

To stop executing a shell script:

exit

�can explicitly set an exit status
thus:

exit value

The exit shell builtin command causes a shell script to exit
(stop executing) and can also explicitly set the exit status of the
shell script (if you specify a value for the exit status).

Recall that the exit status is an integer between 0 and 255, and
should be 0 only if the script was successful in what it was
trying to do. If the script encounters an error it should set the
exit status to a non-zero value.

If you don�t give exit an exit status then the exit status of the
shell script will be the exit status of the last command executed
by the script before it reached the exit shell builtin command.

(If you don�t have a exit shell builtin command in your shell
script, then your script will exit when it executes its last
command. In this case its exit status will be the exit status of
the last command executed in your script.)

42

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 42

Using if (and tests)
#!/bin/bash -e

�
while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,

cycle through command line arguments.
for zzITER in "${@}" ; do

if ["${zzITER}" -lt "1"] ; then

echo "Number of iterations (${zzITER}) must be positive!"

exit 1

fi

if ["${zzITER}" -gt "10000"] ; then

echo "Too many iterations (${zzITER})!"

exit 1

fi

Run program

�

Modify the multi-iterations.sh script in the scripts
subdirectory of your home directory as shown above. (Make sure to
save it after you�ve modified it.)

What do you think these modifications do?

Note that if we exit the script because one of the command line
arguments is incorrect, then we need to indicate that there was a
problem running the script, so we set our exit status to a non-zero
value (1 in this case, which is the conventional value to use if we
don�t set different exit statuses for different types of error).

You can test that this script works by doing the following:
> cd

> rm �f *.dat *.png stdout-* logfile

> cat scripts/param_set | scripts/multi-iterations.sh 0

Number of iterations (0) must be positive!

> cat scripts/param_set | scripts/multi-iterations.sh 20000

Too many iterations (20000)!

43

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 43

standard
input

program
(shell script
in our case)

standard
output

standard
error

By default, this comes
from the keyboard

By default, this goes
to the screen

By default, this also
goes to the screen

Program I/O

We are already familiar with standard output as a �channel� along which
our program or shell script�s output is sent to somewhere. By default,
this �somewhere� will be the screen, unless we redirect it to somewhere
else (like a file).

Standard output is one of the standard streams that all programs
(whether they are shell scripts or not) have. (The idea of a stream here is
that there is a �stream� of data flowing to/from our program and to/from
somewhere else, like the screen.) Another standard stream that we have
already met is standard input (which by default comes from the keyboard
unless we redirect it).

There is actually a third standard stream called standard error. Like
standard output, this is an �output stream� � data flows from our
program along this stream to somewhere else. This stream is not for
ordinary output though, but for any error messages our program may
generate (and by default it also goes to the screen).

Why have two output streams? The reason is that this allows error
messages to be easily separated from a program�s output, e.g. for ease
of debugging, etc.

For more information on standard error and the other standard streams
(standard input and standard output) see the following Wikipedia article:

http://en.wikipedia.org/wiki/Standard_streams

44

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 44

Standard Error (1)
> ls iterator

iterator

> ls iterator zzzzfred
/bin/ls: zzzzfred: No such file or directory

iterator
> ls iterator zzzzfred > stdout-ls
/bin/ls: zzzzfred: No such file or directory

> cat stdout-ls

iterator

If we look at what happens when a standard Unix command,
such as ls, encounters an error, the way standard error works
may become clearer.

When we ask ls to list a non-existent file, it prints out an error
message. If we redirect the (standard) output of ls to a file, we
see that the error message still goes to the screen. This is
because the error message does not go to standard output, but
to standard error. If we wanted to send the error message to file
we would need to redirect standard error to that file.

So how do we manipulate standard error?

Please note that the output of the ls command may not exactly
match what is shown on this slide � in particular, the colours
may be slightly different shades.

45

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 45

Standard Error (2)
To redirect standard error to a file we

use the following construct:

command 2> file

To send the output of a command to
standard error, we use the following
construct:

command >&2

Note that there is no space between the �2� and
the �>� or the �>� and the �&2�, i.e.

it is �2>� not �2 >�

and �>&2� not �> &2� or �> & 2�

This is very important � if you put erroneous
space characters in these constructs, the shell
will not understand what you mean and will
either produce an error message, or worse, do
the wrong thing.

46

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 46

Using standard error
#!/bin/bash -e

�
while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,

cycle through command line arguments.
for zzITER in "${@}" ; do

if ["${zzITER}" -lt "1"] ; then

echo "Number of iterations (${zzITER}) must be positive!" >&2

exit 1

fi
if ["${zzITER}" -gt "10000"] ; then

echo "Too many iterations (${zzITER})!" >&2

exit 1

fi

Run program

�

Modify the multi-iterations.sh script in the scripts
subdirectory of your home directory as shown above. (Remember
to save it after you�ve made the above changes or they won�t take
effect.)

