
Unix Systems: Some more useful commands
Bob Dowling

rjd4@cam.ac.uk

20 July 2006

This is a one afternoon course given by the University Computing Service as part of its “Unix
Systems” series of courses. It presumes that the reader has either attended the “Unix
Systems: Introduction” course or has equivalent experience. The introductory course teaches
the use of the commands “ls”, “mv”, “mkdir” etc. This course introduces a further set of
commands.

Table of Contents
The locate command...2

Your own locate database...2
The find command...4

Types of node..4
Names of nodes..4
Combining tests..5
Sizes of files..5
Running commands..6
Summary of options covered..6
The du command..7

The ps program...9
Process selection options..9
Simple column selection options..10
Detailed column selection...11

The kill command..12
The top command..15
The watch command...17
The terminal window..19

Changing the size of text..19
More terminals...20
Scrolling...20

Changing the prompt..21
Terminal names...22

Page 1 of 22

Unix Systems: Some more useful commands

The locate command
The locate program is used to find files of a certain name on the system. Suppose that on the
system — somewhere — you knew there was a file called catalog.xml but you didn't know
where. Running the command “locate catalog.xml” will locate all the files on the system
with “catalog.xml” in their names:

$ locate catalog.xml
/etc/xml/suse-catalog.xml
/opt/kde3/share/apps/ksgmltools2/docbook/xml-dtd-4.2/catalog.xml
/opt/netbeans-4.1/ide5/config/Modules/org-netbeans-modules-xml-catalog.xml
/opt/netbeans-4.1/ide5/update_tracking/org-netbeans-modules-xml-catalog.xml
/usr/matlab/sys/namespace/docbook/v4/dtd/catalog.xml
/usr/matlab/sys/namespace/mcode/v1/catalog.xml
/usr/share/docbook2X/xslt/catalog.xml
/usr/share/sgml/docbook/dtd/4.2/catalog.xml
/usr/share/sgml/docbook/dtd/4.3/catalog.xml
/usr/share/sgml/docbook/dtd/4.4/catalog.xml
/usr/share/sgml/tei/dtd/4.0/catalog.xml
/usr/share/sgml/tei/dtd/4.0/teicatalog.xml
/usr/share/xml/docbook/custom/website/2.5.0/catalog.xml
/usr/share/xml/docbook/custom/website/2.5.0/example/catalog.xml
/usr/share/xml/docbook/schema/dtd/4.2/catalog.xml
/usr/share/xml/docbook/schema/dtd/4.3/catalog.xml
/usr/share/xml/docbook/schema/dtd/4.4/catalog.xml
/usr/share/xml/entities/xmlcharent/0.3/catalog.xml

$

You may have noticed that your hard drives did not spring into life to locate these files. The
locate program doesn't scan the system each time you make a query. Instead, once a night a
single sweep of the system is performed1 which creates a database of filenames. It is this
database that is searched when you issue the locate command.

By default, locate will list any file or directory which has its search string within it. You can
use “/” within the search string to identify directories. The program can generate huge
amounts of output and its output is often piped into grep for more refined searching.

Your own locate database

There is a downside to rebuilding the database each night. You aren't logged in, so your home
directory isn't mounted and so it isn't indexed. You can build your own locate database for
your own personal use and then tell locate to use it.

To build the database in the first place, use the “updatedb” command. This will need a couple
of options to tell it to create a database in your home directory (rather than in the system
location) and reading your home directory (and not the system files):

$ cd

$ updatedb --output=locate.db --localpaths=${HOME}

$

This will create a file in your home directory called locate.db. It can be called anything you
want. (The “${HOME}” term is a way to write “your home directory” that the system will
convert into your real home directory.)

Next, we have to tell locate to use it. The locate command has a “--database” option to tell

1 which does rattle the hard drive

Page 2 of 22

Unix Systems: Some more useful commands

it what database to use:

$ locate syllabics.pdf

$ locate --database=${HOME}/locate.db syllabics.pdf
/home/rjd4/deeply/hidden/directories/syllabics.pdf

$

Finally, you can set an environment variable to list the set of databases you want locate to
search. The variable is called LOCATE_PATH and is a colon-delimited list of filenames. The
system database is in /var/lib/locatedb so if you run the command

$ export LOCATE_PATH=/var/lib/locatedb:${HOME}/locate.db

$

then the locate command will find your files as well as the system ones.

