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Building, installing
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University Computing Service

Day two
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Welcome back to the second session of the course.
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Location
Unpacking
Configured builds

${HOME}/sw

PATH
MANPATH
PKG_CONFIG_PATH

tar unzip

configure
make
make install

We will start by reviewing where we have got to. In the last session we identified a 
location for our personal software repository: ${HOME}/sw. We set a collection of 
environment variables defining search paths for various components of the system: 
PATH for command location, MANPATH for manual pages, PKG_CONFIG_PATH for 
pkg-config package data.

For the actual building of software to go in this location we saw how to unpack archive 
files with either tar or unzip, how to configure the software with the configure script and 
finally how to build and install the software with make and make install 
respectively.
Are there any questions from the first session?
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Course outline

6. “Real world” example
7. Recursive make

1. Location
2. Unpacking
3. “Configured” builds

4. make and Makefiles
5. Software libraries

1st afternoon

2nd afternoon

3rd afternoon

This afternoon we will look at make itself, and how to use it in the absence of any 
configure script to do the work for us. Then we will look at the use of libraries and 
how to access them from our personal, non-system repositories.
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The build process

source code executable

multiple
phases

The make program automates the build process. To understand make we need to 
understand what the build process is. It consists of multiple phases, each of which has 
its own command with its own options. These will map on to options in make.
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Raw source code files.c

In the beginning was the source code.
Actually, that's false. In the beginning were scribbled down notes on a piece of scrap 
paper, but as far as the computer is concerned we start with source code.
In the slides I'm using C files as examples. The principles apply across all compiled 
languages, though. Don't get hung up on the detail of which language I'm using.
Also note that I'm talking about multiple source files.
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Raw source code files

Processed source code files

“Include” files .h
.c

Pre-processing

The first thing that happens to each of those source files is that they are textually pre-
processed. C, for example, has a set of statements that start with a hash, “#”. These 
are handled at this stage.
Statements of the form “#include <stdio.h>” get replaced with the complete text 
of the file /usr/include/stdio.h (with 840 lines in it). These substituted files have 
substitutions of their own and so on. Furthermore there is basic variable (“macro”) 
substitution going on as well and simple switching on and off of blocks of code 
depending on the values of these variables.
Ultimately, the single line 
#include <stdio.h>
becomes 343 lines of compilable C unless modified by other settings.
Pre-processing is not the exclusive reserve of C, though. Some Fortran systems use a 
pre-processor phase too. The naming convention used by make is that files whose 
names end in the uppercase “.F” are Fortran that need pre-processing and that files 
whose names end in the lowercase “.f” are pure Fortran that don't need pre-
processing.
Pre-processing is normally done entirely internally. The processed source code files 
don't actually manifest themselves in the file system unless you take special efforts to 
get them. The gcc compiler has a “-E” option to only do the pre-processing and to 
output the processed source code to the standard output.
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Raw source code files

Processed source code files

“Include” files

Object files

.h
.c

.o

Pre-processing

Compilation

Next, the source code (possibly re-written by the pre-processor) is compiled. This is 
the processing that the pre-processor is pre- to.
Compilation consists of taking the individual plain text source files and turning them 
into machine code for the computer. Each source file, foo.c say, is individually 
converted into a machine code (or “object code”) file called an object file, foo.o, which 
implements exactly the same functionality as the source code file. Any function calls in 
the source code are translated to function calls in the machine code. If the function 
isn't defined in the source code then it's not defined in the machine code.  And so it 
goes on. This is a pure “translation” process; source code is translated, file for file, into 
machine code.
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Raw source code files

Processed source code files

“Include” files

Object files Static libraries

Executable

.h

.a

.c

.o

Pre-processing

Compilation

Linking

The next stage is called “linking”. This is the combination of the various machine code 
files into a single executable file. This comes in two flavours (“static” and “dynamic”) 
which have one critical point in common and the other critical point as a differentiator.
In the linking stage, both forms of linking combine the various object files to create a 
single executable file. In this stage the machine code that calls a function gets 
modified so that if another file being linked provides the function then the code now 
refers to the explicit routine that provides that function. While they were in separate 
files they couldn't be hooked together like that. Now they are being combined into a 
single file (literally “linked”) they can be.
The difference between static and dynamic linking comes with the functions that are 
provided by external libraries.
In static linking, the library is treated simply as a collection of object files for each of 
the functions it offers. the relevant object files are read from this collection and copied 
into the executable as if they were provided by local .o files that had been built from 
source code. These library files typically end in “.a” which stands for “archive” 
because they are essentially archives of object files.
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Raw source code files

Processed source code files

“Include” files

Object files

Dynamic libraries

Executable

.h

.so

.c

.o

Pre-processing

Compilation

Linking

The alternative to static linking is dynamic linking. In terms of how the .o files are 
combined this is identical to static linking. The difference comes from how external 
references are handled.
In dynamic linking, rather than copy over the object code from the library file, a note is 
made of which library it is in (and where within that file), and this note is slipped into 
the executable. This executable is incomplete and will need help at run time. It is also 
smaller than a statically linked executable because rather than contain copies of 
functions it just contains references to them.
So why have dynamic linking? There are three reasons.
The first, rather unimportant, reason is that the executables are smaller.
The second is that it makes upgrades easier. If an executable has a reference to an 
external library then that library can be upgraded and, so long as it keeps the same 
function interfaces, the programs that use it can take advantage of the new, improved 
functionality.
We will cover the third reason when we consider what happens at run time. Dynamic 
libraries have names typically ending in “.so”. We will see why then too.
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Raw source code files

Processed source code files

“Include” files

Object files Static libraries

Dynamic libraries

Executable

.h

.a

.so

.c

.o

Pre-processing

Compilation

Linking

So, by one means or another we have an executable. Now what?
By the way, while we won't use the fact in this course, it is possible to mix static and 
dynamic linking. Some libraries can be statically linked in and others dynamically.



 11

Raw source code files

Processed source code files

“Include” files

Object files Static libraries

Dynamic libraries

Executable

Running memory image

.h

.a

.so

.c

.o

Pre-processing

Compilation

Linking

Run-time

When a statically linked program is run, the operating system loads the file into 
memory and simply throws the CPU at it. (It's machine code, after all.)
For a dynamically linked program there's another stage that needs to take place. The 
references to external libraries need to be resolved. But this is where dynamic libraries 
come into their own. Only one copy of the library code needs to be loaded in to 
memory and then all the running programs that use it can use the same copy. For 
something like the system library (libc.so) that every executable needs this leads to 
a huge saving in memory used and is the third advantage of dynamic linking. This is 
why the library file names end with a “.so” suffix. It stands for “shared object”.
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The “compiler”

single source
code file

hello.c hello

executable

multiple
phases

$ cc hello.c -o hello

1. pre-process
2. compile
3. link

Typically, we don't get to see all these various phases because they're all hidden 
behind a single command that implements all parts of the process. This is typically 
called “the compiler”, but it does much more than just compile in the strict sense of the 
word.

For example the cc C “compiler” can perform all three phases:

Pre-processing: cc -E only performs this phase

Compilation: cc -c only performs this phase

Linking: cc only links if it is given only .o files

If we have the source file, hello.c say, then the execution of all three phases can be 
accomplished with a single command:
$ cc hello.c -o hello
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Always automate!

cc make

Perhaps surprisingly, this course is not about driving compilers on the command line. 
You will never drive cc directly in this course!

Instead, we will get make to do the work for us. As the number of the options we want 
to use increases, make will help us keep a lid on the total complexity.
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Worked example

1. /ux/Lessons/Building  /tmp/building
hello.c

2. $ make hello
cc   hello.c  -o hello make knows

how to build
“hello”3. $ make hello

make: `hello' is up to date.
make won't
rebuild files
unnecessarily

So let's see this automation in practice. We will build the “hello” executable exactly 
as we talked about, but we will get make to do the work for us.