Since when we exit the script because we don�t like one of the
parameters, we consider this an error, the message we print out
telling the user what the problem is is an error message, and so
should go to standard error rather than standard output. This is
what adding �>&2� to those echo shell builtin commands does.

This is the conventional behaviour for shell scripts (or indeed any
other program) � ordinary output goes to standard output, error
messages go to standard error. It is very important that you follow
this convention when writing your own shell scripts as this is what
anyone else using them will expect them to do.

47

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 47

First exercise
The problem with the checking we�ve added to the
multi-iterations.sh script is that it will only stop as and when it
encounters a bad parameter, so that it may start a run and then abort it
part way through.

Write a function called check_args to check all the command line
arguments. Modify the script to call this function before it enters its
while loop.
#!/bin/bash -e

�
function check_args()

{

This function checks all the arguments it has been given

What goes here?
}

�
My current directory
myDIR="$(pwd -P)"

Make sure our command line arguments are okay before continuing

check_args "${@}"

�

The multi-iterations.sh shell script is in the scripts directory of your
home directory. Your task is to add a shell function to this script that will check
all the command line parameters that the script has been given, and then
modify the script to call the function before it does anything significant. Above
I�ve given you the skeleton of what the modified script should look like. You
should be able to fill in the rest. Make sure you save your script after you�ve
modified it.

Note that you need to (re)move the if statements that we�ve added to the shell
script as once we use the check_args function we will have already checked the
command line arguments by the time we enter the while loop, and there is no
point in checking them twice.

When you finish this exercise, take a short break and then we�ll start again with
the solution. (I really do mean take a break � sitting in front of computers for
long periods of time is very bad for you. Move around, go for a jog, do some
aerobics, whatever�)

Note that in the skeleton above I call the check_args function before I use the
mktemp command � there�s no point in creating a temporary directory if I�ve
been given bad parameters and am going to abort my script�

Hint: We�ve actually already written most of the function � so you can cut-and-paste those lines of the current shell script
into the function. You then need to somehow loop through all the command line arguments, checking each in turn.

48

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 48

More tests (1)
Test to see if something is true:

[<expression>]

or: test <expression>

where <expression> can be any of a
number of things such as:

[-z "a"]

["a" = "b"]

[-e "filename"]

As well as the (integer) arithmetic tests we have already met, there are a number
of other tests we can do. They fall into two main categories: tests on files and
tests on strings. There are many different such tests and we only list a few of the
most useful below:

�z "a" true if and only if a is a string whose length is zero

"a" = "b" true if and only if the string a is equal to the string b

"a" == "b" true if and only if the string a is equal to the string b

"a" != "b" true if and only if the string a is not equal to the string b

�d "filename" true if and only if the file filename is a directory

�e "filename" true if and only if the file filename exists

�h "filename" true if and only if the file filename is a symbolic link

�r "filename" true if and only if the file filename is readable

�x "filename" true if and only if the file filename is executable

You can often omit the quotation marks but it is good practice to get into the
habit of using them, since if the strings or file names have spaces in them then
not using the quotation marks can be disastrous. (Note that string comparison is
always done case sensitively, so �HELLO� is not the same as �hello�.)

You can get a complete list of all the tests by looking in the CONDITIONAL
EXPRESSIONS section of bash�s man page (type �man bash� at the shell prompt to
show bash�s man page.)

49

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 49

More tests (2)
We can negate an expression, i.e. test to

see whether the expression was false,
using ! thus:

[! <expression>]

or: test ! <expression>

The above are true if and only if
<expression> is false, e.g.

[! -z "a"]
is true if and only if a is a string whose

length is not zero.

Remember that in a while loop or an if statement we can use commands as well
as tests. The command is considered true if it succeeds, i.e. its exit status is 0.
In a while loop or an if statement we can negate a command in exactly the
same way we negate <expression> above, using ! � negating a command means
that the while loop or if statement will only consider it true if the command
fails, i.e. its exit status is non-zero.

So:

while ! ls datafile ; do

echo "Can't list file datafile!"

done

�would print the string �Can't list file datafile!� on the screen as long
as ls was unable to list the file datafile, I.e. as long as the ls command
returns an error when it tries to list the file datafile (for instance, if the file didn�t
exist).

Similary:

if ! ./iterator ; then

echo "Unable to run ./iterator successfully"

fi

�will only print the message �Unable to run ./iterator successfully� if
the iterator program in the current directory returns a non-zero exit status (i.e.
it fails for some reason).