$ locate syllabics.pdf
/home/rjd4/syllabics.pdf

$ locate resolv.conf
/etc/resolv.conf
/usr/share/man/man5/resolv.conf.5.gz

$

If you put the “export” line in a file called “.bashrc” in your home directory, then it will be
run automatically every time you log in.

You will still need to update your database once in a while.

Page 3 of 22

Unix Systems: Some more useful commands

The find command
The locate program uses a database to avoid searching the directory hierarchy every time it
is called. A program that does walk over an entire directory tree (and potentially the whole
file system) is find. This command runs over a directory tree looking at each file and
directory in turn and applies a series of tests to them. The final “test” is typically either “print
the file's name” or “execute this command on the file”. It is the find command that is run
once a night to create the database for locate to use.

If we run the command “find . -print” then, starting with the current directory (“.”), find
will run through the entire directory tree and print the name of every file and directory it
comes across:

$ find . -print
.
./.xsession-errors
./.dmrc
./.pwf-linux
./.pwf-linux/release
./.gconfd
 …
./OpenOffice.org1.1/setup
./OpenOffice.org1.1/soffice
./OpenOffice.org1.1/spadmin

$

Types of node

A simple test that find offers is on the type of the file. If we run the command
“find . -type d -print” then find runs through every file and directory under the current
working directory and on each one it runs the test “-type d” which means “is it a directory?”
If the object in question is not a directory then the processing of that node in the filesystem
stops immediately and find moves on to the next in its list. It is is a directory then find
moves on to its next test, which is the pseudo-test “-print” in this case, so it prints the name
of the node. What this does it to find and print the names of all directories at or below the
current one.

$ find . -type d -print
.
./.pwf-linux
./.gconfd
./.gconfd/lock
./.gconf
./.gconf/desktop
 …
./OpenOffice.org1.1/share/uno_packages
./OpenOffice.org1.1/program
./OpenOffice.org1.1/program/addin

$

Names of nodes

A similar test checks the name of a node in the file system against a shell-style regular
expression. If we run the command “find . -name '[A-Z]*' -print” then any node below
the current working directory will be checked to see if its name starts with a capital letter. If
it does then it will be printed. We can combine tests to find just the directories below the

Page 4 of 22

Unix Systems: Some more useful commands

current working directory that begin with a capital. Note the use of the single quotes around
the regular expression. These stop the shell expanding the expression into a list of the
matching files in the current working directory and allow it to be passed unexpanded into
find.

$ find . -name '[A-Z]*' -print
./.gnome-desktop/Wastebasket
./.gnome/Gnome
./.gnome/README
 …
./OpenOffice.org1.1/user/registry/data/org/openoffice/ucb/Store.xcu
./OpenOffice.org1.1/user/registry/data/org/openoffice/ucb/Hierarchy.xcu
./OpenOffice.org1.1/THIRDPARTYLICENSEREADME.html

$

Case-insensitive searching can be done by using the option “-iname” in place of “-name”.

Combining tests

Now that we have two distinct real tests we can illustrate combining them. The following test
checks every node to see whether it is a directory and, if it is, whether it starts with a letter
between A and Z.

$ find . -type d -name '[A-Z]*' -print
./.Trash/OpenOffice.org1.1
./.Trash/OpenOffice.org1.1/user/basic/Standard
./.Trash/OpenOffice.org1.1/user/registry/data/org/openoffice/Office
./OpenOffice.org1.1
./OpenOffice.org1.1/user/basic/Standard
./OpenOffice.org1.1/user/registry/data/org/openoffice/Office

$

Sizes of files

Another very useful test is to be able to identify files by size and the “-size” option does this. A
slightly subtlety is required, though. The option “-size 100k” will match files that are exactly
100KB in size and it's the option “-size +100k” that will find those larger than 100KB, which is
probably what was wanted. Finally, the option “-find -100k” will find those smaller than
100KB.

$ find . -type f -size +500k -print
./.adobe/AdobeFnt06.lst.pcphxtr01
./.adobe/AdobeFnt06.lst.smaug
./.mozilla/default/25p8sbwm.slt/XUL.mfasl
./.mozilla/firefox/dy8ua6ci.default/XUL.mfasl
./.openoffice/instdb.ins
./.OpenOffice.org/instdb.ins
./chile/sshot1.ps
./chile/sshot2.ps
./chile/sshot3.ps
./DiscMaths.ps
./FortranNag/nag_lib_support.mod

$

The “k” at the end of the size stands for KB (kilobytes). Similarly you can use “500M” for
500MB and “500G” for 500GB. If you want to specify an exact size then use “c” to mean
“characters” as “b” is already taken to mean the quite useless “blocks”. A block is a 512-byte

Page 5 of 22

Unix Systems: Some more useful commands

unit of measure that is unused outside of hardware and file system design.