We will need a single source code file that builds a complete executable. As ever, we 
have one I prepared earlier in the usual directory. Copy it into your /tmp/building 
directory:
$ cp /ux/Lessons/Building/hello.c /tmp/building
Once it's there, we will join it and ask make to build our executable which we will call 
“hello”:
$ cd /tmp/building
$ make hello
cc   hello.c  -o hello
Note that make prints out the commands it is executing on our behalf. Interestingly, 
and critically for our understanding of make, if we run that last command again we get 
different behaviour:
$ make hello
make: `hello' is up to date.
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Worked example

4. Update hello.c

"Hello, world!" → "Goodbye, world!"

5. $ make hello
cc   hello.c  -o hello

make rebuilds
the executable
this time

So, if make won't rebuild a file that's up to date, let's make that untrue by updating the 
source file. In the text editor of your choice edit the hello.c file to change the string 
of characters (typically called just a “string” in computing) from “Hello, world!” to 
“Goodbye, world!” on line 17 of the file. (PWF Linux comes equipped with (at least) 
emacs, gedit, pico and vi. If you have never used a Linux text editor before we 
recommend gedit.)

Then type “make hello” a third time. This time, like the first, it will compile the 
executable. The first time it did something because the target file did not exist. The 
third time it did something because the target file existed but was out of date 
compared to its source file.
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foo.c foo

dependency

build rule

built-in

foo ← foo.c

foo.c → foo

$(LINK.c) foo.c $(LDLIBS) -o foo

$(CC) $(CFLAGS) $(CPPFLAGS)
$(LDFLAGS) $(TARGET_ARCH)

There are two halves to what make must have built-in. It must have some 
dependencies that say that if we ask for “hello” to be built it should look to see if it 
has a hello.c file. It must also have the instructions for what to do with it. 

There is a built-in rule in make that says that a file called “hello”, or “foo” or anything 
else without a suffix can be built from a file called “hello.c” or “foo.c” etc. There are 
also rules for building it from potential Fortran source files “hello.f” or “foo.f” but 
make has a priority system and “.c” trumps “.f”.

This rule contains an “action”, the command(s) to be obeyed to convert foo.c to 
thing. This is written in terms of make's internal variables called “macros”. The 
command for building foo out of foo.c is written in terms of two macros called 
LINK.c and LDLIBS. We will revisit LDLIBS later (it defaults to being empty) and look 
at LINK.c. 

The action also has slots for the target file and the dependent file to be dropped in, 
obviously.
The LINK.c macro is written in terms of macros itself. Each of these macros has a 
simple value (often blank). We will visit the meaning of these macros very shortly.
I said that we would not be driving the compiler directly in this course and we will not. 
What we will be doing is setting these macros so that make can drive the compiler, 
and adding rules of our own to the built-in set.
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Common macros CC

C compiler

Default value

GNU C compiler 

POSIX C compiler

Possible other values:

cc

gcc

c99

We're going to quickly run through the six macros that matter most to us.
CC defines the C compiler and defaults to “cc”. If you want to change this to “gcc” you 
can but on PWF Linux cc is just a link to gcc. If your system has different C compilers 
then setting this macro (and we will see how to in a moment) selects the compiler to 
use. 
If you have bought an expensive commercial compiler for your system, this is how you 
select to use it.
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Common macros CFLAGS

C compiler options

Default value

Optimisation level

Debugging level

Possible other values:

none

-O3

-g3

There are two sets of flags typically passed to the C compiler corresponding to the two 
phases of the compilation of a C program. You do not need to understand the 
complexities of C compilation in detail but a rough idea is useful for understanding 
make's macros.

CFLAGS sets the options for the actual compilation of the (post-processed) C code to 
machine code. This can be used to set optimization and debugging options.
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Common macros CPPFLAGS

C pre-processor options

Default value

Extra include directories

Derived from pkg-config:

Possible other values:

none

-I/opt/include

$ pkg-config --cflags alsa
-I/usr/include/alsa

CPPFLAGS sets options on the “pre-processor” phase. A C program contains a 
number of pre-processor directives. These allow for the textual inclusion of other files 
(so-called “include files”), the setting of constant values (“C pre-processor macros”), 
switching on or off blocks of code depending on the values of these macros. 
The C pre-processor is very powerful and is actually used by other languages too. The 
CPPFLAGS make macro contains these instructions. 

Especially in C-only contexts the distinction between the pre-processor flags and the 
compilation flags is often lost and CFLAGS is used for both. The pkg-config 
command has an option --cflags-only-I to give just the pre-processor options 
(for CPPFLAGS) and a --cflags-only-other option to give the compilation options 
(for CFLAGS). However, if the two variables are being combined then typically CFLAGS 
is used for both and the pkg-config option --cflags gives both combined.
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Common macros LDFLAGS

Linking options

Default value

Require static linking

Possible other values:

none

-static

LDFLAGS is the macro that sets all the options on how the linker is to do its job. It can 
help strip out unnecessary elements in the machine code or, as shown in the slide's 
example, do its linking statically.
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Common macros LDLIBS

Extra libraries to use

Default value

Use system maths library

Possible other values:

none

-lm

Derived from pkg-config:
$ pkg-config --libs alsa
-lasound

When linking in external libraries, the linker needs to know two things: what libraries to 
load and where the libraries are. 
LDLIBS is the macro that defines the extra libraries and where they might be found if 
not in the standard locations. It is this macro that pkg-config can give values for 
with its --libs option. 

We will return to the issue of tracking down libraries in a few slides' time.
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Common macros TARGET_ARCH

Select specific architecture

Default value

Build for Pentium II

Possible other values:

none

-march=i686

Derived from arch command:
$ arch
i686

The last macro to look at directs the build system as to what architecture to build for. 
The reason we mention it is that the default behaviour (if TARGET_ARCH is unset) is 
not what you might expect.
On an Intel or AMD GNU/Linux system the compiler defaults to producing generic 
machine code that will run on any “x86” architecture (from the really old 386 chips up 
to the modern AMD64 chips). The compilers have options to say “build for this specific 
architecture, exploiting its extra features” and the TARGET_ARCH macro is where they 
go. The exact option depends on the compiler and the platform. For gcc on an x86 
system the machine architecture option is “-march” (“machine-specific option: 
architecture”) and it takes the value of the architecture to be built specifically for. You 
can get your system's architecture with the arch command.

Because the architecture can influence both the compilation and linking phases this 
macro gets used in two different places. This is why we don't just roll its functionality 
into CFLAGS.

Warning: Code compiled with this option is not portable (in its compiled state) 
between machines of different architectures. Check with the arch command if you are 
using unknown kit.
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Raw source code files

Processed source code files

“Include” files

Object files Static libraries

Dynamic libraries

Executable

Running memory image

.h

.a

.so

.c

.o

CPPFLAGS

CFLAGS

LDFLAGS

TARGET_ARCH

LDLIBS
TARGET_ARCH

Finally, here they all are in place in our diagram of the build process. Note that 
TARGET_ARCH appears twice.
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# Makefile – the configuration
# file for the "make" program.

# Macros are set like this:

CFLAGS=--ansi --pedantic

Makefile

TARGET_ARCH=-march=i686

macro value

So we have these macros. How do we get at them? How do we set them?
The standard way is to create a file called “Makefile” and to put the definitions in 
them as a series of lines

MACRO=VALUE
Comments can be added to the file starting with the “#” (“hash”) sign.

