
 1

Building, installing
and running software

Bob Dowling
University Computing Service

Day three

http://www-uxsup.csx.cam.ac.uk/courses/
http://training.csx.cam.ac.uk/

Welcome back to the third session of the course.

 2

Progress so far

Location
Unpacking
Configured builds
Simple make
Using libraries

${HOME}/sw

Builds:
configure
make
make install

Makefile

Libraries
build time
run time

So let's take stock of what we have done.
We have our own location for our own software. We have built software using the
configure system and seen easy examples of make without the support of a
configure system. We have seen how to use libraries installed in our personal
${HOME}/sw directory trees.

Before I move on to this session's material, are there any questions?

 3

Today

1. Real world example
A bad Makefile

2. Recursive make

3. Rewrite Makefile from scratch

What we will do today is to take what we learnt yesterday and put it to good use. We
will take a Makefile from a real world build system and make it work. This make
system is a good example of a bad example. We are going to see what is required in
practice to fix other people's Makefiles that don't live up to the high ideals we laid
down previously.
We will look at one extra technique in make, “recursive make”. This is useful for large
build systems that span several subdirectories each with their own targets.
Finally we will see if what we learnt previously, combined with this new technique is
sufficient to completely replace the poor quality Makefiles from our real world
example.

 4

Meet the enemy

LAPACK

BLAS

Linear Algebra Package

Basic Linear Algebra Subprograms
(Fortran)

Well respected pair of libraries

Extensively used

Absolute $@%#! to build

So let's meet this example of a really bad build system.
The Linear Algebra Package, “lapack”, is a well-respected set of Fortran routines. It is
built on top of the Basic Linear Algebra Subprograms library, “blas”, whose C
language equivalent, cblas, we met in the previous session.
The routines are excellent. The whole world uses them with confidence. The build
system, however, is appalling. To be fair, it is a mish-mash of historical relics from
different people with different styles all glued together. The software managers have
simply not done the necessary maintenance on it.

 5

Worked example: unpacking

$ cd /tmp/building

$ tar -xf /ux/Lessons/Building/

$ cd

LAPACK.tgz

LAPACK

We'll unpack it in the usual way.
Don't forget that the TAB key will extend partial file names for you as best they can be.
$ cd /tmp/building
$ tar -xf /ux/Lessons/Building/LAPACK.tgz
$ cd LAPACK/
Note that the tar line in the slide is all one line.

 6

Worked example: first look

$ ls

BLAS

latape
INSTALL

TIMINGREADME
TESTINGmake.inc
SRCMakefile

No build
instructions!

Can we get this
to work unaided?

Inside the LAPACK directory we have no configure script. We do have a Makefile,
however, so we can expect to be running make to build the software.

There is a README but it contains not build instructitons!
The INSTALL node is actually a directory rather than a file of instructions as is
common in more modern software.
So, can we get the Makefile to work on our own?

 7

INSTALL directory

ls INSTALL/

dlamch.f
dlamchtst.f
dsecnd.f
dsecnd.f.RS6K
dsecndtst.f
lawn81.pdf
lawn81.ps
lawn81.tex
lsame.f
lsametst.f

Makefile
make.inc.ALPHA
make.inc.HPPA
make.inc.IRIX64
make.inc.LINUX
make.inc.O2K
make.inc.pghpf
make.inc.RS6K
make.inc.SGI5
make.inc.SUN4

Per-architecture
include files$

The INSTALL directory does contain some interesting files. We see, in particular, a
collection of the “make.inc” files we saw in the top-level directory. If we look inside
the LINUX version we see it sets make macros for use on a Linux system.
There is some limited documentation in the lawn81.* files but they're not build
instructions as we would understand them.

 8

LAPACK Makefile

Top Level Makefile for LAPACK
Version 3.0
June 30, 1999

include make.inc

all: install lib testing …

Comments

Include the
contents of
another file

Standard
target

So let's return to the top-level Makefile and feel our way.

The first active line of the Makefile tells us what the make.inc file is for; it's an
“include” file to set a whole bunch of parameters.
The next active line is the default target: “all”. At least they got that right.

It's first dependency is called “install” so they must be using that for something
other than the standard. Ho hum.