Running commands

In addition to just printing a node's name it is also possible to get find to run a command on
the matching node with the “-exec” option. Its syntax is rather baroque, though. Suppose we
want to run “wc -l” on every file that ends in “.html”. The command we need to run is
“find . -type f -name '*.html' -exec wc -l {} \;”.

$ find . -type f -name '*.html' -exec wc -l {} \; | more
72 ./.mozilla/firefox/dy8ua6ci.default/bookmarks.html
114 ./.openoffice/LICENSE.html
368 ./.openoffice/README.html
157 ./.OpenOffice.org/LICENSE.html
100 ./.OpenOffice.org/README.html
496 ./.OpenOffice.org/THIRDPARTYLICENSEREADME.html
 …
38 ./PWF-Linux talk/swrules.html
32 ./PWF-Linux talk/wstncost.html
27 ./PWF-Linux talk/wstnfor.html
27 ./PWF-Linux talk/wstnis.html

$

The bizarre hieroglyphs after the “-exec” demand some explanation. Immediately following
the option is the command to be run, with any options it might have itself. Within these
options the token “{}” is expanded into the full filename that has been matched and the “\;”
marks the end of the command. Note that the space before the “\;” must be there.

Summary of options covered

There are very many other tests that find can run. The find manual and information pages
(“man find” and “info find”) list them all.

-iname reg.exp. Node's name matches the regular expression ignoring case
-name reg.exp. Node's name matches the regular expression
-size XX Node has size exactly XX

+XX Node is bigger than XX
-XX Node is smaller than XX
Xc Size measured in bytes (characters)
Xk Size measured in kilobytes
XM Size measured in MB
XG Size measured in GB

-type f Node is a plain file
d Node is a directory
l Node is a symbolic link

-print Print the node name. (Typically the default action.)
-exec command Run command on the node.

{} Replaced by node name.
\; Marks the end of the command being passed to -exec.

Page 6 of 22

Unix Systems: Some more useful commands

The du command

A very common file to look for is “the big one that's eating up my quota”. We have seen the
“-size” option on find to help us here but there are other commands available to us also.

On the subject of subject of file sizes the other common question is “how much space does
this directory take up?” Both these questions can be answered with the du command.

The du command (“du” stands for “disc use”) indicates how much space is taken up by a file
or, more typically, a directory's contents. To see what it does change directory to
/ux/Lessons/FurtherUnix/dudemo and run the du command.

$ cd /ux/Lessons/FurtherUnix/dudemo

$ pwd
/ux/Lessons/FurtherUnix/dudemo

$ du
18 ./alpha/alpha
21 ./alpha/beta
18 ./alpha/gamma
19 ./alpha/delta
 …
17 ./alpha/psi
17 ./alpha/omega
443 ./alpha
17 ./beta/alpha
18 ./beta/beta
19 ./beta/gamma
18 ./beta/delta
 …
18 ./omega/psi
18 ./omega/omega
453 ./omega
10643 .

$

The command runs through the directory tree quoting each low level directory (alpha/alpha,
alpha/beta, alpha/gamma, etc.) first and then giving a total for the mid-level directory (alpha,
beta, etc.) and finally the the top-level directory, . (the current working directory).

If we just want to know the intermediate sizes (for example to find the directory tree
containing the large file) we can ask for just the summary information for the quoted directory
with the “-s” (for summary) option:

$ du -s *
443 alpha
448 beta
436 chi
 …
449 upsilon
438 xi
447 zeta

$

Of course we can ask the same question about the top level directory:

$ du -s .
11390 .

$

Page 7 of 22

Unix Systems: Some more useful commands

The du command is often run in conjunction with the “sort” command to give the largest
values first or last:

$ du -s * | sort --numeric
433 delta
435 eta
435 omicron
 …
450 kappa
453 omega
1187 lambda

$ du -s * | sort --numeric --reverse
1187 lambda
453 omega
450 kappa
 …
435 omicron
435 eta
433 delta

$

We can use this trick to tunnel into a directory tree to find the over-large file. (The “head”
function chops off the first few lines of output.)