For example, if we wanted the C compiler to have some options (CFLAGS macro) to 
demand ANSI standard C (--ansi option) in its source code and to treat any errors 
as fatal (--pedantic option) then we add the line

CFLAGS=--ansi --pedantic
to the Makefile.
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Worked example

1. $ cd /tmp/building

2. CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

Makefile

3. $ rm hello

4. $ make hello

So let's see this in practice. 
Make sure you are in the /tmp/building directory and, using your favourite text 
editor (emacs, gedit, pico, vi, etc.) create a file called Makefile (with a capital 
“M”) containing the two lines
CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686
Next, remove the old “hello” program. The make program looks to see if programs 
are out of date with respect to the files they are built from, but not with respect to the 
Makefile itself.
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$ make hello
cc --ansi --pedantic -march=i686 hello.c

CC CFLAGS

CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

Makefile

 

  -o hello 

TARGET_ARCH

CPPFLAGS LDFLAGS LDLIBS

In our worked example, we see the values of the macros defined in the Makefile 
picked up by make and applied to the command it runs. Note that by using make we 
don't have to remember what order the compiler options come in. As the lists of 
options grow longer and more complex this becomes increasingly useful.
Note that CC has taken its “cc” default value, and that CPPFLAGS, LDFLAGS and 
LDLIBS have all taken their empty default values.
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Raw source code files

Processed source code files

Object files

Executable

.c

.o

CPPFLAGS

CFLAGS

LDFLAGS

TARGET_ARCH

LDLIBS
TARGET_ARCH

It's also worth noting that make has used cc's “all in one” nature to leapfrog over an 
intermediate stage. The object file never appears as part of the build process. In fact it 
is hidden away in /tmp.

To understand make better, and to give us a place to move forwards from, we will split 
this into its two constituent phases.
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One step at a time

$ rm hello
hello.c

$ make hello.o

hello.o

$ make hello

hello



To this end we will remove our hello executable and rebuild it in two stages.

First we make hello.o explicitly. This is the object file we skipped previously. 

Second we make hello itself. Note that at this point make has a choice. It can either 
link hello.o or build hello from scratch from the source file hello.c. 

make builds the executable from the object file because that is “nearer to complete” 
than the source file.
This reveals to us how make links a single object file into an executable. We will use 
this information when we want to link several object files rather than just one.
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foo.c foo.o

dependency

build rule

built-in

foo.o ← foo.c

foo.c → foo.o

$(COMPILE.c) foo.c -o foo.o

$(CC) $(CFLAGS) $(CPPFLAGS)
$(TARGET_ARCH) -c

Compile only

Just as there was a rule to build executables from “.c” files, there is a rule to build 
“.o” files too. Instead of the LINK.c macro it is defined in terms of a similar macro 
called COMPILE.c. This macro is, in turn, built up from some of the same base 
macros as we have already seen: CC, CFLAGS, CPPFLAGS and TARGET_ARCH. It also 
uses the “-c” option on the compiler to direct it to only compile and not to try to link.
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foo.o foo

dependency

build rule

built-in

foo ← foo.o

foo.o → foo

$(LINK.o) foo.o -o foo

$(CC) $(LDFLAGS)
$(TARGET_ARCH)

$(LDLIBS)

Then we built the executable from the object file. Again there is a rule. Note that this 
rule is written in terms of a macro called LINK.o, which takes “.o” files to 
executables, just as LINK.c did with “.c” files. Again, it is written in terms of the base 
macros we have already met.
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make coffee

Ten minutes break

Dependencies:
1. 45p
2. coffee machine

And that finishes us with the simple built-in rules. Let's have a coffee break. 
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foo.o foo
built-in rule

alpha.o

beta.o

gamma.o

zog
explicit rule

Built-in rules are only possible where make can deduce the name of the dependent file 
(foo.o, foo.c, foo.f) from the name of the target executable (foo). This is easy 
where single files are concerned and the file names track the obvious conventions.
Life is rarely that easy. The typical executable is built of multiple object files. There is 
no way that make can determine on its own that the zog executable is built from three 
object files, alpha.o, beta.o and gamma.o. 

We will need to add an explicit rule to make. As with the macros, we do this with the 
Makefile.
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built-in action →

$(LINK.o) foo.o $(LDLIBS) -o foo

$(LINK.o) $(LDLIBS) -oobject file program

$(LINK.o) $(LDLIBS) -oobject files program

$(LINK.o)

$(LDLIBS) -o

alpha.o beta.o gamma.o

zog
→ added action

So what command do we need to run?
We will take this in stages. We start by looking at the built-in action for linking a single 
object file (foo.o) to create an executable program (foo).

$(LINK.o) foo.o $(LDLIBS) -o foo
foo.o is the object file and foo is the program we are building.

There is an obvious generation which is simply to replace the single object file with the 
multiple object files required in the more common general case.
In our case, where the executable program zog is built from three object files 
alpha.o, beta.o, and gamma.o this gives us the action

$(LINK.o) alpha.o beta.o gamma.o $(LDLIBS) -o zog
Now all we have to do is to see how to add this action to a Makefile.
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target

Makefile rules

action

: dependencies

TAB

The file to
be built

: The list of files the
target depends on

A real  TAB
character

The commands that
build the target

The structure of a rule in a Makefile is simply described but easy to get wrong. 
First we specify the target, the file that is going to be built. This is the thing that can 
follow the make command as an argument so adding a target “zog” allows us to say 
“make zog” without relying on built-in rules.

Next comes a colon. You can have white space either side of the colon, it doesn't 
matter and conventions vary. Pick something you like and be consistent.
After that comes the list of dependencies. If the target file, zog, does not exist it will 
always be built when you run “make zog”. However, if it does exist then the 
dependencies are the set of files it is compared against to see if it is up to date. If the 
target file is more recently created or updated than all of the dependencies then it is 
not remade. Otherwise it will be recreated.
The next line defines what the action is to do the build. It starts with a literal TAB 
character. That's the character you get by typing the ⇥ key on the keyboard. It may 
appear as a number of spaces, typically four or eight, but it is not the same thing. It must be a 
real TAB character. Note that copying from a terminal window and pasting can sometimes 
convert a TAB into the number of spaces it appears as. Be careful.
After the TAB comes the action. This is the command we established in the previous slide, 
typically defined in terms of standard macros, the dependency files, and the target file. The 
command must take the files listed in the dependencies and generate the target file. The action 
must not modify or delete the dependency files.
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targets

action1

: dependencies

TAB

General Makefile rules

action2TAB
action3TAB

Multiple
actions

Multiple
targets

Can be
empty

A rule can be slightly more general than that. 
An action may generate more than one file. Multiple targets can be listed before the 
colon if that is the case.
The list of dependencies can be empty. If a target has no dependencies then it is 
treated as being always out of date so running make for that target will always run the 
rule's action.
There can be multiple actions. This is rarely a good idea and comes with a set of 
warnings. Each action is run independently. (They are each run in independent sub-
shells for those who speak Unix.) If the first action changes directory, for example, the 
second action won't reflect that.
The typical reason to have multiple actions is to create one or more intermediate files 
and then to convert them into the ultimate target in a subsequent actions. Don't do 
this. Instead split the rule into two or more rules, explicitly creating the intermediate 
files as targets that make recognises as such and set a dependency on them in the 
second rule.
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Our rule

target

action

: dependencies

TAB

zog

$(LINK.o) alpha.o beta.o
gamma.o $(LDLIBS) -o zog

: alpha.o beta.o gamma.o

TAB

So our rule can be built given the information we have.
The target is the single file “zog”.

The dependencies list is the set of three object files, alpha.o, beta.o, gamma.o.