 9

LAPACK Makefile

blaslib
)($(MAKE);cd BLAS/SRC

:

target sub-shell

change
directory

start
another
make

Further down the Makefile we see a bunch of lines like this.

blaslib:
(cd BLAS/SRC; $(MAKE))

This is an example of a “recursive make”. The action for the target involves moving to
another directory and running make again.

Makefiles tend to use “$(MAKE)” rather than “make” internally because the make
program being used may not be called that. “gmake” is a not uncommon name for
“GNU make”. “pmake” is a “parallel make” that can build several targets
simultaneously, etc. The MAKE macro always takes on the name of the currently
running make program.

The parentheses (round brackets) start a sub-shell. They are entirely unnecessary.
Every action line in a Makefile is automatically run in its own sub-shell.

 10

Recursive make

LAPACK

BLAS INSTALL SRC TESTING

SRC EIG LIN

make

make[1]

make[1] make[1] make[1]

make[2]make[2]

Of course, once make jumps to another directory and runs make there there is nothing
to stop that Makefile doing the same again. This is what makes it truly recursive. We
will see that the top-level make enters a bunch of directories (including one two levels
down in the directory tree) and runs make in each of them. All these are first-level sub-
makes and will be represented in the output as “make[1]”. One of these, the one that
enters the TESTING directory, then calls make a couple more times. These are
second level sub-makes and are represented as “make[2]” in the output.

The “level” of a sub-make is a function of how many times make has called make, not
of how many subdirectories deep the process has descended.

 11

Iterative development

Freshly
unpacked
source

Build Install

Start from
scratch?

Makefile

Changes

Success?

Analysis

Our builds aren't going to succeed first time. We are going to have to hit them quite a
few times. The trick is to be systematic about it. Treat this as a series of experiments
in a cool-headed, scientific fashion and you won't go wrong.
We start with a clean unpacking of the source code.
Then we try a build with the current Makefile, recording the output in a log file.

Then we look to see if it succeeded. If it did we move on to the installation.
If it failed we analyse the results (the log file and the build directory's contents) to find
out why.
Based on this analysis we draw two conclusions:
What change or changes do we need to make to the Makefile?

Can we pick up with our current build tree or do we need to start from a freshly
unpacked build tree?
Then we try again.
This is where your lab books really come into their own. Keeping a written record of
what you do and what the build process does in retaliation really helps.

 12

Default make.inc

The machine (platform) identifier to
append to the library names

PLAT = _SUN4SOL2

Sun4 hardware
Solaris 2 operating system

If we look at the default make.inc file we see that it is not suitable for our (Linux)
system but for Solaris 2 systems.

 13

Build #1

$ cp INSTALL/make.inc.LINUX make.inc

$ make make01.log&>

Log for this attempt

Output, errors,
everything

Record change
to file in lab book

We copy the Linux make.inc file into place, record that we have done so in the lab
book, and then run make.

We want to capture all the output of the make process in a log file. We will number our
log files to keep each build attempt quite separate. I use two digits in my versioning
because I'm a pessimist. We won't go that far this afternoon. Note that the redirector
“&>” redirects both the standard output and the error messages to the same file.

If you can't get it to work and turn to an expert for help then they should ask to see
your logs and your lab notes. If you can't show them both then they have every right to
laugh in your face and show you the door. (Though bribing them with chocolates has
been known to work.)

 14

Success? #1

Fails almost
instantly

$ make make01.log&>

We need to
read the log

The build attempt fails almost immediately. So we will read the log to see what went
wrong.

 15

Reading a make log

Start at the end & work backwards

“Rewind”

There is a knack to reading a log file from make. In essence it is to start at the last line
and to work backwards, finding how we got to that state.

 16

Analysis #1: last line

make Error 2]lapacklib: *** [

target

Error message

Error 2: Error in a sub-make or sub-shell

Let's look at the last line of the log file.
This is a message from make itself, as opposed to from one of the various programs
make launches.

The word in square brackets is the target being built by make when it caught the error.
The text that follows it is make's error message.

So in this case the target make was trying to build was “lapacklib”. Its error
message is the less than helpful “Error 2”. This is code for an error in a sub-make or a
sub-shell and we need to move backwards into the log file to find out what happened
in the sub-system to cause an error.