50

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 50

Using tests (2)
#!/bin/bash -e

function check_args()

{

This function checks all the arguments it has been given

Make sure we have at least one argument.

if [-z "${1}"] ; then

echo "No arguments given." >&2

echo "This script takes one or more number of iterations as its arguments." >&2

echo "It requires at least one argument." >&2

exit 1

fi

�

Modify the multi-iterations.sh script in the scripts
subdirectory of your home directory as shown above. (Remember
to save it after you�ve made the above changes or they won�t take
effect.)

Now we not only complain if we have arguments that are out of
range, we also complain if we have no arguments at all. Try this
script out now and see what happens:

> cd

> cat scripts/param_set | scripts/multi-iterations.sh
No arguments given.

This script takes one or more number of iterations as its arguments.

It requires at least one argument.

Note also that we are once again making use of the fact that we
have separated some functionality from our script and put it in a
function. We can easily change the function without complicating
the rest of the script or affecting its structure.

51

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 51

if�then�else
Do something only if some expression is

true, else (i.e. if the expression is false) do
something else.

if <expression> ; then
<some commands>

else
<some other commands>

fi

As well as deciding whether a collection of commands should be
executed at all, we can also decide whether one or other of two
collections of commands should be executed using a more
advanced form of the if statement. If there is an else section to
an if statement the collection of commands in the else section
will be executed if and only if the result of some test or command
is false.

52

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 52

Using if�then�else
#!/bin/bash -e

�
function multi_iterate()
{
Instead of using read in value for iterations,
cycle through arguments passed to function.

for zzITER in "${@}" ; do

Run program

run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"

done
}

�
while read myNX myNY myN_ITER myEPSILON myJUNK ; do

if [-z "${1}"] ; then
If no command line arguments,
use these defaults.
multi_iterate "10" "100" "1000"

else
Use the command line arguments
multi_iterate "${@}"

fi

done

Open up the multi-iterations-default.sh script in the scripts
subdirectory of your home directory in your favourite editor (or gedit) and have
a look at it.

Notice that the check_args function in this script doesn�t complain if there are
no command line arguments. This is because this script will use some default
parameters if it hasn�t been given any on the command line.

Pay particular attention to the bits of the script highlighted above. Can you
work out what we�ve changed and how the shell script will now behave? If not,
please tell the course giver or a demonstrator what part of the script you don�t
understand.

Try out this script and see what happens:

> cd

> rm �f *.dat *.png stdout-* logfile

> cat scripts/param_set | scripts/multi-iterations.sh

> ls

Note that we didn�t need to create a separate multi_iterate function � we could
have just typed out very similar lines of shell script twice. This would have
been a mistake � just like with real programming languages, repetition of parts
of our script (program) are almost always to be avoided.

53

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 53

Better error handling (1)
At the moment, any errors stop our script

dead. Often, that�s better than letting it
carry on regardless, but sometimes we
want to be a bit more sophisticated.

For instance, supposing a few parameter
sets we read in are corrupt and cause
errors in iterator or gnuplot � we
might want to note which ones these
were and continue with the others.

How can we do this?

54

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 54

return
Just like programs and shell scripts have an exit status, so

too do shell functions. We can set the exit status of a
function using the return shell builtin command.

To stop executing a function and return to
wherever we were called from:

return

�or we can explicitly set an exit status as
we exit the function thus:

return value

The return shell builtin command causes a shell function to
stop executing and return control to whatever part of the shell
script called it. It can also explicitly set the exit status of the
function (if desired).

As with ordinary programs and shell scripts themselves, the exit
status of a shell function is an integer between 0 and 255, and
should be 0 only if the function was successful in what it was
trying to do. If the function encounters an error it should
return with a non-zero exit status.

If you don�t give return an exit status then the exit status of
the shell function will be the exit status of the last command
executed by the function before it reached the return shell
builtin command.

(If you don�t have a return shell builtin command in your shell
function, then your function will exit when it executes its last
command. In this case its exit status will be the exit status of
the last command executed in your function.)

55

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 55

Better error handling (2)
#!/bin/bash -e

�
function multi_iterate()

{

Instead of using read in value for iterations,

cycle through arguments passed to function.

for zzITER in "${@}" ; do

Run program and report if there were problems

if ! run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}" ; then

echo "Problem with parameter set: ${myNX} ${myNY} ${zzITER} ${myEPSILON}" >&2

fi

done

}

�

Open up the multi-iterations-errors.sh script in the scripts
subdirectory of your home directory in your favourite editor (or gedit) and have
a look at it.

First have a look at the multi_iterate function, paying particular attention to
the bits of the script highlighted above. Can you work out why we�ve changed
this function like this? Recall that shell functions should exit with an exit
status of 0 only if they were successful, and that if ! command will do
something only if command failed (exited with a non-zero exit status) � command
can be a shell functions as well as a program or shell script.