The action is the linking command we determined in an earlier slide, still written in 
terms of the macros LINK.o and LDLIBS.
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The Makefile

CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

zog: alpha.o beta.o gamma.o
$(LINK.o) alpha.o beta.o
gamma.o $(LDLIBS) -o zog

\

Line wrap

TAB

TAB

We've skipped over the issue of overly long lines in Makefiles. A line that ends with 
a backslash character (“\”) which has no spaces following it will have the next line 
joined to it.
Now let's address the “TAB question”. How did make get to be like this?

This requirement for TABs rather than just “leading white space” harks back to the 
creation of the first make in 1977 by Stuart Feldman of Bell Labs. The (potentially 
apocryphal) story is this: Feldman knocked together a quick version of make which 
used single TABs, some single character macros and a few other tricks to let him write 
a prototype quickly. He let some people use it and went home for the night. It proved 
so popular that when he returned to work the following morning it was in use in so 
many projects that any change of specification was vetoed by his colleagues. 



 38

Worked example

1. $ cd /ux/Lessons/Building

2. $ cp  alpha.c beta.c 
gamma.c  /tmp/building

3. $ cd /tmp/building

So let's put this in practice. We are going to build zog. First we copy over the source 
files into /tmp/building and change back to that directory.
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Worked example

4.

CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

zog: alpha.o beta.o gamma.o
$(LINK.o) alpha.o beta.o \
gamma.o $(LDLIBS) -o zog

Makefile

5. $ make zog

Update Makefile

TAB

Next we will update our existing Makefile to add the new rule we have created.

Finally we will make the zog executable.
$ make zog
cc --ansi --pedantic  -march=i686 -c -o alpha.o alpha.c
cc --ansi --pedantic  -march=i686 -c -o beta.o beta.c
cc --ansi --pedantic  -march=i686 -c -o gamma.o gamma.c
cc  -march=i686 alpha.o beta.o gamma.o  -o zog
Note that we have not added any rules to create the object files from the source files. 
We use the built-in rules wherever possible. We depend on the object files and make 
works out what to do to get them.
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Improving our rule

zog:

alpha.o beta.o gamma.o$(LINK.o) \
$(LDLIBS) -o

alpha.o beta.o gamma.o

zog

 repetition

TAB

Now we have a rule that works we will improve it.
The problem with our current rule is subtle. In this very simple case it's not really a 
problem at all, but we will improve it nonetheless so that as cases become more 
complex we are already prepared for them.
The problem is that there is repetition of data. The file name “zog” appears both in the 
target and the action. Similarly the list of object files appears both as the dependency 
list and in the action. 
Why is repetition bad? A common error in software work is to modify one copy of 
some item (say adding delta.o to the list of object files) and forgetting to do it 
somewhere else (in the action, for example). With just three files this is hardly an issue 
as it is immediately visually obvious whether the two lists match. Now suppose you 
have over 1,200 files. That's not an idle example; we will be meeting it in tomorrow's 
session.
Generally speaking we want things defined once and only once.
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zog:

alpha.o beta.o gamma.o$(LINK.o) \
$(LDLIBS) -o

alpha.o beta.o gamma.o

zog

zog:

$^$(LINK.o)
$(LDLIBS) -o

alpha.o beta.o gamma.o

$@
\

dependencies

target

TAB

TAB

“Automatic macros”

We can fix this with what are called “automatic macros”. Used in an action (and only in 
an action) the expression “$^” evaluates to the list of dependencies. Similarly, the 
expression “$@” evaluates to the target. These save us having to reproduce the list of 
object files and executable file.
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zog:

$^$(LINK.o) $(LDLIBS) -o

alpha.o beta.o gamma.o

$@

dependencies

target

TAB

The automatic macros also allow us to make our action lines shorter, which is always 
to be welcomed. Again, if the list of dependencies is very long this is a great relief.
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Values defined rule-by-rule

zog:

$^$(LINK.o) $(LDLIBS) -o

alpha.o beta.o gamma.o

$@

flub:
$^$(LINK.o) $(LDLIBS) -o

one.o two.o three.o four.o
$@

zog

flub

alpha.o beta.o …

one.o two.o …

TAB

TAB

Let's reinforce this point about automatic macros: their values depend on the rule they 
are in. Here are two rules which have exactly the same line for their actions (link 
together the object files and generate an executable) defined in terms of the automatic 
macros. In the two cases, however, the automatic macros evaluate to two different 
pairs of values, with $^ and $@ being the dependencies and targets of the two rules 
respectively.
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make hello 
hello

built-in
rule

make zog   
zog

explicit
rule

make       
?

default
target?

Default target?

Let's take a step back and look at what we can make with our current Makefile in 
place.
If we say “make hello” then because there is a hello.c file in the directory the 
built-in rules can build the hello executable program even though there is no mention 
of it in the Makefile. The CFLAGS etc. macros that are defined in the Makefile are 
still used. 
If we say “make zog” then the zog target is found explicitly in the Makefile and the 
corresponding actions taken after built-in rules are used to create the dependent 
object files.
But what happens if we just say “make”? What is the default target, the target that gets 
built if none is specified?
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make       
zog

default
target

Default target = First in Makefile

No target
quoted

First target
in Makefile

With our Makefile the target that is built is “zog”. 

The default target that make builds is “the first target in the Makefile”.
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1st traditional target: “all”

all : hello zog

Dummy target

Implicit target

Explicit target

No action

There are three targets that can traditionally be found in the Makefile, and the first 
one we will consider is usually placed first in the file so that it is the default target.
The target is called “all”.

This is a target that builds nothing directly; it has no action associated with it.
What it does have are dependencies. The dependencies for “all” are the list of all 
files that you want built from the set of source code in the directory. In our case this is 
hello and zog. (This is hello's first appearance in the Makefile!)

When make is asked to build a target (all, in this case) it first checks to see if all of 
that target's dependencies exist and are up to date themselves. So the result of 
requesting “make all” is for hello and zog to be made.

In a normal rule there would then be actions to build “all” from hello and zog. In 
our case there are no actions so make stops here.
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make all 
hello

explicit
target zog

make     
hello

default
target zog

all: traditionally the first
target in the Makefile

We typically put the “all” target, listing everything to be built, first in the Makefile so 
that the command “make” on its own builds everything. This is what the Makefiles 
produced by configure do so that in the previous session we only had to type 
“make” after “./configure …”.
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CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

all: hello zog

zog: alpha.o beta.o gamma.o
TAB $(LINK.o) $^ $(LDLIBS) -o $@

Worked example

So now we will update our Makefile. Edit it with your favourite plain text editor to add 
an “all” rule which depends on zog and hello. Make sure that this rule comes 
before the zog rule. 

Note that the default rule is the first rule. It does not have to come before the static 
macro definitions and, indeed, shouldn't. In more complex cases (coming shortly) it 
may use some static macros.
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Worked example
1. Start from scratch

$ rm -f *.o zog hello

2. Test the “all” target

$ make all
cc ... hello.c -o hello
cc ... -c -o alpha.o alpha.c
cc ... -c -o beta.o beta.c
cc ... -c -o gamma.o gamma.c
cc ... alpha.o beta.o gamma.o -o zog

It's easy to test.
We will start from scratch, so remove any copies of the executables and the object 
files and then run “make all” to see if our new rule without any actions does what it 
should.
I've removed the CFLAGS and TARGET_ARCH compiler options from the slide so that it 
fits.  You should see something like this:
$ rm -f *.o hello zog
$ make all
cc --ansi --pedantic   -march=i686 hello.c   -o hello
cc --ansi --pedantic  -march=i686 -c -o alpha.o alpha.c
cc --ansi --pedantic  -march=i686 -c -o beta.o beta.c
cc --ansi --pedantic  -march=i686 -c -o gamma.o gamma.c
cc  -march=i686 alpha.o beta.o gamma.o  -o zog
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Worked example
3. Start from scratch again

$ rm -f *.o zog hello

4. Test the default target

$ make
cc ... hello.c -o hello
cc ... -c -o alpha.o alpha.c
cc ... -c -o beta.o beta.c
cc ... -c -o gamma.o gamma.c
cc ... alpha.o beta.o gamma.o -o zog

We also need to test to see whether the new rule's “defaultness” is working. So we 
remove everything and rebuild it. 
The output from “make all” and “make” should be identical.
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2nd traditional target: “clean”

clean:

TAB

Dummy target

$(RM) *.o

No dependencies

“rm -f” object
files

hello zog

executable
files

repetition!