$ du -s * | sort --numeric --reverse | head -3
1187 lambda
453 omega
450 kappa

$ cd lambda/

$ du -s * | sort --numeric --reverse | head -3
767 chi
21 alpha
20 theta

$ cd chi/

$ du -s * | sort --numeric --reverse | head -3
748 psi
1 zeta
1 xi

$ ls -l psi
-rw-r--r-- 1 rjd4 rjd4 765432 2006-02-05 16:19 psi

$

Page 8 of 22

Unix Systems: Some more useful commands

The ps program
This course assumes you already have some basic knowledge of the ps command. The ps
program has just a few options that you actually use from day to day. It has many other
options that you might use once in your life or in the middle of a particular shell script.

The options we will consider can be split into two classes: process selection options,
controlling which processes should be reported on, and display formatting options which
control how the data about the selected processes should be displayed.

Process selection options

-e Every process

-U user Processes owned by user.

-G group Processes owned by group.

-p pid1,pid2,pid3 Processes with IDs pid1, pid2 or pid3.

-t terminal Processes running on the given terminal.

$ ps -e
 PID TTY TIME CMD
 1 ? 00:00:09 init
 2 ? 00:00:00 migration/0
 3 ? 00:00:00 ksoftirqd/0
 …
10364 ? 00:00:00 sshd
10370 ? 00:00:00 pwfacmd
10400 ? 00:00:00 mount.ncpfs
10424 ? 00:00:00 automount
10435 ? 00:00:00 mount.ncp
10442 pts/8 00:00:00 bash
 952 pts/8 00:00:00 ps

$

Note that ps can spot itself running as PID 952 in the screenshot above.

$ ps -U rjd4
 PID TTY TIME CMD
10400 ? 00:00:00 mount.ncpfs
10435 ? 00:00:00 mount.ncp
10442 pts/8 00:00:00 bash
10461 ? 00:00:00 mount.ncp
 939 ? 00:00:00 mount.ncp
 963 pts/8 00:00:00 ps

$

and as 963 in this one

$ ps -p 963,10442
 PID TTY TIME CMD
10442 pts/8 00:00:00 bash

$

and not as 963 in this one which is why only one line is listed when two PIDs were asked for.
This third run of ps has its own PID.

Page 9 of 22

Unix Systems: Some more useful commands

$ ps -t pts/8
 PID TTY TIME CMD
10442 pts/8 00:00:00 bash
 1137 pts/8 00:00:00 ps

$

Finally, we have a listing of all the processes running in this terminal. There is an appendix to
these notes explaining the structure of terminal names if you are interested.

Simple column selection options

Note that for each of the rows printed exactly the same set of columns was generated. The
quickest way to get lots of data about the processes of interest is to request “full” output with
the “-f” option. This gives the user, process ID, parent process ID, start time, controlling
terminal, CPU time used and command arguments. It is typically more useful than the “long
output” option, “-l”. In theory, the “full” output gives the user all the information he or she
could want and the “long” output gives all the system data about the process. There is also an
option “--forest” that gives the output stylized as a tree to show the parent/child process
relationship.

-f “Full” output

-l “Long” output

--forest “Tree” format output

Full output:

$ ps -U rjd4 -f

UID PID PPID C STIME TTY TIME CMD
root 10400 1 0 Jul10 ? 00:00:00 ncpd
root 10435 1 0 Jul10 ? 00:00:00 ncpd
rjd4 10442 10364 0 Jul10 pts/8 00:00:00 -bash
root 10461 1 0 Jul10 ? 00:00:00 ncpd
root 939 1 0 09:46 ? 00:00:00 ncpd
rjd4 1222 10442 0 10:19 pts/8 00:00:00 ps -U rjd4 -f

$

Long output:

$ ps -U rjd4 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
5 S 0 10400 1 0 75 0 - 464 - ? 00:00:00 mount.ncpfs
5 S 0 10435 1 0 75 0 - 481 - ? 00:00:00 mount.ncp
4 S 2049 10442 10364 0 75 0 - 1107 wait pts/8 00:00:00 bash
5 S 0 10461 1 0 75 0 - 481 - ? 00:00:00 mount.ncp
5 S 0 939 1 0 75 0 - 481 - ? 00:00:00 mount.ncp
0 R 2049 1374 10442 0 76 0 - 673 - pts/8 00:00:00 ps

$

Tree output:

$ ps -U rjd4 --forest
 PID TTY TIME CMD
10442 pts/8 00:00:00 bash
 1385 pts/8 00:00:00 _ ps
 939 ? 00:00:00 mount.ncp

Page 10 of 22

Unix Systems: Some more useful commands

10461 ? 00:00:00 mount.ncp
10435 ? 00:00:00 mount.ncp
10400 ? 00:00:00 mount.ncpfs

