
Introduction to Modern Fortran
See next foil for copyright information

Nick Maclaren

Computing Service

nmm1@cam.ac.uk, ext. 34761

November 2007

Introduction to Modern Fortran – p. 1/??

Acknowledgement

Derived from the course written and owned by

Dr. Steve Morgan
Computing Services Department
The University of Liverpool

The Copyright is joint between the authors
Permission is required before copying it

Please ask if you want to do that

Introduction to Modern Fortran – p. 2/??

Important!

There is a lot of material in the course
And there is even more in extra slides ...

Some people will already know some Fortran
Some will be programmers in other languages
Some people will be complete newcomers

The course is intended for all of those people

• Please tell me if I am going too fast
Not afterwards, but as soon as you have trouble

Introduction to Modern Fortran – p. 3/??

Beyond the Course (1)

Email scientific--computing@ucs for advice

http: / /www--uxsup.csx.cam.ac.uk/courses/...
... /Fortran ... /OldFortran
... /Arithmetic etc.

Programming in Fortran 90/95
by Steve Morgan and Lawrie Schonfelder
(Fortran Market, PDF, $15)
http: / /www.fortran.com/

Also Fortran 90 version of that

Introduction to Modern Fortran – p. 4/??

Beyond the Course (2)

Fortran 95/2003 Explained
by Michael Metcalf, John Reid and
Malcolm Cohen

Also Fortran 90 version of that

Fortran 90 Programming
by Miles Ellis, Ivor Phillips and
Thomas Lahey

Introduction to Modern Fortran – p. 5/??

Beyond the Course (3)

SC22WG5 (ISO Fortran standard committee)
http: / /www.nag.co.uk/sc22wg5/

http: / /www.fortran.com/fortran/
⇒ ‘Information’, ‘Standards Documents’

Miscellaneous information and useful guidance
http: / /www.star.le.ac.uk/~cgp/fortran.html

Liverpool Course
http: / /www.liv.ac.uk/HPC/...

... / /HTMLFrontPageF90.html

Introduction to Modern Fortran – p. 6/??

Beyond the Course (4)

A real, live (well coded) Fortran 95 application
http: / /www.wannier.org

Most of the others I have seen are not public
Please tell me of any you find that are

Introduction to Modern Fortran – p. 7/??

Practicals

These will be delayed until after second lecture
Then there will be two practicals to do

One is using the compiler and diagnostics
Just to see what happens in various cases

The other is questions about the basic rules

Full instructions will be given then
Including your identifiers and passwords

Introduction to Modern Fortran – p. 8/??

History

FORmula TRANslation invented 1954–8
by John Backus and his team at IBM

FORTRAN 66 (ISO Standard 1972)
FORTRAN 77 (1980)
Fortran 90 (1991)
Fortran 95 (1996)
Fortran 2003 (2004)
Fortran 2008 (ongoing)

The ‘‘Old Fortran’’ slides have more detail

Introduction to Modern Fortran – p. 9/??

Hardware and Software

A system is built from hardware and software

The hardware is the physical medium, e.g.
• CPU, memory, keyboard, display
• disks, ethernet interfaces etc.

The software is a set of computer programs, e.g.
• operating system, compilers, editors
• Fortran 90 programs

Introduction to Modern Fortran – p. 10/??

Programs

Fortran 90 is a high--level language
Sometimes called ‘‘third--generation’’ or 3GL

Uses English--like words and math--like expressions
Y = X + 3
PRINT *, Y

Compilers translate into machine instructions
A linker then creates an executable program
The operating system runs the executable

Introduction to Modern Fortran – p. 11/??

Fortran Programming Model

Memory

pigeonholes)

into a series of

(organised

CPU

Program

Files, keyboard,

display etc.

Introduction to Modern Fortran – p. 12/??

Algorithms and Models

An algorithm is a set of instructions
They are executed in a defined order
Doing that carries out a specific task

The above is procedural programming
Fortran 90 is a procedural language

Object--orientation is still procedural
Fortran 90 has object--oriented facilities

Introduction to Modern Fortran – p. 13/??

An Example of a Problem

Write a program to convert a time in hours,
minutes and seconds to one in seconds

Algorithm:

1. Multiply the hours by 60
2. Add the minutes to the result
3. Multiply the result by 60
4. Add the seconds to the result

Introduction to Modern Fortran – p. 14/??

Logical Structure

1. Start of program
2. Reserve memory for data
3. Write prompt to display
4. Read the time in hours, minutes and seconds
5. Convert the time into seconds
6. Write out the number of seconds
7. End of program

Introduction to Modern Fortran – p. 15/??