Starting from scratch or just clearing away everything built by the make process is 
quite a common requirement, so the second traditional target we will look at is one 
that does just that.
The “clean” target has no dependencies. This means that it is always “out of date”, 
so if we give the command “make clean” its actions will always be followed.

Its actions are strange for a Makefile in that they don't create anything. On the 
contrary, they remove files.
The RM macro is slightly strange. It is defined to be “rm with whatever options are 
required to stop an error code being returned if some of the files being removed 
happen not to exist”. This is because make stops as soon as it sees an error code, so 
we don't want false errors. In practice this always means “rm -f”.

As for what we need to remove, the answer is “anything created by successful or 
unsuccessful make operations.” In our case this means the two executable programs 
and the object files. Note that I use “*.o” rather than the explicit list “alpha.o 
beta.o gamma.o”. It might have been, for example, that the build of hello failed half 
way through and left a hello.o file laying around. So long as you don't remove 
anything that's original source you can afford to be zealous with your clean actions.
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Repetition

all: hello zog

clean:
TAB $(RM) hello zog*.o

 repetition

Note that we have now introduced some repetition. This is bad, so we will get rid of it 
immediately.
Of course, in our simple case the repetition is trivial. Now imagine we were building a 
huge list of final product that couldn't be matched by some glob like “*.o”.

Alternatively, suppose we added another executable program built like hello. Would 
we remember to update “clean” as well as “all”?
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all: $(PROGRAMS)

clean:
TAB $(RM) $(PROGRAMS)*.o

PROGRAMS hello zog=

static macro

The way we deal with the repetition is to add a static macro defining this list of 
executables we want built. Here I've called it “PROGRAMS” because that's what we are 
building. Another common name for it is “TARGETS” because it lists the complete set 
of ultimate targets we want built. We then use it rather than the explicit lists in all our 
subsequent standard rules, all and clean.
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CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

PROGRAMS=hello zog

all: $(PROGRAMS)

clean:
$(RM) *.o $(PROGRAMS)

zog: alpha.o beta.o gamma.o
…

Worked example

Again, we will update our Makefile to have this static macro and the new rule.
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Worked example

1. Start from scratch.

$ make clean
rm -f *.o hello zog

2. Create everything.
$ make

Because we have changed the “all” rule as well as adding the “clean” rule we 
should test both.
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3rd traditional target: “install”

install:

TAB

Dummy target

Don't install
anything until
everything is
built.all

install -d ${HOME}/sw/bin

TAB install ${HOME}/sw/bin$(PROGRAMS)

There is one final traditional target, the “install” target that takes the freshly created 
programs and installs them where the users are going to run them from.
In our case we are installing in ${HOME}/sw/bin.

The “install” target has a single dependency. This is the “all” target. The idea 
behind this dependency of one dummy target on another is that the actions for the 
“install” target will not start until all the activity for the “all” target has been 
completed. In other words, the installation of software won't start until all of the 
software has been built. We won't build a bit, install it, build the next bit, install it, and 
so on.
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3rd traditional target: “install”

install:

TAB

all

install -d ${HOME}/sw/bin

TAB install ${HOME}/sw/bin$(PROGRAMS)

Install a
directory

This directory

The actions are an example where multiple lines make sense. 
The first line makes sure that the directory we want to install into exists. It is the 
omission of this line or its equivalent that we worked around with our mkswtree script 
in the previous session.
The HOME environment variable is in braces (curly brackets, ${…}) which expand 
environment variables, and not parentheses (round brackets, 
$(…)) which expand Makefile macros.
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3rd traditional target: “install”

install:

TAB

all

install -d ${HOME}/sw/bin

TAB install ${HOME}/sw/bin$(PROGRAMS)

Install file(s)
into a directory

These files

This directory

The second line installs the programs into the directory (which must already exist). 
Note the re-use of the PROGRAMS macro to avoid writing in the list of executable 
programs.
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Larger example

install: all
install -d ${HOME}/sw/bin
install $(PROGRAMS) ${HOME}/sw/bin
install -d ${HOME}/sw/lib
install $(LIBRARIES) ${HOME}/sw/lib
install -d ${HOME}/sw/share/man/man1
install $(MANPAGES) \

${HOME}/sw/share/man/man1

If we were building libraries, manual pages, info pages, graphics files etc. then we 
would have more lines beyond these two. A more fully formed installation rule might 
look like this.
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Repetition

install:

TAB

all

install -d ${HOME}/sw/bin

TAB install ${HOME}/sw/bin$(PROGRAMS)

 repetition

Once again, however, we have strayed into repetition. This time we are repeating the 
installation directory.
Repetition is bad, still, but this time for different reasons.
It's unlikely that the two instances so close together will ever get out of step. But if we, 
or the person we pass this build system on to, ever want to change the installation 
location we have to change two items. If the makefile is long, these may take some 
hunting for. Also, consider how much work would be required for our larger example.
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install:

TAB

all

install -d $(BINDIR)

TAB install $(PROGRAMS)

PREFIX=${HOME}/sw

/bin

$(BINDIR)

BINDIR $(PREFIX)=

Again, we introduce a static macro. But we do it in two stages.
What we are most likely to want to change is the directory ${HOME}/sw rather than 
how things are allocated within it. So we will create a macro, BINDIR, for $
{HOME}/sw/bin but we will define it in terms of another macro, PREFIX, which 
identifies that top-level directory. We take its name from our use of the “./configure 
--prefix” option in the previous session.
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Larger example

PREFIX=${HOME}/sw

BINDIR=$(PREFIX)/bin
LIBDIR=$(PREFIX)/lib
MANDIR=$(PREFIX)/share/man/man1

install: all
install -d $(BINDIR)
install $(PROGRAMS) $(BINDIR)
install -d $(LIBDIR)
install $(LIBRARIES) $(LIBDIR)

…

Again, the benefits of this two-level approach increase with the complexity of the set of 
targets.
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…
PREFIX=${HOME}/sw
BINDIR=$(PREFIX)/bin

PROGRAMS=hello zog

all: $(PROGRAMS)

install: all
TAB install -d $(BINDIR)
TAB install $(PROGRAMS) $(BINDIR)
…

Updating our Makefile

Now we will update our Makefile with the installation instructions we need.

It doesn't matter whether this target comes before or after “clean”, so long as it 
comes after “all”.
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Worked example

$ make install
cc ... hello.c   -o hello
cc ... -c -o alpha.o alpha.c
cc ... -c -o beta.o beta.c
cc ... -c -o gamma.o gamma.c
cc ... alpha.o beta.o gamma.o  -o zog
install -d /home/rjd4/sw/bin
install hello zog /home/rjd4/sw/bin

We can test this rule easily.
Note that because we tested “make clean” most recently, we also get to test the 
implied “make all” from the “install” target's dependency.
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Principles for a good Makefile

1.Necessity
2.Consistency
3.No redundancy
4.Standard targets

Makefile

Now we are done with make and Makefiles for now. So let's have a quick recap of 
what makes a good Makefile.