 17

Analysis #1: penultimate line

make[1]: Leaving directory
/tmp

building

LAPACK

SRCmake[1]

make

Sub-make

`/tmp/building/LAPACK/SRC'

So we move back a line in the log file.
This is a line from the sub-make and is its “sign off” where it announces that the build
process is leaving the directory /tmp/building/LAPACK/SRC to return to the
directory where the original make was launched, /tmp/building/LAPACK.

 18

Analysis #1: antepenultimate line

make[1] Error 127]sgbbrd.o: *** [

Same
sub-make

target

error message

Error 127: “Command not found”

So we work backwards one more line.
This time we see that the sub-make was trying to build the sgbbrd.o target and failed
with “Error 127”.
Error code 127 means “command not found”. This isn't a make-specific code. You can
get the same from the plain shell.
$ qwerty
-bash: qwerty: command not found
$ echo $?
127
(The automatically maintained variable “?” carries the return code from the last
command run.)

 19

Analysis #1: previous line

make[1] Command not found: :g77

Told you so! ☺

This command

To find out which command wasn't found we move back one more line. Here we see
that the sub-make couldn't find the “g77” command. “g77” is the old name for the
GNU Fortran '77 compiler. The GNU Fortran compiler now compiles much more than
Fortran '77 so has been renamed “gfortran”.

 20

Changes #1: previous line

g77 gfortran

…g77… …gfortran…

make.inc

Record change
to file in lab book

The Fortran compiler is one of the macros set in the make.inc file. We will change this
and record the fact that we have had to in the lab book.

 21

Start from scratch?

Nothing wrong with what's done do far.

Whenever we make a change to the Makefile (as we have just done indirectly) we
must ask ourselves whether there is a need to start from scratch or whether we can
just call make again.
All that has happened is that we have failed to find a compiler. There's nothing wrong
with what we have built so far (mostly because we haven't built anything) so we can
just pick up where we left off.

 22

Build #2

$ make make02.log&>

Distinct
log file

5 (ish)
minutes

So we relaunch, logging to a different file, make02.log. This one should last five to
ten minutes.

 23

Analysis #2: Last line

make: *** [testing] Error 2

Sub-make error
(again)

Again, we turn to the final line of the make log to see that the error happened in a sub-
make again. It's time to start working backwards through the log file again.

 24

Analysis #2:

make[1]: Leaving directory

/tmp

building

LAPACK

TESTINGmake[1]

` '/tmp/building/LAPACK/TESTING

make

Again the previous line is the announcement of the departure from the directory where
the sub-make was working.

 25

Analysis #2:

make[1] Error 2xlintsts:*** []

sub-make

Error in
sub-sub-make

Trying to
build xlintsts

/tmp

building

LAPACK

TESTINGxlintsts

The line prior to that is the line identifying the target being built and the error reported
by the sub-make. The target being built is xlintsts in the
/tmp/building/LAPACK/TESTING directory so is the file
/tmp/building/LAPACK/TESTING/xlintsts.
The error being reported by sub-make is that there was an error in its own sub-sub-
make.

 26

/tmp

building

Analysis #2:

make[2]

LAPACK

TESTING

LIN

make[1]

`/tmp/building/LAPACK/TESTING/LIN

make

make[2]

'
: Leaving directory

Sub-sub-make

Here we meet the signing off from the second-level sub-make and its departure from
the LIN sub-directory of the TESTING directory where the first-level sub-make had
been operating.

 27

/tmp

building

Analysis #2:

make[2]

LAPACK

TESTING

LIN../xlintsts

xlintsts

Equivalent

Error 1]../xlintsts: *** [

target

“Something went wrong”

So we go back another line. This tells us that the sub-sub-make was trying to build a
target “../xlintsts”. This was done from the directory
/tmp/building/LAPACK/TESTING/LIN so is an attempt to build the file
/tmp/building/LAPACK/TESTING/xlintsts. This is exactly the same file as
corresponded to the target of the sub-make we had before.
The error message is “Error 1” which is simply “something went wrong with the
command”. It is progress, however, because we are no longer sinking through layers
of make recursion. We have reached our target, the command that failed.