To be sure that this really is behaving the way we expect, we need to look at
the run_program and see how that�s been changed. First though, we need to
learn how to toggle the shell�s �quit on any error� behaviour on and off at will�

56

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 56

set �e, set +e
Abort shell script if an error occurs:

set -e

Abort shell script only if a syntax
error is encountered (default):

set +e

We already know that if the first �magic� line of our shell script is:

#!/bin/bash �e

then the shell script will abort if it encounters an error.

Sometimes though, we may want to handle errors ourselves, rather than
just having our shell script fall over in a heap. So it would be nice if we
could turn this behaviour off and on at the appropriate points in the shell
script, and bash provides a mechanism for us to do just that:

� set -e tells the shell to quit when it encounters an error in
the shell script. Whenever you are not doing your own error
handling (i.e. checking to make sure the commands you run
in your shell script have executed successfully), you should
use set �e.

� set +e returns to the default behaviour of continuing to execute the
shell script even after an error (other than a syntax error) has
occurred.

A good practice to get into is to always have the following as the first line
of your shell script:

#!/bin/bash �e

and then to turn this behaviour off only when you are actually dealing
with the errors yourself.

57

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 57

Better error handling (3)
#!/bin/bash -e

�
function run_program()
{

�
Run program with passed arguments
set +e
"${myPROG}" "${@}" > "stdout-${1}-${2}-${3}-${4}"

myPROG_ERR="${?}"
set -e

�
Run gnuplot only if the program succeeded
if ["${myPROG_ERR}" -eq "0"] ; then

set +e

gnuplot "${myGPLT_FILE}"
myGPLT_ERR="${?}"
set -e

else
echo "Failed! Exit status: ${myPROG_ERR}" >> logfile

return 1
fi

�

Now look at the run_program function in the multi-iterations-errors.sh script,
paying particular attention to the bits of the script highlighted above.

Can you work out what the highlighted bits are doing? Recall that the exit status of
the last command that ran is stored in the special shell parameter ?.

We observe that the logic of this function is that if the iterator program failed
there�s no point running gnuplot (�garbage in, garbage out�). We need to look a bit
further down the function�s definition (not shown above) to see what it does if
gnuplot fails. Can you work out what it is doing (and why)?

If you are not sure, or you have any questions, please ask the course giver or a
demonstrator.

You should try out this script and see what it does:

> cd

> rm �f *.dat *.png stdout-* logfile

> cat scripts/bad_param_set | scripts/multi-iterations-errors.sh
Nx must be positive

Problem with parameter set: Z00 100 10 0.1

Nx must be positive

Problem with parameter set: Z00 100 100 0.1

Nx must be positive

Problem with parameter set: Z00 100 1000 0.1

> ls

The file bad_param_set contains one bad parameter set mixed in amongst some good ones,
as you can see by inspecting it.

58

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 58

Nested ifs (1)
Do something only if some expression is

true, else do another thing if another
expression is true�and so on

if <expression1> ; then

<some commands>

elif <expression2> ; then

<some other commands>

elif <expression3> ; then

<yet other commands>

�
else

<other commands>

fi

We can have even more complicated if statements than those we
have met. We can nest if statements: if one expression is true,
do one thing, if a different expression is true do something else
and so on, culminating in an optional else section (�if none of the
previous expressions were true, do this�).

We do this by using elif (short for else if) for all the alternative
expressions we want to test.

Why would we do this? Imagine that we had a shell script that
could do several different things and the decision as to which it
should do was made by the user specifying different arguments
on the command line. We might want our script to have the
following logic: if the user said �a� do this, else if they said �b� do
that, else if they said �c� do something else, and so on, ending
with else if they said something that was none of the previous
things say �I don�t know what you are talking about�.

There are better ways to do that than using this sort of if
statement, but they involve a construct (case) and a shell builtin
command (shift) that we don�t cover on this course � see the
Appendix for brief notes on these.

59

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 59

Nested ifs (2)
#!/bin/bash -e

�
if ["${1}" = "one"] ; then

one

elif ["${1}" = "two"] ; then

two

elif ["${1}" = "three"] ; then

three

elif ["${1}" = "four"] ; then

four

else

echo "Huh?" >&2

exit 1

fi

> cd

> examples/nested-if.sh one

In the examples subdirectory there is a silly shell script called
nested-if.sh that illustrates the nested if construct. The heart
of the script is shown above � one, two, three and four are all
shell functions defined in the script.

Try the script out and see what it does. Although it�s a silly
example, it should give you an idea of the sort of useful things for
which you can use such scripts.