Necessity: We have added rules only where we needed to. For example, we didn't 
need to add rules for hello, or for any of the object files, so we didn't.
Consistency: We have copied and adapted the system rules wherever possible and 
used the same static macros as they have so that all our activity is consistent.
No redundancy: We have ruthlessly stamped out any redundancy, defining our own 
static macros where necessary.
Standard targets: We have defined the three standard targets: all, clean and 
install, with all being the first, default target.
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Location
Unpacking
Configured builds
Simple make

make

built-in rules

Makefile

static macros
explicit rules
automatic macros
standard targets

And that completes our work on make, for now. We will return to it in the next session.
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Coffee break

Ten minutes

“Coffee is a
beverage which
puts one to
sleep if not
drunk.”

Alphonse Allais

Let's take a break.
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Using libraries

Iterate points  xy →  x y
y 1 + sin 2 x  

While we are going to meet make in the second half of this session, we will just be 
using it as a tool to drive the building of libraries. What we will be investigating in depth 
is how to get executables built that use external libraries.
We will start with a simple example. We will build a simple program that iterates a set 
of points in the unit square a thousand times under a simple iteration formula as 
shown. It's vaguely interesting from a mathematical perspective, and the points 
converge to a simple pattern for values of the parameter ε around 0·5.
From the software perspective what is interesting is that it uses the sin() function. This 
function is found in a library that is not linked in by default. We will have to take extra 
measures to have it used.
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Worked example

1. /ux/Lessons/Building  /tmp/building

iterator.c

iterator.sh

Let's have a worked example. Please copy into position these two files. The shell 
script, iterator.sh, is just a wrapper to give us pretty graphical output. The 
computational component is in the to-be-compiled file, iterator.c. That's the file we 
will be concentrating on for the purposes of learning how to build software.
$ cp /ux/Lessons/Building/iterator.* /tmp/building
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Worked example

2. $ make iterator

Doesn't understand the sin() function!

cc … iterator.c   -o iterator

undefined reference to `sin'

/tmp/cco7S3Aa.o:
iterator.c

collect2: ld returned 1 exit status
make

In function `
:(.text+0x15b):

Error 1[iterator]: ***

':main

The file iterator.c is a complete program except for a catch we are about to see.

We can treat it like a complete program and attempt to make to executable in one leap 
with the command “make iterator”.

The build fails with an error message saying that the program referred to the sin() 
function without defining it. Its definition lies elsewhere in the maths library.
[I need to make a quick apology. The maths library was written by Americans. Its real 
name is, therefore, the “math library” with no “s”. But I'm a Brit and no matter how hard 
I try my tongue is programmed to use the word “maths”. I'm sorry if this confuses. 
When you are searching the documentation (and you do all read the fine manuals, 
don't you?) you need to remember that the word is written in the singular. Damned 
colonials.]
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p.s. Our first error from cc

Build program straight from the source file
Temporary object file

cc … iterator.c   -o iterator

undefined reference to `sin'

/tmp/cco7S3Aa.o:
iterator.c

collect2: ld returned 1 exit status
make

In function `
:(.text+0x15b):

Error 1[iterator]: ***

':main

$ make iterator

By the way, this is our first serious error out of a make-driven build. We ought to spend 
at least a couple of minutes looking at it. We will cover how to read make logs 
systematically in the next session when things get far uglier.

cc --ansi --pedantic   -march=i686 iterator.c   -o iterator
By default make prints out the commands it is running. In this case it is building 
straight from the source file.

/tmp/cco7S3A.o
Remember that I said that when the compiler seems to skip the object file step all 
that's really happening is that the object file is hidden out of the way. Well, here it is. 
It's a temporary file with a randomly chosen name.
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p.s. Our first error from cc

Error in this function
Defined in this file

cc … iterator.c   -o iterator

undefined reference to `sin'

/tmp/cco7S3Aa.o:
iterator.c

collect2: ld returned 1 exit status
make

In function `
:(.text+0x15b):

Error 1[iterator]: ***

':main

$ make iterator

In function `main': iterator.c
Now the compiler tells us that it was working on a function called main() in the file 
iterator.c. 

Every C program needs a function called main(). It's the function that is run when the 
program is called.
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p.s. Our first error from cc

The error message

cc … iterator.c   -o iterator

undefined reference to `sin'

/tmp/cco7S3Aa.o:
iterator.c

collect2: ld returned 1 exit status
make

In function `
:(.text+0x15b):

Error 1[iterator]: ***

':main

$ make iterator

undefined reference to `sin'
Here's the actual error message in the midst of the full error report.
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p.s. Our first error from cc

“ld” is the linker (a.k.a. “loader”)

cc … iterator.c   -o iterator

undefined reference to `sin'

/tmp/cco7S3Aa.o:
iterator.c

collect2: ld returned 1 exit status
make

In function `
:(.text+0x15b):

Error 1[iterator]: ***

':main

$ make iterator

collect2: ld returned 1 exit status
“ld” is the linker. It's also called the loader (though the two functions are typically 
merged these days) so its command is “ld” for “load”. Recall that it's the linker that 
has the responsibility of tying together uses of functions and definitions of functions, 
so it's the linking stage that's actually failing.
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p.s. Our first error from cc

An error
from make

Building this
target

make's error
message

cc … iterator.c   -o iterator

undefined reference to `sin'

/tmp/cco7S3Aa.o:
iterator.c

collect2: ld returned 1 exit status
make

In function `
:(.text+0x15b):

Error 1[iterator]: ***

':main

$ make iterator

Finally we get make reporting that there was an error from the compiler that it 
launched.

[iterator]
The term in square brackets is the target that make was trying to build.

Error 1
The error code is make's less than helpful summary of what went wrong. We will 
return to make error messages in the third session.
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Worked example

Doesn't understand the sin() function!

cc … iterator.c   -o iterator

undefined reference to `sin'

/tmp/cco7S3Aa.o:
iterator.c

collect2: ld returned 1 exit status
make

In function `
:(.text+0x15b):

Error 1[iterator]: ***

':main

$ make iterator

Back at the chase, we have an error we need to deal with. We are using the sin() 
function defined in the maths library but we aren't telling the compiler to use the maths 
library. It's dumb. It doesn't know sin() is “obviously” a mathematical function. So we 
need to be explicit.
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System libraries

lib The “ read()

write()

snprintf()

execle()

fork()

inet_addr()

...

1,392 functions.

Linked automatically
by the C compiler.

We've never had
to worry about it.

c C” library.

We are, in fact, already using a system library. The “C library” contains well over a 
thousand standard functions that any C program might want to use. These are not part 
of the C language itself but are provided by a library of functions that is included by 
default. Because it is automatically linked in without any explicit instruction from us we 
have never had to worry about it in the past. It is unique in this regard, though. Any 
other library we want to add will need explicit instruction.
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System libraries

lib The

401 functions.

Not linked automatically
by the C compiler.

We need to link this
library explicitly.

m maths library

The maths library is an example of a “typical” library in this regard. We will need to 
give explicit instructions to link it into our executables that need it.
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System libraries: the files

C library Maths library

/usr/lib/libc /usr/lib/libm

/lib/libc /lib/libm

dynamic

static

.a.a

.so.so .6.6

version 6

The libraries are stored in files, of course, with different files for the static and the 
dynamic versions. The two standard directories for system libraries are /lib and 
/usr/lib.