$

Detailed column selection

But if you need particular bits of information, you should consider using the “-o” option to
specify exactly which output columns you want:

$ ps -U rjd4 -o pid,ppid,cmd
 PID PPID CMD
10400 1 ncpd
10435 1 ncpd
10442 10364 -bash
10461 1 ncpd
939 1 ncpd
1406 10442 ps -U rjd4 -o pid,ppid,cmd

$

There are many output options for the “-o” option but the most useful are given here:

args the arguments of the command (including the command)

cmd the command

pcpu percentage of CPU currently used

time CPU time used so far

stime start time

pmem percentage of memory currently used

rss resident set size

user user

uid numeric user ID

group group

gid numeric group ID

pid process ID

ppid parent process ID

tty controlling terminal

A full list is given in the ps manual page.

Page 11 of 22

Unix Systems: Some more useful commands

The kill command
So what's the point of identifying running processes? Often it's to find a rogue process that's
burning your CPU or eating all your memory so that you can kill it. So that's what we will
cover next: killing processes.

To illustrate this we will run the xclock program, updating every second:

$ xclock -update 1 &
[1] 1521

$

Now let's spot it in the ps output:

$ ps -U rjd4
 PID TTY TIME CMD
10400 ? 00:00:00 mount.ncpfs
10435 ? 00:00:00 mount.ncp
10442 pts/8 00:00:00 bash
10461 ? 00:00:00 mount.ncp
 939 ? 00:00:00 mount.ncp
 1521 pts/8 00:00:00 xclock
 1526 pts/8 00:00:00 ps

$

So it's process number 1521. (Your number will differ, obviously.) Now we will kill it off from
the command line:

$ kill 1521

$

[1]+ Terminated xclock -update 1

$

The “kill” command has lived up to its name; it has killed the xclock process. The
“terminated” line is the shell notifying you that a backgrounded job has finished and is not the
output from kill which produced no output of its own. We can see this most easily by running
the xclock from one terminal window and the kill in another.

1st terminal window 2nd terminal window

$ xclock -update 1&

[1] 1547

$

$ kill 1547

$

[1]+ Terminated xclock -update 1

$

What the kill command actually did was to send a “signal” to the xclock process. A signal
is an asynchronous message, and Unix programs are written to deal with these messages out
of the blue. (Actually they tend to follow a set of default behaviours because writing your own
signal handler is difficult.)

By default the kill program sends a “terminate” signal (also known by its capitalized
abbreviation “TERM”) to the process. We could equally well have written this:

Page 12 of 22

Unix Systems: Some more useful commands

$ kill -TERM 1547

The terminate signal is a polite request to a process to drop dead. The process, if it has a
handler written for TERM, can put its effects in order, tidy up any files it has only partially
written, etc. and then commit suicide. This is what almost all programs do on receiving this
signal.

A program can be written to ignore TERM or, if it has gone wrong, might not handle TERM
the way it should. In this case we can increase the strength of our signal with the KILL
signal:

$ xclock -update 1 &
[1] 1611

$ ps -U rjd4
 PID TTY TIME CMD
10400 ? 00:00:00 mount.ncpfs
10435 ? 00:00:00 mount.ncp
10442 pts/8 00:00:00 bash
10461 ? 00:00:00 mount.ncp
 939 ? 00:00:00 mount.ncp
 1611 pts/8 00:00:00 xclock
 1616 pts/8 00:00:00 ps

$ kill -KILL 1611

$
[1]+ Killed xclock -update 1

$

The KILL signal cannot be ignored by a process or have its behaviour changed by the
program's author. This is the “drop dead now” signal. The process gets no opportunity to put
its affairs in order. It just has to die.

If you ever have to kill a process, always start with TERM (the default) and only proceed to
KILL if the process hasn't ended in the ten seconds or so following the TERM. If KILL doesn't
work then there is nothing you can do. Something has gone wrong at the system level and
you can't do anything about it without system administration privileges and even then that
may not be sufficient.

Note also that you can't kill processes that don't belong to you:

$ ps -U ntp
 PID TTY TIME CMD
 6305 ? 00:00:00 ntpd

$ kill -TERM 6305
-bash: kill: (6305) - Operation not permitted

$

(The ntpd is the “network time protocol daemon” and has responsibility for keeping the
system clock right.)

