
1

Building, installing
and running software

Bob Dowling
University Computing Service

Day one

http://www-uxsup.csx.cam.ac.uk/courses/
http://training.csx.cam.ac.uk/

Welcome to the UCS course on “Building, installing and running software”.
This course is given on the PWF Linux system though the skills it teaches should be
portable to any modern Unix platform and certainly to other GNU/Linux platforms.
When this course is given in classrooms students are provided with course accounts.
These are not compulsory and you may use your personal account. If you are a
seasoned Unix user and have your own personal .bashrc file you will need to copy it
somewhere safe; it will be overwritten in this course.

2

Why do this course?

“other
people's
software”

It's my
supervisor's

code.

It's the standard
software in the …

community.

I found it
on Google.

I need a
newer

version.

This course is designed to help you with software that's been dumped on you by your
supervisor, or that you tracked down because someone told you it would be useful, or
that you found when you were looking for something else.

3

What will you learn?

Building software

Installing software

Running software

in your home
directory

no system
privileges

This course will give you the skills to look after that software yourself without needing
to pester your system administrator, without having to have system privileges and
without having to leave your home directory!

4

What is this course not for?

System administration

System directories

Writing software

This is not a course for system administrators. The whole point of this course is to
avoid using system privileges, system directories or anything “systems-y”.
It is also not a course on writing software; we have other courses for that. This course
assumes that someone else has written the source code and you just have a copy of
it. It's what happens next that we cover, not what happened before.

5

Course outline

“Real world” example
Recursive make

Location
Unpacking
“Configured” builds

make and Makefiles
Software libraries

1st afternoon

2nd afternoon

3rd afternoon

This session will start by discussing where we will install our software and why. Then
we will see how to unpack the source code and then, in the easiest and most common
cases, build it. This relies on the source code coming with a script called
“configure”.

The second afternoon will deal with what to do when the source code doesn't come
with a configure script and will introduce “make”, the standard Unix tool for building
software. It will also discuss libraries of software.
The third afternoon will takes us through an example build which deviates from the
good practice we introduced in the 2nd afternoon. We will cope with this and, after
learning one last trick, improve it by applying those good practices.

6

Location?

${HOME}/bin

programs

documentation?

graphics?

libraries?

But what about…

So let's get started.
We need somewhere to put our software. This must be somewhere that we control
and for which we need no extra privilege. So that will be our home directory, then.
There is a traditional place for personal software, a subdirectory of your home
directory called “bin”. (By the way, “bin” is short for “binaries” and not “rubbish bin”.)
However, modern software rarely consists of a single executable any more. Instead,
it's a collection of binaries, graphics files, manual pages and other documentation, and
perhaps some libraries.
“${HOME}/bin” doesn't cut it any more.

Incidentally, HOME is an environment variable which evaluates to your home directory,
so “${HOME}” stands for your home directory. “~” is another Unix shorthand for your
home directory that some programs recognise.

7

Mimic the system location

/usr system directory

bin include lib share

apps doc info man

Instead of sticking everything in ${HOME}/bin we look at the system hierarchy
under /usr. It contains a stack of subdirectories designed to cope with all the weird
and wonderful software run on a modern computer.
For example:
/usr/bin contains user executables

/usr/include contains the header files used to build C programs

/usr/lib contains the libraries

We will emulate that structure ourselves.

8

Mimic the system location

sw your software directory

bin include lib share

apps doc info man

${HOME} your home directory

Instead of /usr we will have a directory in our home directories called “sw” (for
“software”). We can call it whatever we like but we must be consistent. Some software
can't cope with its location being renamed after it is built and installed. I also strongly
advise against putting funny characters (including spaces) in the directory name.

9

Exercise

Some software needs
the tree to exist before
it can be installed.

Bug!

We will build the tree ourselves.

$ /ux/Lessons/Building/mkswtree

In theory, the installation of programs should create the directory structures they need.
However, software is buggy and this includes its creation. Some software requires our
${HOME}/sw directory tree to exist prior to installing files into it. To speed things up
for this course I have written a quick shell script to create an empty tree which we can
use to get round this problem. The program is called “mkswtree” and will create the
necessary ${HOME}/sw hierarchy in your home directory.

$ /ux/Lessons/Building/mkswtree
sw
sw/bin
sw/man
sw/man/man1
sw/man/man3
sw/info
sw/include
sw/lib
sw/share
sw/share/man
sw/share/info
sw/share/doc

You need only run this program once ever.