 28

Analysis #2:
/tmp

building

LAPACK

TESTING

LIN

gfortran: ../../blas_LINUX.a:

blas_LINUX.a

../

../

No such file or directory

The error message comes from gfortran and reports that the compiler was unable
to find a file ../../blas_LINUX.a. The sub-sub-make was running in
/tmp/building/LAPACK/TESTING/LIN so the relative file ../../blas_LINUX.a
has absolute file name /tmp/building/LAPACK/blas_LINUX.a. That's the name
of the file that should exist but doesn't.

 29

Analysis #2:
/tmp

building

LAPACK

TESTING

LIN

$ ls -l blas_LINUX.a
ls: cannot access blas_LINUX.a:
No such file or directory

blas_LINUX.a✗

So first we should check that the file really doesn't exist. It doesn't.
We ought to check that it hasn't been built in some other location
$ find /tmp/building/LAPACK -name blas_LINUX.a -print
$
It hasn't been.

 30

Analysis #2:
/tmp

building

LAPACK

TESTING

LIN

blas_LINUX.a

Why does blas_LINUX.a
not exist?

Because the Makefile
doesn't build it!

?

So why doesn't it exist?
The typical answer — and the correct one in this case ― is that the build system was
never asked to make it. In a correctly written Makefile there should be a
dependency requiring that this library exist before any targets get built that use it. This
has not happened here.
So why isn't it built?

 31

Analysis #2:

Why doesn't the
Makefile build it?

Because it's
commented out!

lib: lapacklib tmglib
lapacklib tmglibblasliblib:

Makefile

If we look near the top of the Makefile we see a suspicious pair of lines

lib: lapacklib tmglib
#lib: blaslib lapacklib tmglib

and the name “blaslib” is very suggestive.

This pair of lines suggests that there are two ways to build this package. One line
presumes that there is already a BLAS library (the default) and the other line that we
need to build it (commented out).

 32

Changes #2

lib: lapacklib tmglib
lapacklib tmglibblasliblib:

Makefile

lib: lapacklib tmglib#
lapacklib tmglibblasliblib:

Makefile

So, again we make a change which we record in our lab books.

 33

Start from scratch?

Nothing wrong with what's done so far.

So, do we need to build from scratch?
No. All that has happened is that building stopped early because a library was not
present. If we build that library then the process should be able to continue apace.

 34

Build #3

$ make make03.log&>

5‒10
minutes

Third log file

So we start the make process for a third time, into a third log file.
This one will take between five and ten minutes. Start the build and then take a short
coffee break.

 35

“Sleep when
you're dead.”

Ten minutes

Ten minutes coffee break.

 36

Analysis #3: Last line

make Error 2]timing: *** [

target

sub-make error

So we return to our (third) make log file. This time the error happened in the “timing”
target and (again) the error happened in a sub-make.

 37

Analysis #3

make[1]: Leaving directory
` '/tmp/building/LAPACK/TIMING

/tmp

building

LAPACK

TIMINGmake[1]

make

The sub-make filed when it was running in the directory
/tmp/building/LAPACK/TIMING.

 38

Analysis #3

make[1]: *** [

/tmp

building

LAPACK

TIMINGstime.out

Error 127]stime.out

Trying to build
stime.out

Command not found

The sub-make was trying to build stime.out and suffered an “error 127” which we
now know to mean “command not found”.

 39

Analysis #3

xlintims stime.out< stime.in >

the target

the
command
not found

/tmp

building

LAPACK

TIMINGmake[1]

If we roll back one more line we find the command the sub-make was trying to run. We
see the command being run, xlintims, which is the command we worked to build
last time round. This is the command that can't be found.
We also see that its output is the file stime.out which is the target that the sub-
make is trying to build.

 40

Analysis #3
/tmp

building

LAPACK

TIMINGmake[1]

We are here

xlintims ?

$ find -name xlintims.

So why couldn't the file be found? Does it exist?

 41

xlintims

Analysis #3
/tmp

building

LAPACK

TIMINGmake[1]

xlintims ?

$ find -name xlintims.

./TIMING/

xlintims ……

It's there!

Yes. It does exist. It's in the directory /tmp/building/LAPACK/TIMING where the
command was running.

 42

Analysis #3
/tmp

building

LAPACK

TIMINGmake[1]

xlintims ……

“ PATHis not on the”.