60

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 60

Second exercise
The multi-iterations-errors.sh script is reasonably robust
at dealing with bad parameter sets. However, it would be nice if
it told us whether it was iterator or gnuplot which failed.

Modify this script so that in its multi_iterate function it prints
different messages depending on whether it was gnuplot or
iterator that failed. (You may also need to modify other parts
of the script as well.)

When you�ve finished this exercise, take a short break (break =
�not still in front of the computer�) and then we�ll look at the
answer.

The multi-iterations-errors.sh shell script is in the scripts directory of
your home directory. Your task is to modify this script � mainly the
multi_iterate function � so that the multi_iterate function prints out
different messages on standard error depending on whether it was iterator or
gnuplot that failed. Make sure you save your script after you�ve modified it.

Some of you may be tempted to just dispense with bash�s �exit the shell script
on any error� feature for this exercise. Don�t � part of the purpose of this
exercise is to get used to how the shell handles errors and how you work with
this.

Remember that this shell script attempts to change directory � a very
dangerous thing to do in a shell script, so you must make sure that if the
script fails to change directory that it exits and doesn�t try to do things in the
wrong directory. The easiest way to do that is to have set -e in effect.

When you finish this exercise, take a short break and then we�ll start again with
the solution. (Yes, I really do mean �a break from the computer�.)

Hint: One approach is to get the run_program function to return a different exit status depending on whether it was
iterator or gnuplot that failed. You could then test for this in the multi_iterate function. If you do this, you need
to be very careful with using set -e and set +e in this script � if set -e is in effect, then if the run_program function
returns a non-zero exit status then the script will exit (because a non-zero exit status is an error).

Another hint: You may wish to use nested if statements, although they aren�t the only way to do this exercise.

61

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 61

Manipulating filenames (1)
> rm -f *.dat

> touch file1.dat file2.dat file3.dat

Suppose I want to rename a collection of
files all in one go, e.g. rename all my
files ending in .dat to files ending in
.old. I could try:

> mv *.dat *.old
mv: target `*.old' is not a directory

A common issue you�ll probably run into on a
Unix/Linux platform is trying to rename groups
of files whose names all end in the same
characters.

For example, let�s suppose that you have a
collection of data files all ending in .dat from
the previous time you ran your program. You
want to run the program again, but don�t want
to overwrite the old files, so you want to rename
them so they all end in .old. Other than
manually renaming each file, how can we do
this?

62

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 62

${VARIABLE%word}

�Return the value of VARIABLE with
word removed from the end of the
it�

> myFILENAME="output.dat"

> echo "${myFILENAME%.dat}"

output

This strange looking operation is a form of what is known as
parameter expansion. We�ve already met the simplest form of
parameter expansion: ${VARIABLE}, which just gives us the
value of the shell variable or parameter VARIABLE. There are
many minor variants like the one above, but we�re not going to
cover them in this course. See the Parameter Expansion section
of bash�s man page for further details on the other forms.

As you can see from the example above, this form of parameter
expansion just removes the specified characters from the end of
the variables value and then returns that to us � it is important
to realise that it doesn�t directly modify the variable itself.

In the context we�ve just been looking at, we can make use of
this form of expansion to remove the common ending from our
filenames � we can then more easily rename the files.

63

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 63

Manipulating filenames (2)
#!/bin/bash -e

function rename_files()

{

if [-z "${1}"] ; then

return 1

fi

if [-z "${2}"] ; then

return 1

fi

for zzFILE in *"${1}" ; do

mv "${zzFILE}" "${zzFILE%${1}}${2}"

done

}

In the scripts subdirectory there is a file called my-functions.sh that contains the
rename_files function shown above. You can inspect it with your favourite editor or
by just using the more command.

The heart of this function is the highlighted portion above: for each file ending
with the first argument the function has been given, it renames the file to the
same name with a different ending. So if we called this function like this:

rename_files .dat .old

�then it would change the name of any files ending in .dat to end in .old.

We can try this function out like this (for the moment accept that the source
shell builtin command �loads� the functions from my-function.sh into the
running instance of the shell � we�ll look at it in more detail in a minute):

> cd

> source examples/my-functions.sh

> rm �f *.dat *.old

> touch file1.dat file2.dat file3.dat

> ls *.dat *.old

/bin/ls: *.old: No such file or directory

file1.dat file2.dat file3.dat

> rename_files .dat .old

> ls *.dat *.old

/bin/ls: *.dat: No such file or directory

file1.old file2.old file3.old

64

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 64

source

Read and execute commands from
file in the current shell environment

source file

Equivalently:

. file

source executes one shell script in the environment of the
current shell script (or shell) � it is as though you had copied the
shell script and pasted it into your current shell script. A
synonym for source is �.�, i.e.

source filename

. filename

do the same thing � they both execute the contents of the file
filename in the environment of the current shell script (or
shell).