10

Finding programs

Environment variable: PATH

$ echo ${PATH}
/usr/local/bin:/usr/bin:/bin:
/usr/bin/X11:/usr/X11R6/bin:
/usr/games:/opt/kde3/bin:
/usr/lib/mit/bin:/usr/lib/mit/sbin:
/opt/novell/iprint/bin:
/opt/real/RealPlayer

First of all we need to be able to use programs that live in this directory tree.
Whenever you issue a command (“ls” say), the operating system looks through a list
of directories looking for an executable file of that name in that directory. This list of
directories is stored in an environment variable called “PATH” as a colon-delimited list.

11

/usr/local/bin
/usr/bin/X11:/usr/X11R6/bin:
/usr/games:/opt/kde3/bin:
/usr/lib/mit/bin:/usr/lib/mit/sbin:
/opt/novell/iprint/bin:
/opt/real/RealPlayer

:/bin:/usr/bin:

/usr/local/bin

/bin

/usr/bin

/ls

/ls

/ls

So if you issue the ls command, the operating system looks through this list of
directories looking for an executable file of that name in that directory. As soon as it
finds one it executes that file.

12

Modifying PATH

export "${PATH}:${PATH}/sw/bin"=PATH

“paranoia” quotes

alter an
environment
variable

this
env.
var!

our new
directory

the old
PATH
value

So we need to modify the PATH from the system value by adding our directory to the
list. The export command specifies that its an environment variable that's being
altered. The value is a colon-delimited list and the new value we construct is our new
directory, followed by a colon, followed by whatever was there before.
If you are following these notes in class, please do not run this command yet.

13

Setting PATH automatically

${HOME}/.bashrc File automatically
run every time
you log in.

We will put the
command there.

NB: Only when
you start a session.

But we're lazy. We don't want to type that command every time. Instead we will use a
file in our home directory called “.bashrc” (nb the leading dot). This file is run by the
shell every time the shell is started. For example, each time you open a terminal
window a shell is started to run in it. That shell reads this file.
Note that the file is read only at the start of a session. Changing the file has no effect
on any currently running sessions. You must start a new terminal window to reap the
benefits of the edit.

14

Not just PATH !

commands

manual pages

information pages

$ man ls

$ info ls

${HOME}/sw/bin

${HOME}/sw/share/man

$ ls
PATH

MANPATH

INFOPATH
${HOME}/sw/share/info

There is more to life than executables, though. We have already realised that we need
a directory tree rather than just ${HOME}/bin because we have more than
executables to install. We need to locate these other files too.
The location of manual pages is changing. Originally they would have been installed
under /usr/man. More recently they have started moving to /usr/share/man. For
this course will cover our bases and look in both directories, ${HOME}/sw/man and $
{HOME}/sw/share/man. The equivalent of PATH for manual pages is called
MANPATH. We will adjust that in our .bashrc too.

As well as manual pages (given by “man ls”) there are “info pages” for the info
command (given by “info ls”; press “q” to quit) and a corresponding pair of
directories and an INFOPATH environment variable.

We will be adding to this list of environment variables as we encounter the need for
them.

15

Exercise

/ux/Lessons/Building/bashrc1

${HOME}/.bashrc

/ux/Lessons/Building/hello

${HOME}/sw/bin/hello

1. Copy in a new ${HOME}/.bashrc file.

2. Copy in a new command.

This is our next, still rather trivial, exercise. It is really here to get you used to needing
to start a new terminal window to pick up any changes you make to your $
{HOME}/.bashrc file.

If you already have a .bashrc file in your home directory then you will need to stash it
out of the way if you don't want to overwrite it. If you are using a course id (ynnn) then
this will not be a problem.
Please copy, from the directory /ux/Lessons/Building, two files. Copy bashrc1
to .bashrc in your home directory. The script we ran earlier has created a ${HOME}/
sw/bin subdirectory and you should copy the executable file hello into it:

$ cd
$ cp /ux/Lessons/Building/bashrc1 .bashrc
$ cp /ux/Lessons/Building/hello sw/bin/hello

16

Exercise

3. In your existing terminal window…
$ hello
-bash: hello: command not found

4. Launch and use a new terminal window…
$ hello
Hello, world!

5. Close the old terminal window.

Then, from the same window as you ran the copy commands, run the command
“hello”. This command should fail. Your PATH has not yet been altered by the arrival
of the ${HOME}/.bashrc file.

Next, launch a new terminal window. This is a fresh shell so will read the new
.bashrc file and have the modified PATH. Run “hello” in that second

terminal window and it should work.
Then close down the first window. We will be working exclusively in an
environment with the enhanced PATH from now on.

17

sw

bin share

man

${HOME}

PATH MANPATH

.bashrc

Location

And that's stage one done!
We have somewhere to put our software. What's more we can use it once it gets
there by setting environment variables in our .bashrc file.

Any questions?

18

We have a location…

…so let's build
something to
put in it!