One of the advantages of the dynamic library approach is that the library can be 
patched (have bugs fixed or other improvements made) without having to rebuild every 
executable that relies on them. All that matters is the set of functions defined by that 
library (and what arguments those functions take and return). This is specified by a 
version number. For example, the current C library (and maths library) is at version 
six. This is reflected in the naming of the library file: libc.so.6 for version six of the 
shared object version of the C library. It's quite possible to have libc.so.5 and 
libc.so.6 sitting side-by-side with version six there for modern programs and 
version five there for back compatibility. 
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System libraries: cc options

C library Maths library

/usr/lib/libc.a /usr/lib/lib

/lib/libc.so.6 /lib/lib

.a

.so.6m

m

No options required -lm

Load a library

The “m” library

So what options do we need to use the library in a file?
For libc no extra option is required. For the maths library, libm.so.6, we use the 
option “-lm” where the “m” identifies which library to use.
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System libraries: the Makefile

C library Maths library

LDLIBS= LDLIBS=-lm

Empty value:
the default

Link in libm

Of course, we won't be using the compiler directly; we'll be using make. The 
corresponding macro in a Makefile is LDLIBS and we set it to be “-lm”.
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Worked example

CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

PREFIX=${HOME}/sw
BINDIR=$(PREFIX)/bin

PROGRAMS=hello zog iterator

all: $(PROGRAMS)
…

LDLIBS=-lm
Adds the maths
library to every
program built.

3. Edit Makefile

So we make that change to our Makefile in the ongoing worked example. Note that 
this will add the maths library to every program built from this Makefile, regardless of 
whether or not they need it. This is why you should have one Makefile per project, 
rather than shovel everything together as we are for this course. Nonetheless, add 
iterator to the PROGRAMS macro to get used to doing it.
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Worked example

4. $ make iterator

cc … iterator.c -lm -o iterator

LDLIBS

5. $ ls -l iterator

-rwxr-xr-x 1 … iterator

Next, make the iterator program. 
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Worked example

6. $ ./iterator.sh 0.60

The iterator program simply generates large numbers of point definitions. There is 
a wrapper script in iterator.sh which surrounds ./iterator with the programs to 
generate graphical output.
(See the UCS Gnuplot course if you want to understand the graphical generation 
system.)
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Other libraries

Maths library

/usr/lib/lib

/lib/lib

.a

.so.6m

m

-lm

Other library

/usr/lib/lib

/lib/lib

.a

.so.nthing

thing

-lthing

The approach of “-lm” linking in the library “libm” can be extended to any library 
whose name follows the convention of starting with “lib” followed by its name 
followed by either “.a” or “.so.” and a version number.

So if we had a library (either in /lib or /usr/lib) called “libthing.so.4” then we 
would link it in with the option “-lthing”.
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Static linking

CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686
LDLIBS=-lm

PREFIX=${HOME}/sw
BINDIR=$(PREFIX)/bin

PROGRAMS=hello zog iterator

…

LDFLAGS=-static

Rarely worth it

We still have the choice of static or dynamic linking. Which will it be?
By default, and you are advised not to override it, the default is to link dynamically if 
possible. If you do want to then add the “-static” (single dash) option to the 
compiler. This should be done through the LDFLAGS Makefile macro.
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Size difference

$ ls -l iterator

Dynamic:

Static:

11,065 bytes

2,338,249 bytes!

Static linking adds all the necessary maths functions into the executable itself. This 
has dramatic implications for the size of the executable.
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Raw source code files

Processed source code files

“Include” files

Object files Static libraries

Dynamic libraries

Executable

Running memory image

.h

.a

.so

.c

.o

Executable's
libraries?

Let's reverse the question for a moment? Instead of asking how we link libraries into 
an executable, let's ask how we can ask what dynamic libraries have been  linked into 
a given executable.
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$ iterator

linux-gate.so.1 =>  (0xffffe000)
/lib/ld-linux.so.2 (0xb7f6b000)
libm.so.6 => /lib/libm.so.6 (0xb7f15000)
libc.so.6 => /lib/libc.so.6 (0xb7de7000)

ldd

Command to extract
dynamic library list

from an executable

“specials”

libraries

This is done with the command “ldd”. This reveals the dynamic library names linked 
into an executable and the files those library names currently correspond to.
Note that there are a couple of “specials” in the output that look a bit like libraries but 
which don't match to file names. We will address those first.
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linux-gate.so.1

“Virtual dynamic library”

linux-gate.so.1

user code

kernel code

function calls

system calls

The dynamic library name linux-gate.so.1 is wired into the executable by the 
compiler and provides the set of hooks to call the kernel, the base operating system at 
the heart of the computing environment.
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/lib/ld-linux.so.2

Run-time loader

libm.so.6

libc.so.6

iterator

libc.so.6 =>
libm.so.6 =>/tmp/building/iterator

/lib/libc.so.6

/lib/libm.so.6

The entry /lib/ld-linux.so.2 is the hook into the dynamic linking system. The 
run-time loader is responsible for making sure the relevant library files are mapped 
into memory and that the library references in the in-memory copy of the executable 
are set to point to these memory copies.
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Exercise: Building a library

“GNU Linear Programming Kit”

/ux/Lessons/Building/glpk-4.40.tar.gz

1. Unpack

2. Configure

3. Build

4. Install

So we need to see this in practice.
We will build another library. This is called the “GNU Linear Programming Kit” or 
“GLPK” for short. 
Linear programming is the mathematical process of taking a set of variables, x

j
, and 

varying them subject to a set of linear constraints, C
ij
xj≥K

i
, to minimize a linear function 

B
j
x

j
.

This is a standard four-step installation as we saw in the first session. Building and 
installing it should give you no grief at all.
$ cd /tmp/building
$ tar -xf /ux/Lessons/Building/glpk-4.40.tar.gz 
$ cd glpk-4.40
$ ./configure --prefix="${HOME}/sw"
…
$ make && make install
…
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Coffee break

Ten minutes

“In Seattle you
haven't had
enough coffee
until you can
thread a sewing
machine while
it's still running.”

Jeff Bezos

This is an easy build so it should be over in less than ten minutes. 
There's plenty more caffeinated wisdom at
http://www.quotegarden.com/coffee.html
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${HOME}/sw

include libbin

glpk.h libglpk.a
libglpk.so.0.25.0
libglpk.so.0
libglpk.so

glpsol

We will take a look at what has been installed.
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Raw source code files

Processed source code files

“Include” files .h
.c

CPPFLAGS

${HOME}/sw

include libbin

glpk.h libglpk.a
libglpk.so.0.25.0
…

glpsol

There is a header file installed in ${HOME}/sw/include. Header files are used by 
the pre-processing phase that takes raw C source code files and converts them into 
“pre C” ready for compilation into machine code. 
Recall that any options needed for this phase are set in the CPPFLAGS Makefile 
macro.
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$ cc

header files
directory

-c -o thing.o thing.c
-I${HOME}/sw/include

${HOME}/sw

include libbin

glpk.h libglpk.a
libglpk.so.0.25.0
…

glpsol

THE COMMAND IN THE SLIDE IS ILLUSTRATIVE. DO NOT RUN IT!

If we are going to use these header files we need to tell the compiler where to find 
them. They are not in any standard system location. Build-time locations like this are 
typically not done with environment variables but with command line options instead. 
The “-I” option adds a directory to the set searched for include files.

We will not be running the compiler directly, of course, but will use make instead.
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Raw source code files

Processed source code files

“Include” files .h
.c

CPPFLAGS

CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686
LDLIBS=-lm

PREFIX=${HOME}/sw
BINDIR=$(PREFIX)/bin
CPPFLAGS=-I$(PREFIX)/include
…

In practice we set the CPPFLAGS macro in our Makefile. Note how we re-use the 
PREFIX macro to save a little bit of repetition.
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Object files Static libraries

Dynamic libraries

Executable

.a

.so

.o

LDFLAGS
LDLIBS

${HOME}/sw

include libbin

glpk.h libglpk.a
libglpk.so.0.25.0
…

glpsol

Now we will look at the libraries themselves. 
We need to get these linked into any executable that will use them
Note that this package does not provide a pkg-config file!
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$ cc

-o thing thing.o

-L${HOME}/sw/lib -lglpk

library
directory

specific
library

${HOME}/sw

include libbin

glpk.h libglpk.a
libglpk.so.0.25.0
…

glpsol

THE COMMAND IN THE SLIDE IS ILLUSTRATIVE. DO NOT RUN IT!