There are a few other signals that might be useful so we'll cover them here. Sending
interrupt signal (INT) to a process is exactly equivalent to hitting Ctrl+c in the terminal while
that process is running in the foreground (i.e. not backgrounded by ending the command with
an ampersand):

$ xclock -update 1 &
[1] 1648

Page 13 of 22

Unix Systems: Some more useful commands

$ ps -U rjd4
 PID TTY TIME CMD
10400 ? 00:00:00 mount.ncpfs
10435 ? 00:00:00 mount.ncp
10442 pts/8 00:00:00 bash
10461 ? 00:00:00 mount.ncp
 939 ? 00:00:00 mount.ncp
 1648 pts/8 00:00:00 xclock
 1653 pts/8 00:00:00 ps

$ kill -INT 1648

$
[1]+ Interrupt xclock -update 1

$

More interestingly there are also signals to pause and restart a process: STOP and CONT
(“continue”). Note that the second hand stops moving between the STOP and CONT signals
(which is rather hard to show in printed notes).

$ xclock -update 1 &
[1] 1716

$ kill -STOP 1716

$

[1]+ Stopped xclock -update 1

$

$

$ kill -CONT 1716

$

There are plenty more signals but the rest don't really concern us. If you want to see them all
run kill with the “-l” (for “list”) option:

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1
36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5
40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9
44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13
52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9
56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5
60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1
64) SIGRTMAX

“SIGKILL” is the signal name corresponding to “KILL” and so on.

Page 14 of 22

Unix Systems: Some more useful commands

The top command
There is an alternative to ps which while not as powerful has the advantage of being
continually updated. This command is called “top” because it was originally designed to
identify the processes at the top of the job queue.

Issuing the command “top” will replace your entire terminal with a display illustrating the
current situation. If you watch it for a bit you will see that it is updated every three seconds:

top - 11:03:45 up 12 days, 16:22, 5 users, load average: 1.00, 1.01, 1.00
Tasks: 107 total, 2 running, 105 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0% us, 0.1% sy, 26.0% ni, 73.7% id, 0.2% wa, 0.0% hi, 0.0% si
Mem: 2075180k total, 2024716k used, 50464k free, 76964k buffers
Swap: 2097144k total, 2692k used, 2094452k free, 750356k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

32601 abcd3 39 19 1219m 979m 7856 R 99.9 48.4 135:45.69 java
 1 root 16 0 680 252 216 S 0.0 0.0 0:09.81 init
 2 root RT 0 0 0 0 S 0.0 0.0 0:00.27 migration/0
 3 root 34 19 0 0 0 S 0.0 0.0 0:00.02 ksoftirqd/0
 4 root RT 0 0 0 0 S 0.0 0.0 0:00.24 migration/1

The information in the top five lines is generic system information. The following block has
one line per process.

We can restrict the jobs shown to a single user, typically oneself. To select a user, press the
“u” key. Do not press the Return key. The blank line between the generic system information
and the per-process table should prompt for the user wanted:

top - 12:31:10 up 12 days, 17:50, 5 users, load average: 1.03, 1.10, 1.08
Tasks: 107 total, 2 running, 105 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.1% us, 0.4% sy, 31.3% ni, 68.2% id, 0.1% wa, 0.0% hi, 0.0% si
Mem: 2075180k total, 2024076k used, 51104k free, 71060k buffers
Swap: 2097144k total, 2692k used, 2094452k free, 734160k cached

Which user (blank for all): rjd4

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
32601 stjm2 39 19 1219m 1.0g 7856 R 99.9 49.5 228:50.24 java
 1 root 16 0 680 252 216 S 0.0 0.0 0:09.81 init
 2 root RT 0 0 0 0 S 0.0 0.0 0:00.27 migration/0
 3 root 34 19 0 0 0 S 0.0 0.0 0:00.02 ksoftirqd/0

After entering the user ID, press Return to get just that user's processes:

top - 12:33:42 up 12 days, 17:52, 5 users, load average: 1.00, 1.06, 1.07
Tasks: 107 total, 2 running, 105 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0% us, 0.0% sy, 27.1% ni, 72.8% id, 0.2% wa, 0.0% hi, 0.0% si
Mem: 2075180k total, 2024076k used, 51104k free, 71060k buffers
Swap: 2097144k total, 2692k used, 2094452k free, 734160k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

10442 rjd4 15 0 4436 2044 1412 S 0.0 0.1 0:00.18 bash
 2610 rjd4 16 0 2056 1004 752 R 0.0 0.0 0:00.23 top

We can also change the number of seconds between updates by pressing the “s” key, the
number of seconds and then Return. On a heavily used, multi-user system is is regarded as
polite to increase the interval to at least 10 seconds.