If your shell script just defines some functions, then using
source on it will just define those functions for you in your
current shell script (or shell). When used this way, you can think
of the shell script containing the functions as a �library� of
functions, and the source command as �loading� that library
into the current script (or into the shell itself if your use it in an
instance of the shell).

65

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 65

Manipulating filenames (3)
dirname return the directory name

from a file path
> dirname /usr/bin/python

/usr/bin

basename return the filename from a file
path, removing the given
ending (if specified)

> basename /usr/bin/python

python

> basename ~/hello.sh .sh

hello

Finally just a quick note of a couple of Unix/Linux commands that can help
with manipulating files. If you have a path to a file, dirname will give you
just the directory, removing the actual filename whilst basename will give
you the filename, removing the directory path.

basename can also remove the endings of files, which means we could have
used command substitution and the basename command in the
rename_files function we just looked as an alternative way of
implementing it.

If you need to do more advanced filename (or file) manipulation, then you
should look at the find and xargs commands, which are covered in the
�Unix Systems: Commands for the Intermediate User� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unixcoms

The find command searches for files in a directory tree, and having found
the specified files, can run a command on each file.

The xargs command builds a command line from a combination of values
read from standard input and arguments specified on the command line,
and then executes that command line a certain number of times.

66

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 66

Final exercise
In your home directory is a program called lissajous.py, which produces
points on a Lissajous curve that it prints to standard output. lissajous.py
takes two floating point command line arguments, although we�ll restrict
ourselves to using only integer arguments for it.
In the gnuplot subdirectory there is a file of gnuplot commands called
lissajous.gplt that can be used to plot the data produced by
lissajous.py � the commands in this file expect their input to be in a file
called lissajous.dat in the current directory, and they produce a PNG file
called lissajous.png (also in the current directory).
Write a shell script that will read the first parameter for lissajous.py from
standard input and the second parameter from the command line. It should
run the lissajous.py program, turning its output into a graph using
gnuplot. The following should illustrate how to combine these two
parameters: suppose you read the values 12 from standard input and the
values 5 9 32 from the command line, then your script should run:

./lissajous.py 12 5

./lissajous.py 12 9

./lissajous.py 12 32

Please read this BEFORE you start on this exercise!
The point of this exercise is to consolidate everything you�ve learnt over all
three �Shell Scripting� courses. To that end I want you to write your own shell
script FROM SCRATCH to do this exercise � do not just take one of the ones
we�ve constructed over this course and change the names of the programs it
runs. Whilst you could certainly get an answer to this exercise that way, you
wouldn�t learn very much.

Also, I want your shell script to be as good a shell script as you can possibly
make it � it should:

! be well structured using shell functions,

! be fully commented,

! do some error handling,

! keep a log file of what it is doing,

! print its error messages on standard error,

! use a temporary directory for working in,

! etc

There is a file in the scripts subdirectory called lissajous_params that you
can use as a source of parameters to read via standard input. I suggest that for
the command line arguments you use:

2 4 6 8

The files you need to do this exercise will be made available on-line in the next
few days, and a sample answer will be made available around the end of next
week.

67

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 67

Advanced Techniques

The following slides outline some
more advanced shell scripting
techniques that, whilst beyond the
scope of this course, may be of
interest.

68

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 68

Advanced techniques: case
� Do different things depending on the

value of a variable
� Equivalent to using lots of if and else

constructs

case "${VARIABLE}" in

value1|value2|value3)

<commands>

;;

value4|value5)

<other commands>

;;

*)

<more commands>

;;

esac

Some programming languages have a construct which does the
same sort of thing as the shell�s case construct. In many of
these languages it is known as the switch statement.

There are some examples of how to use it in the following files
in the examples directory:

case1.sh

case2.sh

69

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 69

Advanced techniques:
Command-line handling

${1}="red" ${2}="blue" ${3}="green"

shift

${1}="blue" ${2}="green" no ${3}

shift

${1}="green" no ${2} no ${3}

The shift shell builtin command moves command-line
parameters �along one to the left�.

An example of its use is given in the file shift.sh in the
examples directory.

In conjunction with the case construct we can use it to do some
reasonably sophisticated command-line handling. The following
files in the examples directory give some examples of how to
do this:

params1.sh

params2.sh

70

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 70

Appendix: Unix commands

The following slides provide a
summary of the common Unix
commands used in this course (and
the two previous courses �Shell
Scripting (I)� and �Shell Scripting (II)�
that led up to this one).