19

The classic model

Unpack

Configure

Build

Install

What we will cover for the remainder of this afternoon is the classic software model of
“unpack, configure, build, install”. This is by far the simplest way of managing software
and is also by far the most common for software managed on the Internet. I don't think
I've ever downloaded software from Source Forge
(http://www.sourceforge.net/, the largest on-line development system for free
software), for example, that didn't follow this pattern.
It was designed by the Free Software Foundation as part of their GNU project. While
everyone is familiar with GNU/Linux it is important to remember that the GNU project
designs their tools to work on a very wide range of platforms. For this to be feasible
they developed configuration tools to adapt software source code for specific
platforms.
It's not simple to write these configuration scripts, but it is very easy to use them and
this is a course about using them, not writing them.

20

Unpack
Configure

Build

Install

The software typically arrives as an archive file which we need to unpack into the
directory tree of source files.

21

thing.tar

thing.tar.Z

thing.tar.gz

thing.tgz

thing.tar.bz2

thing/

thing.zip

directory

tar file

compressed
tar files

zip file

There are typically many files in a source code distribution. Because that is awkward
to transfer from site to site these source files are typically bundled together in a
directory (or tree of directories and sub-directories) and then converted into a single
“archive” file.
The traditional Unix archiving tool is called “tar” (“tape archive”) originally used for
placing a directory tree onto a tape. The files it creates traditionally end in the suffix
“.tar”. The tar command does no compression of its own so that the files it creates
are typically compressed by a separate compression program. If the old “compress”
program is used then the suffix “.Z” is added to the end. If the more common “gzip”
program is used then the suffix “.gz” is added. The combination “.tar.gz” is
sometimes replaced by “.tgz”. The most recent compressor to be used is the
“bzip2” command and it has a traditional suffix of “.bz2”.

Alternatively there is the combined archival and compression program “zip” imported
from the PC world. It's archive files need no further compression and typically end with
the suffix “.zip”.

22

tar: unpacking

tar -x -f thing.tgz

extract

from
file

file
name

To unpack a tar archive, the tar command is used with the option “-x” to extract the
files. The archive is unmodified by this action. We identify the archive file to be
unpacked with the “-f” option followed by the archive file's name.

Modern versions of tar cope automatically with compressed files.

23

tar: examining

tar -t -f thing.tgz

table of
contents

from
file

file
name

thing/
thing/foo.c
thing/foo.h
thing/bar.c
thing/main.c

You can also see what's included in an archive without unpacking it. Replacing the “-
x” (extract) with “-t” (table of contents) simply lists the failes that would be unpacked
if you asked it to.

24

zip: unpacking

thing.zip

file
name

unzip

Zip files are even easier. The command “unzip” unpacks a zip archive.

25

zip: examining

unzip -t thing.zip

testing

file
name

thing/
thing/foo.c
thing/foo.h
thing/bar.c
thing/main.c

The zip command also has a “-t” option to examine the contents of a zip archive. In
this case the “-t” stands for “testing” as this is the option to make sure a zip archive is
intact. It generates a file listing as a side effect.

26

$ mkdir /tmp/building

$ cd /tmp/building

$ cp /ux/Lessons/Building/xdalic
lock-2.20.tar.bz2 /tmp/building

Worked example 1. prep

$ ls
xdaliclock-2.20.tar.bz2

So let's unpack a file.
We will be running with this example through the whole process so it's important that
you do this too. To save load on the Novell server providing the home directories we
are going to use use local, temporary files for our building (and finally install them into
the home directories managed off the Novell server).
So we are going to build a directory called /tmp/building and work in that. We will
copy into it the software source archive we need from the usual directory:
/ux/Lessons/Building.

Please note the bent arrow convention we use in the slides to indicate that a line is
meant to be a complete, single line and that it has just run on to a line below because
the screen isn't wide enough.

27

Worked example 2. unpacking

$ tar -x -f xdaliclock-2.20.tar.bz2

$ ls
xdaliclock-2.20 xdaliclock-2.20.tar.bz2

We use the tar command with its “-x” option to extract the files from the archive.
Note that tar is silent as it unpacks unless told otherwise. (It has a “-v” for “verbose”
option to list files as it unpacks them if you want to see them.)

28

Keep
records

Software:
version, source…

Details:
platform, options…

Results:
Success / Failure ?

We've started on a worked example.
Before we go further I will introduce you to a concept that might be a bit alien. Building
and using the software for your scientific research is equivalent to building a laboratory
instrument or to running an experiment. And it should be treated as such. Just as you
record your scientific progress in a lab book you should also record your software
progress.
You should record where you got the software from and what version it is. You should
also record the system you use to build it. Later we will see how you pass options to
the build process. You should record these too. Finally, you should record whether the
build succeeded or failed and if it failed why it failed.
You are issued with toy lab books for this course. Please fill them in for all the worked
examples and exercises during this course. Filling in these lab books and presenting
them at the end of the third afternoon is required for anyone seeking signed
“transferable skills” forms.