Page 15 of 22

Unix Systems: Some more useful commands

To quit, press “q”. There's no need to press Return afterwards.

Press “?” to get the complete set of options:

Help for Interactive Commands - procps version 3.2.5
Window 1:Def: Cumulative mode Off. System: Delay 3.0 secs; Secure mode Off.

 Z,B Global: 'Z' change color mappings; 'B' disable/enable bold
 l,t,m Toggle Summaries: 'l' load avg; 't' task/cpu stats; 'm' mem info
 1,I Toggle SMP view: '1' single/separate states; 'I' Irix/Solaris mode

 f,o . Fields/Columns: 'f' add or remove; 'o' change display order
 F or O . Select sort field
 <,> . Move sort field: '<' next col left; '>' next col right
 R . Toggle normal/reverse sort
 c,i,S . Toggle: 'c' cmd name/line; 'i' idle tasks; 'S' cumulative time
 x,y . Toggle highlights: 'x' sort field; 'y' running tasks
 z,b . Toggle: 'z' color/mono; 'b' bold/reverse (only if 'x' or 'y')
 u . Show specific user only
 n or # . Set maximum tasks displayed

 k,r Manipulate tasks: 'k' kill; 'r' renice
 d or s Set update interval
 W Write configuration file
 q Quit
 (commands shown with '.' require a visible task display window)

Press 'h' or '?' for help with Windows,
any other key to continue

Page 16 of 22

Unix Systems: Some more useful commands

The watch command
We can think of the top command as being similar to ps running every few seconds. It simply
has the bonus of sorting the output in order of resource use.

So how would we run a command every few seconds? Suppose instead of running top we
wanted to run a specific ps command every 10 seconds?

Here's one way. It runs a loop inside the shell that runs for ever. Each pass of the loop clears
the screen, runs ps and then waits (“sleeps”) for 10 seconds. Hit Ctrl+C to stop it.

$ while true
do
clear
ps -U rjd4 -o pid,ppid,pcpu,pmem,args
sleep 10
done

There is a rather more “packaged” command to do this called “watch”. Again, Ctrl+C breaks
out.

$ watch ps -U rjd4 -o pid,ppid,pcpu,pmem,args

So what does watch offer us over the slightly longer shell script?

Every 2.0s: ps -U rjd4 -o pid,ppid,pcpu,pmem,args Feb 5 13:15:02

 PID PPID %CPU %MEM COMMAND
 8747 1 0.0 0.0 ncpd
 8779 1 0.0 0.0 ncpd
 8800 8536 0.0 0.0 -bash
22826 8800 0.0 0.0 watch ps -U rjd4 -o pid,ppid,pcpu,pmem,args
24057 22826 0.0 0.0 ps -U rjd4 -o pid,ppid,pcpu,pmem,args

At first glance, all it offers us is a reminder of how often the command is re-run, what the
command is and what the time the command was last run across the top of the screen. The
other difference is more subtle. When we kill watch with Ctrl+C the screen returns to how it
was before the command ran. This “saved screen” model can be very useful. We can also
change how often it runs with the --interval option

$ watch --interval 20 ps -U rjd4 -o pid,ppid,pcpu,pmem,args

The real gain that watch offers us over the shell command is that it can highlight differences.
We'll start by picking a silly command whose results we can be certain will change each time:
date.

$ date
Sun Feb 5 13:40:19 GMT 2006

$

We can run this under watch and get the results we would expect.

$ watch date

Now run it with an extra option on watch, the --differences option:

$ watch --differences date

Note how any output from the command that is different from the output of the previous run
of the command is highlighted in the output processed by watch, appearing in inverse video:

Every 2.0s: date Feb 5 13:43:31

Page 17 of 22

Unix Systems: Some more useful commands

Sun Feb 5 13:43:31 GMT 2006

We can go further and ask for cumulative differences to be displayed (i.e. everything that's
different in the output from the first run of the command):

$ watch --differences=cumulative date

The highlighted area slowly grows over the command's output:

Every 2.0s: date Feb 5 13:49:24

Sun Feb 5 13:49:24 GMT 2006

The watch command in conjunction with ls is also useful to spot when files have stopped
growing. (e.g. log files from command runs, files being transferred in, etc.)

Page 18 of 22

Unix Systems: Some more useful commands

The terminal window
I'm using the standard “GNOME terminal window”
program. There are two ways to get it on PWF Linux.
The first is to right click on the background and select
“Open Terminal” from the menu. (An alternative to
right-clicking is to press the menu button on the
keyboard while the pointer is over the background
and then to select “Open Terminal” with the arrow
keys and the Return key to select it.)