The command is in the directory /tmp/building/LAPACK/TIMING where the
command was running. And that's the nub of the problem. For good reasons, we don't
have “.” (the current working directory) on our PATH along which commands are
searched for.

 43

Changes #3

$ export PATH="${PATH}: ".

Add “.” to PATH

!
Do not make this
change permanent!

So the improvement we need to make this time is to add “.” to our current PATH. Note
that we are not changing our permanent PATH by adding this instruction to our $
{HOME}/.bashrc files. This is not a safe setting.

If you ever need to run a command out of the current working directory (e.g. in a
Makefile) refer to it as “./command” and you will never need this hack.

This is a change to your environment required to build the software. It can't be
recorded in a saved Makefile or other configuration file; you must record this in your
lab book's notes.

 44

Start from scratch?

Nothing wrong with what's done so far?

There shouldn't be anything wrong…

Once again we ask ourselves the question “do we need to start from scratch?”
We shouldn't need to restart from scratch. An action failed. In a properly written
Makefile this means that the target file is cleanly not created. We can pick up where
we left off.
But this isn't a well-written Makefile…

 45

Build #4

$ make make04.log&>

Fails almost
immediately

Fourth log file

We run make a fourth time, logging to a fourth log file. It fails almost immediately.

 46

Analysis #4: Last line

make Error 2]blas_testing: *** [

Top-level
make

Here we go again!
There was an error in a sub-make or a sub-shell when make tried to build the
blas_testing target.

 47

Analysis #4: The error message

At line 130 of file zblat2.f
Fortran runtime error: File exists

Need to look at the larger error message.

Need to look at the action being taken.

Need to look at the zblat2.f file.

We move back one line and immediately run into the error message from the Fortran
system. This is a runtime error, not a build error. Our make system has built a program
which it runs later in the process. When it runs it fails. To be precise it fails at line 130
of the program in zblat2.f.

 48

Analysis #4: The Makefile
blas_testing:

…
(; ./xblat2s < sblat2.in ; \

./xblat2d < dblat2.in ; \

./xblat2c < cblat2.in ; \

…
./xblat2z < zblat2.in)

cd BLAS

/tmp/building/LAPACK/BLAS

Source of the last
error message

“How not to write a Makefile”

Makefile

This is new so we will look in the Makefile to see the instruction for the blas_testing
target.
You may take this as a textbook example of how not to write a rule in a Makefile. If we
look at the actions we see five commands (including the change of directory) all
chained together with no mechanism to stop if something gives an error. There is also
no mention of any files they create so make can't clean up if anything does go wrong.

 49

Analysis #4: The program
…
* Read name and unit number for
* summary output file and open file.
 READ(NIN, FMT = *)SUMMRY
 READ(NIN, FMT = *)NOUT

 NOUTC = NOUT
*
…

OPEN(NOUT, FILE = SUMMRY,)STATUS = 'NEW'

zblat2.f

Line 130
File must not
already exist!

Let's look at line 130 of the offending file.
Here I will have to share some Fortran with you. The option “STATUS='NEW'” means
that the file must not already exist. But because the Makefile doesn't mention what this
file is it has no way to know not to run this program for a second time.
We will record this detail in our lab books and, with a heavy heart, we will start from
scratch.

 50

Changes #4

None!

Just start from scratch!

A well-written Makefile reduces the number of times this happens. Starting fro scratch
should only be necessary when changes are made that cause previously created files
to clash.

 51

Start from scratch!

$ cp make*.log .. Copy the log files
out of LAPACK

$ cd .. Get out of LAPACK
ourselves

$ rm -rf LAPACK/ Remove LAPACK

$ tar -xf /ux/Lessions/Building/
LAPACK.tgz

Create a fresh copy
of LAPACK

First, we will copy our existing log files out of the LAPACK directory.
Then we get out ourselves and remove the entire directory tree. We can't trust “make
clean” with a Makefile this bad.

Finally we will unpack a fresh copy.

 52

Build #5

Repeat the previous changes!

1.

2.

3.

4.