If we were linking with the compiler then we would need to add some more options to 
our command line. We need two options, one of which we have met before. They 
differ only by case, so you need to be careful with your typing.
The “-L” option adds a directory to the set searched for libraries. It is analogous to “-
I” for include files.

The lowercase “-l” option is the one we have seen already. This identifies the 
libraries we need.

Of course, we are not going to run this command manually. We are going to use 
make.
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CFLAGS=--ansi --pedantic
TARGET_ARCH=-march=i686

PREFIX=${HOME}/sw
BINDIR=$(PREFIX)/bin
CPPFLAGS=-I$(PREFIX)/include
LDLIBS=-L$(PREFIX)/lib -lglpk
…

Object files Static libraries

Dynamic libraries

Executable

.a

.so

.o

LDFLAGS
LDLIBS

To link in the GLPK libraries we modify the LDLIBS macro in the Makefile we have. 
We are keeping the default behaviour of linking dynamically so we don't need 
LDFLAGS.
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Exercise: Using the GLPK

glpk.h

glpksolver.c glpksolver

libglpk.so

CPPFLAGS

LDLIBS

So let's try to use these new libraries of ours. 
There is a simple program in /ux/Lessons/Building/gplksolver.c which solves a simple 
linear programming problem. This will need to use our new library's header file and be 
linked against the library itself.
Copy in the source file to /tmp/building and adjust your Makefile to have the 
appropriate CPPFLAGS and LDLIBS variables as described in the previous slides.
Then build the software. You don't need to install it, but you can add those rules to the 
Makefile if you want.
$ cd /tmp/building
$ cp /ux/Lessons/Building/gplksolver.c .
$ make gplksolver
cc --ansi --pedantic -I/home/rjd4/sw/include  -march=i686 
glpksolver.c  -L/home/rjd4/sw/lib -lglpk -o glpksolver
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Program seems to run OK

$ ./glpksolver
…
OPTIMAL SOLUTION FOUND

*** Output in file graph.eps

But we aren't quite done yet. We have successfully built the glpksolver executable 
and it seems to run. However, looks can be deceiving.
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But…

$ ldd glpksolver
linux-gate.so.1 => (0xffffe000)
/lib/ld-linux.so.2
libc.so.6 => /lib/libc.so.6
libm.so.6 => /lib/libm.so.6
libglpk.so.0 => /usr/lib/libglpk.so.0

This is the system
copy, not ours!

The executable is using the “wrong” library. There is a system version of the library 
in /usr/lib and despite all our build options the executable seems insistent on using 
it.
If the system didn't have that library at all this would have failed completely!
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/usr/lib/libglpk.so.0
/usr/lib/libglpk.so.0.16.0

/home/rjd4/sw/lib/libglpk.so.0
/home/rjd4/sw/lib/libglpk.so.0.25.0

System
library

Our
library

We have a newer version
that we want to use.

Two copies of the library

Recall that one of the reasons we might want to build our own software is that it gets 
us more recent versions of the software than are installed in the system set. This is 
one of those cases.
We can see that there are two copies of the library. The system version is at 0.16.0 
and ours is at 0.25.0. We want to use our, more recent version.
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Finding libraries at build time

Finding libraries at run time

⇒/

This tells us that being able to resolve the libraries at build time is insufficient to 
resolve them at run time. There are two ways round this. 
One is to tell the executable (glpksolver in our case) at build time where the 
libraries will be at run time. (And note that they may not have been installed there yet 
at build time.) This means you will never be able to move your software tree, because 
its location is hardwired into its own programs. This is not a good idea in the general 
case as it means you cannot move libraries without having to rebuild all your 
executables.
The second is to tell the run time system where to look. This is the approach we will 
take.
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Finding libraries at run time ― 1

/opt/novell/lib
/usr/X11R6/lib
/usr/lib/Xaw3d
/usr/local/lib
/opt/kde3/lib
/opt/gnome/lib

/etc/ld.so.conf

No way to use
${HOME}

List of directories

System libraries

Let's examine how libraries are located at run time.
The first place to look is in the file /etc/ld.so.conf. This contains a list of 
directories which are searched for matching file names. This has no mechanism to 
expand environment variables so we cannot add ${HOME} expressions here. It is fixed 
across the entire system.
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Finding libraries at run time ― 2

/lib/ld-linux.so.2

/lib/tls
/lib
/usr/lib/tls
/usr/lib

Built-in list of directories

Still no way to use ${HOME}

Second there are some directories wired into the run time linker itself. Again, there is 
no way to use ${HOME} here.
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libICE.so.6 -> /usr/X11R6/lib/libICE.so.6
libc.so.6 -> /lib/libc.so.6
libORBit.so.0 -> /opt/gnome/lib/libORBit.so.0
...

/etc/ld.so.cache

ldconfig

ld-linux.so

ld.so.conf

executable

When new
libraries
are added

At runtime

Because the search for libraries is performed every time an application launches it 
needs to be very fast. To assist with this, the directories we have just mentioned are 
not searched individually every time a library is needed. Instead, the system maintains 
a (binary format) database in the file /etc/ld.so.cache which is a lookup from 
library name to file name. This has to be updated every time a system library is added 
or removed. At run time the linker uses this cache to set up the executable.
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Personal extras

LD_LIBRARY_PATH1.

2. /etc/ld.so.conf

3. Built-ins

Environment
variable

So how do we add our own personal libraries? We do it in the traditional fashion, with 
a “*_PATH” environment variable called LD_LIBRARY_PATH. This will contain a colon-
delimited list of directories to be searched for libraries. It is searched before the cache 
is used and has no cache of its own so it should be kept short if possible. We will have 
only a single component on it.
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Exercise: Update .bashrc

bashrc3 ${HOME}/.bashrc1.

export LD_LIBRARY_PATH="${HOME}/sw/lib"

So we have one final update to our ${HOME}/.bashrc file. Copy in bashrc3 to get a 
start-up script that sets this extra environment variable. Note that, for the first time, we 
set its value absolutely rather than append our directory to a system default. The 
system uses a different mechanism to set libraries (/etc/ld.so.conf) so it should 
not be passing you an LD_LIBRARY_PATH at all.
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Exercise: Update .bashrc

2. Existing terminal window:
$ ldd glpksolver
libglpk.so.0 => /usr/lib/libglpk.so.0

3. New terminal window:
$ ldd glpksolver
libglpk.so.0 => /home/rjd4/sw/lib/libglpk.so.0

Launch a new terminal window and change directory to /tmp/building. Then try 
ldd again. This time it will (should!) point to our copy of the library.
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Viewing the graph

$ evince graph.eps

There's a chance that you might actually want to see the graph this program 
generates. Use the evince program to view it.

What we have used the library to do is to find an optimal path round a set of points.
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Location
Unpacking
Configured builds
Simple make
Using libraries

Build time

headers CPPFLAGS

Run time

libraries LDLIBS

libraries
LD_LIBRARY_PATH

Tools ldd

And we're done for this session.
We have covered a lot of ground in the second half of the session. We have seen how 
to use libraries both at build time and at run time, with the critical understanding that 
the two are not the same. We've also used a new tool, ldd, which gives us insight into 
how an executable is using its dynamic libraries.