29

Worked example 3. lab book

10th March 2008

xdaliclock v2.20

Source: UCS PWF Linux
/ux/Lessons/Building/xdaliclock-2.20.tar.bz2

Unpacks OK (tar -xf …)

You don't need to go overboard. A few simple notes are sufficient.

30

Location
Unpacking

So now we have learnt how to unpack our software source code from the files we
download.

31

Coffee
break

Five minutes break

Spines
Wrists
Eyes

Brains!

Generally speaking you should take regular breaks when you work at a computer. You
need to let your spines unslouch, your wrists relax, your eyes refocus and your brains
get some well-earned caffeine — I mean rest ― once in a while.
If you work long periods at a computer it is better to have a one minute break every
ten minutes than a ten minute break every hour, but that won't work in a course
setting.

32

The README file

…

To build for the X Window System:

cd xdaliclock/X11/
./configure
make
make install

…

Within the unpacked directory is a file called README. Sometimes it is called
README.txt or comes as a set of platform-specific files: README.irix,
README.linux, README.solaris, etc.

This file — by one name or another ― is almost always there. If it isn't there go
looking for it.
We're not kidding about this file's name: read it.
In the xdaliclock README file we find instructions for how to build it. Specifically, we
find the instruction telling us what subdirectory to go to first.
Sometimes the useful file is called something else. A common alternative is
“INSTALL”.

Note that the README's instructions start with running the configure script. It's time
to move to the second stage of our build process.

33

Unpack

Configure
Build

Install

So, we've unpacked our source file. Next we have to configure it for our particular
platform. (It is possible to cross-configure but it's much harder. In this course we will
show how to configure a build for the system configure is being run on.)

34

configure./

“.” is not on the PATH

script name

--help

show all options

So let's look at configure.

Note that because “.”, the current working directory or the directory you are currently
in, is not on the PATH it is not searched for commands by default. So simply typing
“configure” as a command won't work. Instead, we type “./configure” to tell the
system explicitly where to find the command.
The configure program is a large, complex shell script written in a way that makes it
extremely portable across all flavours of Unix but which also makes it very hard to
read. Fortunately we don't need to read it.
It has a very large collection of command line options of which only two are of direct
interest to us right now. It has an option “--help” which lists all its various options.
Fortunately for us we usually need only one.

35

./configure --prefix="${HOME}/sw"

software
location

our personal
software directory

The “--prefix” option specifies the software tree that the software should be built for
and ultimately installed in. By default, configure builds software for /usr/local. If
you are building system software it might be set to /usr. But we are building for
ourselves so we set this option to the top of our personal directory tree, ${HOME}/sw.
The quotes around the value are just a safety precaution in case ${HOME} (or
something you chose to use instead of “sw”) has strange characters or spaces in it.
It's unlikely, but it's a good habit to get into.

36

Compiler choice

specify
C compiler

./configure --prefix=… CC= gcc

Use the gcc
C compiler

The final set of options, that is occasionally useful specify the compilers to use and the
options to pass to them. Typically these can be left blank, but if you are building the
software for yourself because you have a spiffy compiler on your system then this is
how you specify that the build system should use it.

37

Compiler options

CC

CFLAGS

FC

FFLAGS

CXX

CXXFLAGS

LDFLAGS

C compiler

C compiler options

C++ compiler

C++ compiler options

Fortran compiler

Fortran compiler options

Library options

We will be meeting these variables in depth tomorrow when we discuss the make
utility in its own right, but for now we just need to understand that we can modify what
configure is setting up by setting these values.

38

Worked example 4. configuration

$ cd /tmp/building/xdaliclock-2.20

$ cd X11

$./configure --prefix="${HOME}/sw"

You are probably
here already

README's instructions

Configure for
our location

So let's get on with our worked example of xdaliclock.

If you have been following along then you are probably already in
/tmp/building/xdaliclock-2.20. The README there told us to move into the
X11 subdirectory. Then we run configure. We use its “--prefix” option only and
set it to the software tree we are creating for ourselves.

$./configure --prefix="${HOME}/sw"
current directory: /tmp/building/xdaliclock-2.20/X11
command line was: ./configure --prefix=/home/rjd4/sw
checking build system type... i686-pc-linux-gnu
…
checking for remove... yes
checking for shmat... yes
checking for IceConnectionNumber in -lICE... yes
checking X11/extensions/shape.h usability... yes
checking X11/extensions/shape.h presence... yes
checking for X11/extensions/shape.h... yes
configure: creating ./config.status
config.status: creating Makefile
config.status: creating config.h
>

39

What configure does

…@prefix@…

…@CC@…

…@UIC@…

Makefile.in

…/home/rjd4/sw…

…gcc…

…/usr/lib/qt3/bin/uic…

Makefile

So what is it that configure actually does?