Alternatively, it can be selected from the Applications
menu via Applications → Unix Shell →
GNOME Terminal.

So what can the terminal emulator do?

Changing the size of text

Pressing Ctrl++ makes the terminal larger and Ctrl+- makes it smaller. This has an upper
limit of the height of the screen and a lower limit that is essentially unreadable. Ctrl+= will
always restore it to its default size.

Page 19 of 22

Unix Systems: Some more useful commands

More terminals

You can get more terminals either by following the instructions for the first or by pressing
Ctrl+Shift+n on an existing one.

More interestingly, you can get another session as a tab on the original window by pressing
Ctrl+Shift+t:

You can switch between these by either clicking on the tab or by pressing Alt+1 for the first
tab, Alt+2 for the second, etc.

Scrolling

The scroll bar on the right hand side performs as one would expect but, in addition,
Shift+PgUp and Shift+PgDown will scroll up and down a windowful at a time.

Page 20 of 22

Unix Systems: Some more useful commands

Changing the prompt
The characters used by the system to prompt you to enter another command is called,
unsurprisingly, the “prompt”. The text used for the prompt is determined by a variable called
“PS1”. If we change the value of this variable the prompt changes too. Please note the
importance of having some space at the end of the prompt:

rjd4@soup:~> export PS1=fred

fred

fred

fredpwd

/home/rjd4

fredexport PS1='fred '

fred pwd

/home/rjd4

fred

As well as fixed text, we can insert some special sequences starting with backslashes to
generate different text according to context:

fred export PS1='\h:\w\$ '

soup:~$

Here is a list of the more useful control sequences:

definition e.g.

\h The host name soup

\H The full host name soup.linux.pwf.cam.ac.uk

\t The time (24hr format) 18:04:54

\T The time (12hr format) 06:04:54

\u Current user rjd4

\w The full current working directory /home/rjd4/some/where

\W The last element of the current working directory where

\$ A “#” if you are root, a “$” otherwise $

If you put the definition in single quotes then you can include spaces in it. Anything not
preceded with a backslash is taken literally.

If the export statement is put in a file “.bashrc” in your home directory it will be run every
time you log in.

Page 21 of 22

Unix Systems: Some more useful commands

Terminal names
What is it with terminal names? If you look at the output from ps it quotes a terminal that the
process is running with, labelling the column “TTY”. The entries are either “?” (no terminal) or
“pts/N” or sometimes “ttyN”. What do these mean?

The story dates back to the earlies, pre-internet days of Unix. Then a computer was a big
system with large numbers of terminals directly connected to it via serial links. These were
large paper-printing “teletypes”. That's what “TTY” stands for. Each of these teletypes had an
explicit number and were refered to in the Unix world by the name of a corresponding device
file: /dev/tty5 say. To read what was being entered at the teletype the system would read
from that file and to print text on the paper for that teletype the system would write to that
file.

On a modern Linux system there are still half a dozen or so teletypes defined. These are the
plain text interfaces you can get by pressing Ctrl+Alt+Fn (for n between 1 and 6). Press
Ctrl+alt+F7 to get back to the graphical interface. Each of those text termina lprovides an
independent text login: a teletype.

The cosy world of big computing was disrupted by the arrival of the networked computer.
When a connection was made to a computer remotely there was no teletype, at least not on
the computer being connected to. Various tricks were attempted to get around this but
ultimately the “pseudo-terminal” was arrived at. This created devices that acted as teletype
devices for connections that weren't from locally attached teletypes. These are used both for
network connections and sessions within windows and now form the majority of connections
on a system. These pseudo-terminals come as pairs called masters and slaves and the process
is attached to the slave pseudo-terminal. The device for a “pseudo-terminal slave” is a “pts”.
Each pseudo-terminal gets a unique number and the device file for the slave is “/dev/pts/n”
for various n.

If you want to know what teletype or pseudo-terminal slave you are connected to, issue the
command tty:

$ tty
/dev/pts/8

$

Page 22 of 22

	The locate command
	Your own locate database

	The find command
	Types of node
	Names of nodes
	Combining tests
	Sizes of files
	Running commands
	Summary of options covered
	The du command

	The ps program
	Process selection options
	Simple column selection options
	Detailed column selection

	The kill command
	The top command
	The watch command
	The terminal window
	Changing the size of text
	More terminals
	Scrolling

	Changing the prompt
	Terminal names