For details of the �Unix Systems: Shell Scripting (I)� course, see:
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script1

For details of the �Unix Systems: Shell Scripting (II)� course, see:
http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2

71

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 71

Appendix: Unix commands (1)
cat Display contents of a file
> cat /etc/motd

Welcome to PWF Linux 2006/2007.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

cd change directory
> cd /tmp

> cd

chmod change the mode (permissions) of
a file or directory

> chmod a+r treasure.txt

If you give the cd command without specifying a directory then it
will change the directory to your home directory (the location of
this directory is specified in the HOME environment variable).

The chmod command changes the permissions of a file or directory
(in this context, the jargon word for �permissions� is �mode�). For
instance, the above example gives read access to the file
treasure.txt for all users on the system. Unix permissions were
covered in the �Unix System: Introduction� course, see:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#unix

72

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 72

Appendix: Unix commands (2)

cp copy files and/or directories
> cp /etc/motd /tmp/motd-copy

Options:
-p preserve (if possible) files� owner,

permissions & date
-f if unable to overwrite destination file,

delete it and try again, i.e. forcibly
overwrite destination files

-r copy any directories recursively, i.e.
copy their contents

> cp �p /etc/motd /tmp/motd-copy

Note that the cp command has many other options than the
three listed above, but those are the options that will be most
useful to us in this course.

73

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 73

Appendix: Unix commands (3)

date display/set system date and time
> date

Fri Feb 16 11:52:03 GMT 2007

echo display text

> echo "Hello"

Hello

env With no arguments, display
environment variables

Please note that if you try out the date command, you will get a
different date and time to that shown on this slide (unless your
computer�s clock is wrong or you have fallen into a worm-hole in
the space-time continuum). Also, note that usually only the
system administrator can use date to set the system date and
time.

Note that the echo command has a few useful options, but we
won�t be making use of them today, so they aren�t listed.

Note also that the env command is a very powerful command,
but we will not have occasion to use for anything other than
displaying environment variables, so we don�t discuss its other
uses.

74

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 74

Appendix: Unix commands (4)
grep find lines in a file that match a given

pattern
> grep 'PWF' /etc/motd

Welcome to PWF Linux 2006/2007.

ln create a link between files (almost
always used with the -s option for
creating symbolic links)

> ln �s /etc/motd /tmp/motd

> cat /etc/motd
Welcome to PWF Linux 2006/2007.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

> cat /tmp/motd
Welcome to PWF Linux 2006/2007.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

The patterns that the grep command uses to find text in files are called
regular expressions. We won�t be covering these in this course, but if you are
interested, or if you need to find particular pieces of text amongst a
collection of text, then you may wish to attend the CS �Pattern Matching
Using Regular Expressions� course, details of which are given here:

http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#regex

The ln command creates links between files. In the example above, we
create a symbolic link to the file motd in /etc and then use cat to display
both the original file and the symbolic link we�ve created. We see that they
are identical.

There are two sort of links: symbolic links (also called soft links or symlinks)
and hard links. A symbolic link is similar to a shortcut in the Microsoft
Windows operating system (if you are familiar with those) � essentially, a
symbolic link points to another file elsewhere on the system. When you try
and access the contents of a symbolic link, you actually get the contents of
the file to which that symbolic link points. Whereas a symbolic link points to
another file on the system, a hard link points to actual data held on the
filesystem. These days almost no one uses ln to create hard links, and on
many systems this can only be done by the system administrator. If you want
a more detailed explanation of symbolic links and hard links, see the
following Wikipedia articles:

http://en.wikipedia.org/wiki/Symbolic_link

http://en.wikipedia.org/wiki/Hard_link

75

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 75

Appendix: Unix commands (5)
ls list the contents of a directory

> ls
bin examples gnuplot hello.sh iterator scripts source treasure.txt

Options:
-d List directory name instead of its

contents
-l use a long listing that gives lots of

information about each directory entry
-R list subdirectories Recursively, i.e. list

their contents and the contents of any
subdirectories within them, etc

If you try out the ls command, please note that its output may not exactly
match what is shown on this slide � in particular, the colours may be slightly
different shades and there may be additional files and/or directories shown.

Note also that the ls command has many, many more options than the three
given on this slide, but these three are the options that will be of most use to
us in this course.

76

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 76

Appendix: Unix commands (6)
less Display a file one screenful of text at a

time
more Display a file one screenful of text at a

time
> more treasure.txt
The Project Gutenberg EBook of Treasure Island, by Robert Louis Stevenson

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or

re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

Title: Treasure Island

Author: Robert Louis Stevenson

Release Date: February 25, 2006 [EBook #120]

Language: English

Character set encoding: ASCII

*** START OF THIS PROJECT GUTENBERG EBOOK TREASURE ISLAND ***

--More--(0%)

(Note that the output of the more command may not exactly
match that shown on this slide � in particular, the number of
lines displayed before the �--More--(0%)� message depends on
the number of lines it takes to fill up the window in which you
are running the more command.)