The configure script takes a bunch of files called thing.in and creates files called
thing. A list of these was given at the end of configure's output. For xdaliclock
two files were involved:

Makefile.in → Makefile
config.h.in → config.h

Each of the thing.in files contains a number of @word@ expressions. These get
substituted for various values.
@prefix@ is replaced by whatever was specified by --prefix on the command line.

@CC@ is replaced by the name of a C compiler. By default this is “cc” (which on a
Linux system typically points to gcc) but can be overridden by setting the CC
environment variable as discussed earlier.
Others, such as @UIC@ depend on the system itself. Unless a setting is specified on
the command line, the configure script will go looking for the uic program and replace
the @UIC@ expression with whatever it finds.

Sometimes configure can't find things as we will see later. In these cases it stops
with an error message saying so if it needs the facility. If the facility is optional and the
package simply comes with extra bells and whistles if the dependency can be found
then a warning is generated and configure sets up the build not to use that extra
feature.

40

Worked example 5. lab book

Source: UCS PWF Linux
/ux/Lessons/Building/xdaliclock-2.20.tar.bz2

Unpacks OK (tar -xf …)

./configure --prefix="${HOME}/sw"
Configures OK.

All the modification of the software is done by configure, either by command line
option or environment variable. Record them in your lab book and follow them with a
report on how configure behaved. In the case of success that's really all you need
record.

41

Unpack

Configure

Build
Install

So now we have configured our software we need to actually build it.

42

make

fubar.c fubar.o

exists missing

newer older

If:

or:

The actual building of our program will be done by the make program. This program
will fill our next two afternoons so I will skip over it lightly now.
The make program knows how to build one file (fubar.o, say) from another
(fubar.c, say). If fubar.o exists and was created or updated more recently than
fubar.c then make leaves it alone. Under all other circumstances make will rebuild it
from fubar.c.

43

make

fubar.c fubar.o

snafu.c snafu.o

 wombat

The make program takes this idea further into chains of dependencies.

Suppose the program wombat was built from two files called fubar.o and snafu.o
and that these were built from fubar.c and snafu.c respectively. Suppose further
that we start with fubar.c and snafu.c and that make is asked to build wombat.

It knows that wombat needs fubar.o and snafu.o and that they don't exist. So it
builds them. When it's asked to build fubar.o it knows how to because fubar.c
exists so it builds fubar.o. In the same way it builds snafu.o. Now that fubar.o
and snafu.o exist it can finally build wombat.

44

make

fubar.c fubar.o

snafu.c snafu.o

 wombat

instructions

Makefile

But where do the instructions come from? They reside in two places.
The default instructions for the simple but common cases are built into make itself. For
example the rule to get from fubar.c to fubar.o and from snafu.c to snafu.o is
built in as the general rule for something.c → something.o.

The more complex rules such as how to link fubar.o and snafu.o together to
create wombat need explicitly stating and that is done in the make configuration file
called Makefile (with an upper case “M”).

45

make

fubar.c fubar.o

snafu.c snafu.o

 wombat

instructions

MakefileMakefile.in

configure

But where do the instructions in the Makefile come from? They come from the
template instructions in Makefile.in which were filled in with local knowledge and
our location instructions by configure.

46

$ make

Given that all the instructions have been encoded in the Makefile, we don't need to
give any extra instructions to the command itself. All we type is the command itself:
make.

47

Worked example 6. make

config.status: creating Makefile
config.status: creating config.h

$ make
gcc -Wall -Wstrict-prototypes
-Wnested-externs -std=c89
-U__STRICT_ANSI__ -c -I. -I. -I./..
-I/home/rjd4/sw/include -DHAVE_CONFIG_H
-g -O2 xdaliclock.c
…

Back at our worked example, we recall that at the very end of configure's output it
confirmed that it had created a Makefile. This contains everything make needs to do
its job so we can just type make. Note that make echoes all the commands it is
running to perform the build. You do not need to understand these commands, and
you are not expected to.

48

Worked example 7. confirmation

$ ls -l xdaliclock
-rwxr-xr-x … xdaliclock

Obviously we should check the build succeeded. It did for me.
If it didn't for you, shout!

49

Worked example 8. lab book

./configure –prefix="${HOME}/sw"
Configures OK.

make
Builds OK.

Don't forget your lab book.

50

Unpack

Configure

Build

Install

So we have built our software. Now we have to move it into place in our directory $
{HOME}/sw.