INSTALL/make.inc.LINUX → make.inc

g77 → gfortran

“lib” target in Makefile

Check “.” on PATH

5. make &> make05.loginstall lib

Cheat to save time

>1hr → ~10mins

Now it's time to read the notes you have been recording in your lab books. You have
been, haven't you?
$ cd LAPACK
$ cp INSTALL/make.inc.LINUX make.inc
$ vi make.inc g77 → gfortran

$ vi Makefile swap libs target
$ echo ${PATH}
/home/rjd4/sw/bin:…:. “.” is on the PATH
$ make install lib &> make05.log
We cheat in the last step. The build will succeed. However the testing and the timing
take an hour or more so we just do the build. If you want to check this then please feel
free to do the build in your own time and simply run “make”.

 53

Installation

$ make install✘
$ ls *.a

blas_LINUX.a

tmglib_LINUX.a
lapack_LINUX.a

basic linear algebra
subprograms

linear algebra
package

timing library

We'll leave it running and move to a copy I prepared earlier.
We already know that the “install” target does nothing of the sort. Our build has
made three libraries, the BLAS library, the LAPACK library and a timing library which
we're not intersted in.

 54

Installation

$ install blas_LINUX.a
${HOME}/sw/lib/libblas.a

$ install lapack_LINUX.a
${HOME}/sw/lib/liblapack.a

We will do our own installation with the good old-fashioned “install” command,
taking the opportunity to give the libraries more traditional names. Note that these
commands would have failed if the directory ${HOME}/sw/lib did not already exist.

 55

Progress

Location
Unpacking
Configured builds
Simple make
Using libraries
Real world example

Real world
example
(almost)

And that brings us to the end of the most painful part of the course. We have
successfully bludgeoned a real-world, poor-quality build system into life.

 56

A “multiple purpose
generally recognized
as safe food substance”

Five minutes

Let's have a ten minute break.
The quote comes from the USA Code of Federal Regulations 21CFR182.1180.
[http://edocket.access.gpo.gov/cfr_2003/aprqtr/21cfr182.1180.htm]

 57

Makefiles from scratch

LAPACK
Makefiles
are awful

We know
better
principles

vs.
It's a lot
of work

Should be a
last resort

To finish off this course we are going to rewrite the Makefiles from scratch.
We are going to do this to convince ourselves that we can, that we are good enough.
We only have one more trick to learn and this example will provide us with the
opportunity to learn it.
I want to emphasise that we are doing this for the course. In the “real world” (as if the
University could ever be described as such) this is very much a last resort. It can be a
lot of work.

 58

What are we building?

LAPACK

BLAS SRC

SRC

141
source
files

libblas.a

1,291
source
files

liblapack.a

We only want two libraries. We could perform the self tests and timing tests if we
wanted, but this is a teaching exercise so I'm keeping its size under control.
We will take these two libraries one at a time.

 59

libblas.a
/tmp

building

LAPACK

BLAS

SRC

SBLAS1 = isamax.o sasum.o saxpy.o scopy.o \
 sdot.o snrm2.o srot.o srotg.o \
 sscal.o sswap.o
…
ZBLAS3 = zgemm.o zsymm.o zsyrk.o zsyr2k.o \
 ztrmm.o ztrsm.o zhemm.o zherk.o \
 zher2k.o

Makefile

1. Keep the lists of file names

2. Ditch the rest

We start with libblas as it is the base library that liblapack depends on.
There are 141 Fortran source files in its directory. To save us a good deal of typing,
we will salvage from the provided Makefile just the definitions of the macros that list
file names. We will discard everything else.

 60

libblas.a
/tmp

building

LAPACK

BLAS

SRC

OBJECTS = $(SBLAS1) $(CBLAS1) $(DBLAS1) \
 $(ZBLAS1) $(CB1AUX) $(ZB1AUX) \
 $(ALLBLAS) $(SBLAS2) $(CBLAS2) \
 $(DBLAS2) $(ZBLAS2) $(SBLAS3) \
 $(CBLAS3) $(DBLAS3) $(ZBLAS3)

Makefile

3. Glue all the object files together
for convenience

If we look in the Makefile we have salvaged we see a collection of macros defining
subsets of the Fortran files. We will define one more macro to join them all together.
Note that we aren't trying to be clever with “*.f”, somehow asking for “all the Fortran
files”. This is because we haven't manually compared the macro definitions with the
files present and we run the risk of adding in extra files unexpectedly. Relying on “*.f”
is a hostage to fortune if new files get added and I advise against it.