The more and less commands basically do the same thing:
display a file one screenful of text at a time. Indeed, on some
Linux systems the more command is actually just another name
(an alias) for the less command.

Why are there two commands that do the same thing? On the
original Unix systems, the less command didn�t exist � the
command to display a file one screenful of text at a time was
more. However, the original more command was somewhat
limited, so someone wrote a better version and called it less.
These days the more command is a bit more sophisticated,
although the less command is still much more powerful.

For everyday usage though, many users find the two commands
are equivalent. Use whichever one you feel most comfortable
with, but remember that every Unix/Linux system should have
the more command, whereas some (especially older Unix
systems) may not have the less command.

77

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 77

Appendix: Unix commands (7)
mkdir make directories
> mkdir /tmp/mydir

Options:
-p make any parent directories as required;

also if directory already exists, don�t
consider this an error

> mkdir /tmp/mydir
mkdir: cannot create directory `/tmp/mydir': File exists

> mkdir �p /tmp/mydir

Note that the mkdir command has other options, but we won�t
be using them in this course.

78

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 78

Appendix: Unix commands (8)
mktemp safely makes temporary files or

directories for you
> mktemp

/tmp/tmp.fmsAr17215

Options:
-d make a directory instead of a file (by

default mktemp creates files)
-t make file or directory in a temporary

directory (usually /tmp)

> mktemp -t -d iterator.XXXXXXXXXX

/tmp/iterator.khhcE30735

The mktemp command is an extremely useful command that allows
users to safely create temporary files or directories on multi-user
systems. It is very easy to unsafely create a temporary file or
directory to work with from a shell script, and, indeed, if your shell
script tries to create its own temporary files or directories using the
normal Unix commands then it is almost certainly doing so unsafely.
Use the mktemp command instead.

Note that if you try the example above you will almost certainly get a
directory with a different name created for you.

Note also that mktemp has more options than the two listed above,
but we won�t be using them in this course. Note also that if you use a
version of mktemp earlier than version 1.3 (or a version derived from
BSD, such as that shipped with MacOS X) then you can�t use the -t
option, and will have to specify /tmp (or another temporary directory)
explicitly, e.g.

mktemp -d /tmp/iterator.XXXXXXXXXX

How do you use mktemp? You give it a �template� which consists of a
name with some number of X�s appended to it (note that is an UPPER
CASE letter X), e.g. iterator.XXXXX. mktemp then replaces the X�s
with random letters and numbers to make the name unique and
creates the requested file or directory. It outputs the name of the file
or directory it has created.

79

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 79

Appendix: Unix commands (9)
mv move or rename files and directories
> mv /tmp/motd-copy /tmp/junk

Options:
-f do not prompt before overwriting files or

directories, i.e. forcibly move or rename the file
or directory; this is the default behaviour

-i prompt before overwriting files or directories
(be interactive � ask the user)

-v show what is being done (be verbose)

Note that the mv command has other options, but we won�t be
using them in this course. Note also that if you move a file or
directory between different filesystems, mv actually copies the
file or directory to the other filesystem and then deletes the
original.

80

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 80

Appendix: Unix commands (10)
pwd print full path of current working

directory
> cd /tmp

> pwd

/tmp

Options:
-P print the full Physical path of the current

working directory (i.e. the path printed
will not contain any symbolic links)

Note that the pwd command has another option, but we won�t
be using it in this course.

81

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 81

Appendix: Unix commands (11)
rm remove files or directories
> rm /tmp/junk

Options:
-f ignore non-existent files and do not ever

prompt before removing files or directories, i.e.
forcibly remove the file or directory

-i prompt before removing files or directories
(be interactive � ask the user)

--preserve-root do not act recursively on /
-r remove subdirectories (if any) recursively, i.e.

remove subdirectories and their contents
-v show what is being done (be verbose)

Note that the rm command has other options, but we won�t be
using them in this course.

82

escience-support@ucs.cam.ac.uk Unix Systems: Shell Scripting (III) 82

Appendix: Unix commands (12)
rmdir remove empty directories
> rmdir /tmp/mydir

touch change the timestamp of a file;
if the file doesn�t exist create it
with the specified timestamp
(the default timestamp is the
current date and time)

> touch /tmp/nowfile

The rmdir and touch commands have various options but we
won�t be using them on this course. If you try out the touch
command with the example above, check that it has really
worked the way we�ve described here by using the ls command
as follows:

ls -l /tmp/nowfile

You should see that the file nowfile has a timestamp of the
current time and date.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ENG ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