51

make install

installation
instructions

MakefileMakefile.in

configure

wombat

${HOME}/sw

--prefix= "${HOME}/sw"

bin

 wombat

The instructions for how to install the software are already built into the Makefile.
The command “make install” will safely copy all the various files to be installed into
the tree under ${HOME}/sw in their appropriate locations. The knowledge of where to
install the software was built into the Makefile (which controls make) by the
configure script, using the location passed to it by its --prefix option.

52

$ make install

So, once again, the command we need to run is quite trivial:
“make install”.

This is typical of the configure/make/make install model. All the complexity is
contained in the first phase, configuration. After that it should be trivial. If anything
goes wrong at the build or installation phase then it's the configuration phase that
should be looked at for errors.

53

Worked example 9. installation

$ make install

install -c xdaliclock /home/rjd4/sw/
bin/xdaliclock

install -c ./xdaliclock.man /home/rj
d4/sw/man/man1/xdaliclock.1

In our worked example, just two files get installed.

54

Worked example 9. installation

${HOME}

sw

bin man

man1xdaliclock

xdaliclock.1

This is the structure that has been installed.

55

Testing /

tmp home

building

xdaliclock-2.20

xdaliclock

sw

bin

xdaliclock

Don't test
from here

rjd4

X11

It's important that when you test to see that the binary works that you not be in the
directory where the binary exists. There are two of these directories, ${HOME}/sw/bin
where it has been installed and /tmp/building/… where it was built. The latter is quite
likely to be your current working directory at this point in the process. Go back to your home
directory before testing.

56

&

Worked example 10. testing

$

$ xdaliclock

cd go to home directory

new command

run in
background

So we will go back to our home directories to do our tests. (The home directory is the
default destination for cd.)

We give the command “xdaliclock” and it will be helpful to us to background the
process by following the command with an ampersand (“&”). This lets us get on with
other work while the program runs.

57

$ type xdaliclock

xdaliclock is

Worked example 11. testing

/home/rjd4/sw/bin/xdaliclock

There is one last thing you ought to check. Sometimes you may be installing your own
version of a program that already exists. You might be installing a more recent
version, for example. You ought to check that the program you get when you type its
name is the version you have just installed.
Linux and Unix shells (the command line interpreters you type commands at) have a
command called “type” which tells you where the program was found.

58

Worked example 12. lab book

make
Builds OK.

make install
Installs OK.
Works from home directory.

Don't forget your lab book.

59

Long builds & installs

make

make install

make && make install

First

and if it
works

Second

Here's a useful trick.
The build process can take a long time. So can the installation process under certain
circumstances. If you give the “make” instruction then you have to keep an eye on it to
know when to give the “make install” instruction. This uses up your time.

Instead we can issue both instructions on the same command line with the caveat that
the installation should only be attempted if the build succeeded. To do this we use a
bit of shell magic.
The double ampersand (“&&”) with no space between the two symbols can be used
between two commands on the command line. The second command is only run if the
first command succeeded. If the first commands fails for any reason the whole line is
abandoned and the second instruction isn't even tried.
So instead of
$ make
…wait…
$ make install
…wait…
we can give the command
$ make && make install
…wait…
and only come back when the whole thing is finished.

60

Exercise openbabel

/ux/Lessons/Building /tmp/building

openbabel-2.2.3.tar.gz

1. unpack
2. configure
3. build
4. install

Lab
book!

&&

Now you get to do one on your own.
In the directory /ux/Lessons/Building is a compressed archive file openbabel-
2.2.3.tar.gz. Unpack it, configure it for installation in
${HOME}/sw, build it and install it.

You won't know how to test it. We will do that next.
If you get stuck, please feel free to ask.
And don't forget to fill out your lab books.

$ cd /tmp/building
$ tar -xf /ux/Lessons/Building/openbabel-2.2.3.tar.gz
$ cd openbabel-2.2.3
$ configure --prefix="${HOME}/sw"
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
…
config.status: executing src/babelconfig.h commands
$ make && make install
Making all in data
make[1]: Entering directory `/tmp/building/openbabel-2.2.3/data'
…
make[1]: Nothing to be done for `all-am'.
make[1]: Leaving directory `/tmp/building/openbabel-2.2.3'

61

Coffee
break

Ten minutes

Don't just stare
at the screen!

The build and installation will take about ten minutes. Have some coffee once you
have the build going. Because you have coupled the build and the install both will
(should!) happen while you are enjoying your coffee.
It's a bad habit to stare at the build logs scrolling by. To start with they're not
particularly informative like that. Secondly and more importantly, it's a complete waste
of your time. The best plan is to see if the build gets started. If a configured build is
going to fail it will most often fail early.
This is your chance to do that fifteen minute chore you've been putting off. Failing that,
ten minutes is usually about the right time to go to the coffee machine, get your
caffeine fix, wander back and resume your trance-like state before the LCD altar.