 61

Tool for building static libraries

/usr/bin/ar Builds an object file “archive”

isamax.o

sasum.o

zher2k.o

…
libblas.a

libblas.a isamax.o … zher2k.o:

$(AR) $(ARFLAGS) $@ $^TAB

We have a collection of Fortran files. We know that make has defaults for building
object files from them. All that we need now is the extra to combine them into a single
library.
There is a tool to build the library. Usually it is called “ar” (“archiver”). It has flags to
tell it what to do. We will rely on make's macros that correspond to these: AR and
ARFLAGS.

 62

libblas.a
/tmp

building

LAPACK

BLAS

SRC

libblas.a: $(OBJECTS)
TAB $(AR) $(ARFLAGS) $@ $^

Makefile

4. Add the rule to the Makefile

Rather than have the long list of object files in the rule's dependencies we will use the
OBJECTS macro we defined.

 63

libblas.a
/tmp

building

LAPACK

BLAS

SRC

PREFIX=${HOME}/sw
TARGET=libblas.a

all: $(TARGET)

install: all
install -d $(PREFIX)/lib
install $(TARGET) $(PREFIX)/lib

clean:
$(RM) $(TARGET) $(OBJECTS)

Makefile

5. Add the standard targets

Finally we will add our standard targets. We're building a good Makefile. Note that our
install target ensures that the directory exists before trying to install into it.

 64

And that's it!

$ make

gfortran -c -o isamax.o isamax.f
gfortran -c -o sasum.o sasum.f
...
ar: creating libblas.a
a - isamax.o
...
a - zher2k.o

FC=gfortran Identify Fortran
compiler

And that's all we need. We just have to specify the new-fangled Fortran compiler and it
“just works”.

 65

Same for liblapack.a
/tmp

building

LAPACK

SRC

Makefile

1. Keep the lists of file names

2. Ditch the rest

3. Glue all the object files together
for convenience

4. Add the library build rule to
the Makefile

5. Add the standard targets

We will now do exactly the same for liblapack.a in its Makefile.

 66

Gluing it together

LAPACK

BLAS SRC

SRC

make

make[1]

make[1]

We can now make the two libraries by going to their respective directories and typing
“make”. What we want to do next is to build an over-arching Makefile that will let us do
it with a single command.

 67

Top-level Makefile

all:
all
all

cd BLAS/SRC && $(MAKE)
cd SRC && $(MAKE)

clean :
clean
clean

cd BLAS/SRC && $(MAKE)
cd SRC && $(MAKE)

install
install
install

cd BLAS/SRC && $(MAKE)
cd SRC && $(MAKE)

: all

Pure recursion

Our top-level Makefile is purely recursive. All its targets are defined in terms of calling
the same targets in the various subdirectories. The only thing to note is that we still
have the “install” target depend on “all”.

 68

Top-level Makefile

all :
all
all

cd BLAS/SRC && $(MAKE)
cd SRC && $(MAKE)

Common macros

export FC = gfortran

clean :
clean
clean

cd BLAS/SRC && $(MAKE)
cd SRC && $(MAKE)

We can specify the Fortran compiler in this top-level Makefile if we want. Its value will
be carried into the sub-makes if we add the “export” keyword..

 69

And that's it!

$ cd /tmp/building/LAPACK
$ make

And that's all it takes. We can simply move to the top-level directory and run “make”.

 70

Progress

Location
Unpacking
Configured builds
Simple make
Using libraries
Real world example
Recursive make
Build from scratch

What we have done is to understand recursive make and then apply it to a complete
rewrite of an existing build system.

 71

Location
Unpacking
Configured builds
Simple make
Using libraries
Real world example
Recursive make
Build from scratch

Conclusion

A tough course

You can build
software:

configure-style
Makefile-style

Personal copies:
no system
privileges

Congratulations!

And that's all the course has. It has been a very full course; I believe it is the toughest
course we offer.
You now know how to build software with a configure script or with a plain Makefile.
You know how to maintain your own copies of software with no need for system
privileges.
Congratulations.