62

${HOME}/sw

bin include lib man share

babel
…

inchi openbabel-2.0

inchi_api.h
openbabel

math babelconfig.h
…

libinchi.a
…

openbabel pkgconfig

alchemyformat.a
…

openbabel-2.0.pc

man1

babel.1
…

openbabel

2.2.3

aromatic.txt

I want to emphasise just how much has been installed. The xdaliclock package
installed two files. The openbabel package installed 236!

63

Exercise openbabel

/ux/Lessons/Building /tmp/building

ethanol.cml

scene.pov

$ babel ethanol.cml ethanol.xyz

format
conversion

Let's test the openbabel software.
The openbabel software includes a command line program called “babel” which
converts one chemical description format into another. We will demonstrate it (and
crudely test our software installation) with a couple of files.
Copy two files into /tmp/building. The first is a description of the ethanol molecule
in Chemical Mark-up Language (CML). The second is a support file for a later
demonstration.
Then run the babel program to convert ethanol.cml into ethanol.xyz. This latter
file is a much simpler representation of ethanol, mostly just listing the (x,y,z) locations
of its constituent atoms.
$ cd /tmp/building
$ cp /ux/Lessons/Building/ethanol.cml /tmp/building
$ cp /ux/Lessons/Building/scene.pov /tmp/building
$ babel ethanol.cml ethanol.xyz
1 molecule converted
$
Feel free to look into any of the files; they are all just plain text.

64

Exercise libghemical
liboglappth

/ux/Lessons/Building /tmp/building

libghemical-2.99.2.tar.gz
liboglappth-0.98.tar.gz

And now, to help us relax, we have a couple more builds which both “just work”. These
will build a pair of libraries we need for the next part of the course.
It should take less than 10 minutes to build both.

65

Dependencies

ghemical

openbabel
libghemical
liboglappth

base system

needs

needs

Now we will turn our attention to another chemistry package called ghemical, a
graphical tool for building molecular diagrams. We will discover that ghemical needs
openbabel, which we have just installed. (It also depends on the two libraries we
have just installed but we won't trip over them the way we will with oenbabel.)

Of course, there is always a hidden dependency; openbabel needs certain elements
of the base system to be installed, but we will ignore that dependency for now.

66

Worked example

/ux/Lessons/Building /tmp/building

ghemical-2.99.2.tar.gz

We will copy ghemical from the usual location and unpack it. Normally we would
read the README file but it's empty. There is also an INSTALL file. It tells us we need
some libraries:

glib glib-2.0 version 2.6.0 or newer
gtk+ gtk+-2.0 version 2.6.0 or newer
gtkglext gtkglext-1.0 version 1.0.5 or newer
libglade libglade-2.0 version 2.4.0 or newer
gthread gthread-2.0 version 2.6.0 or newer (optional)

(It also mentions a command called autogen.sh. It actual fact we won't need it but it
wouldn't do any harm to run it. This is the script that builds the configure script. On
some systems you may not have the necessary packages installed to run it properly.)

67

Failed dependency

$./configure --prefix="${HOME}/sw"

…No package 'openbabel-2.0' found…

pkg-config

PKG_CONFIG_PATH ?

If we try to configure the software it fails, complaining that it can't find openbabel-
2.0!
$./configure --prefix="${HOME}/sw"
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
…
checking for GTK... yes
checking for OPENBABEL... configure: error: Package requirements
(openbabel-2.0) were not met:

No package 'openbabel-2.0' found

Consider adjusting the PKG_CONFIG_PATH environment variable if
you installed software in a non-standard prefix.

I do like error messages that tell you what to do!

68

pkg-config

$ pkg-config --libs gtkglext-1.0

-Wl,--export-dynamic -lgtkglext-x11-1.0
-lgdkglext-x11-1.0 -lGLU -lGL -lXmu
-lXt -lSM -lICE -lgtk-x11-2.0
-lpangox-1.0 -lX11 -lgdk-x11-2.0
-latk-1.0 -lgio-2.0 -lpangoft2-1.0
-lgdk_pixbuf-2.0 -lpangocairo-1.0
-lcairo -lpango-1.0 -lfreetype -lz
-lfontconfig -lgobject-2.0 -lgmodule-2.0
-lglib-2.0

What are the library
options for…

How do we describe the contents of one package to another?
The way it is done in the configure, build, install world is through a command called
pkg-config. This command can be used to reveal the options that need to be
passed to the build system for ghemical, say, to tell it about the already built system
of gtlglext, say.

This example requests the options needed for the gtkglext libraries to be used. It is
also a good example of why we need tools like pkg-config to assist us with this sort
of thing.

69

pkg-config

$ pkg-config --libs openbabel-2.0

Our software

pkg-config --libs openbabel-2.0
Package openbabel-2.0 was not found
in the pkg-config search path.
Perhaps you should add the directory
containing `openbabel-2.0.pc' to the
PKG_CONFIG_PATH environment variable.
No package 'openbabel-2.0' found

And here's it not working for openbabel:
$ pkg-config --libs openbabel-2.0
Package openbabel-2.0 was not found in the pkg-config search
path.
Perhaps you should add the directory containing `openbabel-
2.0.pc' to the PKG_CONFIG_PATH environment variable
No package 'openbabel-2.0' found
This is a particularly useful error message, though. It tells us exactly what we need to
do to fix the problem.
First we have to find what directory openbabel-2.0.pc is in and then we have to
add it to another …PATH environment variable, just like we did for PATH and MANPATH.

70

${HOME}/sw

bin include lib man share

babel
…

inchi openbabel-2.0

inchi_api.h
openbabel

math babelconfig.h
…

libinchi.a
…

openbabel pkgconfig

alchemyformat.a
…

openbabel-2.0.pc

man1

babel.1
…

openbabel

2.0.1

aromatic.txt

We can find it under our ${HOME}/sw tree with find:
$ find "${HOME}/sw" -name openbabel-2.0.pc
/home/y550/sw/lib/pkgconfig/openbabel-2.0.pc

The standard place for configure to have these package configuration files put is in
lib/pkgconfig relative to the directory specified by the option --prefix. We will
add ${HOME}/sw/lib/pkgconfig to PKG_CONFIG_PATH.

This matches the equivalent location for system packages: /usr/lib/pkgconfig.
This contains the gtkglext-1.0.pc file used in the working example.

71

${HOME}/.bashrc

export PKG_CONFIG_PATH
${HOME}/sw/lib/pkgconfig
${PKG_CONFIG_PATH}

:
"

Set this environment
variable to be…

="
…our new
directory…

…a colon…

…the old
value

We will update our PKG_CONFIG_PATH environment variable in our
${HOME}/.bashrc files, just as we did for PATH, MANPATH etc.

It's a colon-delimited list as ever, so its new value will be our new directory, ${HOME}/
sw/lib/pkgconfig, followed by a colon, followed by whatever value it had before, $
{PKG_CONFIG_PATH}.

72

Exercise

/ux/Lessons/Building/bashrc2

${HOME}/.bashrc

1. Copy in a new ${HOME}/.bashrc file.

2. In your existing terminal window…

$ pkg-config --libs openbabel-2.0
Package openbabel-2.0 was not found
in the pkg-config search path.
…

Again, there is a prepared ${HOME}/.bashrc file in the course directory as bashrc2.
Copy it into your home directory as .bashrc and check that pkg-config still cannot find
openbabel-2.0. Recall that this file is only read at the start of a session.
$ cp /ux/Lessons/Building/bashrc2 ${HOME}/.bashrc
$ pkg-config --libs openbabel-2.0
Package openbabel-2.0 was not found in the pkg-config search
path. Perhaps you should add the directory containing
`openbabel-2.0.pc' to the PKG_CONFIG_PATH environment variable.
No package 'openbabel-2.0' found

73

Exercise

3. Launch and use a new terminal window…

$ pkg-config --libs openbabel-2.0
-L/home/rjd4/sw/lib -lopenbabel

4. Close the old terminal window.

Now launch a new terminal window and try the pkg-config command again. This
time the fresh session should have read your new
${HOME}/.bashrc file and have set the PKG_CONFIG_PATH environment variable
appropriately. So this time the command should work.
Close the old terminal window. It will only confuse matters.

So now we have our dependencies sorted, and pkg-config knows we have them
sorted, we can return to the task of building ghemical.
$ cd /tmp/building/ghemical-2.99.2
$./configure --prefix="${HOME}/sw"
…
config.status: executing depfiles commands
config.status: executing default-1 commands
config.status: executing stamp.h commands
config.status: executing po/stamp-it commands
$ make && make install
…
$ cd
$ type ghemical
xdrawchem is /home/rjd4/sw/bin/xdrawchem
$ ghemical

There are some example files in
/tmp/building/ghemical-2.99.2/examples. The one shown in the slide is
acetylsalicylic acid.

74

Exercise ghemical

1. configure
2. build
3. install
4. launch

75

Location
Unpacking
Configured builds

./configure
--prefix=…

make

make install

PKG_CONFIG_PATH

So now we have completed our tour of “configured” builds. They're all much the same.
All the work goes into the configuration. After that it should be “make” and “make
install”. If the PKG_CONFIG_PATH environment variable contains your $
{HOME}/sw/lib/pkgconfig directory then configure's dependency checking
should be aware of your personal repository too.