The Program

PROGRAM example1
! Comments start with an exclamation mark

IMPLICIT NONE
INTEGER :: hours, mins, secs, temp
PRINT *, ’Type the hours, minutes and seconds’
READ *, hours, mins, secs
temp = 60* (hours*60 + mins) + secs
PRINT *, ’Time in seconds =’, temp

END PROGRAM example1

Introduction to Modern Fortran – p. 16/??

High Level Structure

1. Start of program (or procedure)
PROGRAM example1

2. Followed by the specification part
declare types and sizes of data

3–6. Followed by the execution part
all of the ‘action’ statements

7. End of program (or procedure)
END PROGRAM example1

Comments do nothing and can occur anywhere
! Comments start with an exclamation mark

Introduction to Modern Fortran – p. 17/??

Program and File Names

• The program and file names are not related
PROGRAM QES can be in file QuadSolver.f90
Similarly for most other Fortran components

Some implementations like the same names
Sometimes converted to lower-- or upper--case

The compiler documentation should tell you
It is sometimes in the system documentation
Please ask for help, but it is outside this course

Introduction to Modern Fortran – p. 18/??

The Specification Part

2. Reserve memory for data
INTEGER :: hours, mins, secs, temp

INTEGER is the type of the variables

hours, mins, secs are used to hold input
The values read in are called the input data
temp is called a workspace variable

also called a temporary variable etc.
The output data are ’Time . . . =’ and temp
They can be any expression, not just a variable

Introduction to Modern Fortran – p. 19/??

The Execution Part

3. Write prompt to display
PRINT *, ’Type the hours, ...’

4. Read the time in hours, minutes and seconds
READ *, hours, mins, secs

5. Convert the time into seconds
temp = 60*(hours*60 + mins) + secs

6. Write out the number of seconds
PRINT *, ’Time in seconds =’, temp

Introduction to Modern Fortran – p. 20/??

Assignment and Expressions

temp = 60*(hours*60 + mins) + secs

The RHS is a pseudo--mathematical expression
It calculates the value to be stored

• Expressions are very like A--level formulae
Fortran is FORmula TRANslation – remember?
We will come to the detailed rules later

• temp = stores the value in the variable
A variable is a memory cell in Fortran’s model

Introduction to Modern Fortran – p. 21/??

Really Basic I/O

READ *, <variable list> reads from stdin
PRINT *, <expression list> writes to stdout

Both do input/output as human--readable text
Each I /O statement reads/writes on a new line

A list is items separated by commas (‘,’)
Variables are anything that can store values
Expressions are anything that deliver a value

Everything else will be explained later

Introduction to Modern Fortran – p. 22/??

Repeated Instructions

The previous program handled only one value
A more flexible one would be:

1. Start of program
2. Reserve memory for data
3. Repeat this until end of file

3.1 Read the value of seconds
3.2 Convert to minutes and seconds
3.3 Write out the result

4. End of Program

Introduction to Modern Fortran – p. 23/??

Sequences and Conditionals

Simple algorithms are just sequences
A simple algorithm for charging could be:

1. Calculate the bill
2. Print the invoice

Whereas it probably should have been:

1. Calculate the bill
2. If the bill exceeds minimum

2.1 Then print the invoice
3. Otherwise

3.1 Add bill to customer’s account

Introduction to Modern Fortran – p. 24/??

Summary

There are three basic control structures:
• A simple sequence
• A conditional choice of sequences
• A repeated sequence

All algorithms can be expressed using these
In practice, other structures are convenient

Almost always need to split into simpler tasks
Even Fortran II had subroutines and functions!
Doing that is an important language--independent skill

Introduction to Modern Fortran – p. 25/??

Developing a Computer Program

There are four main steps:

1. Specify the problem
2. Analyse and subdivide into tasks
3. Write the Fortran 90 code
4. Compile and run (i.e. test)

Each step may require several iterations
You may need to restart from an earlier step

• The testing phase is very important

Introduction to Modern Fortran – p. 26/??

Errors

• If the syntax is incorrect, the compiler says so
For example: INTEGER :: ,mins, secs

• If the action is invalid, things are messier
For example: X/Y when Y is zero
/ represents division, because of the lack of ÷

You may get an error message at run--time
The program may crash, just stop or hang
It may produce nonsense values or go haywire

Introduction to Modern Fortran – p. 27/??

	Acknowledgement
	Important!
	Beyond the Course (1)
	Beyond the Course (2)
	Beyond the Course (3)
	Beyond the Course (4)
	Practicals
	History
	Hardware and Software
	Programs
	Algorithms and Models
	An Example of a Problem
	Logical Structure
	The Program
	High Level Structure
	Program and File Names
	The Specification Part
	The Execution Part
	Assignment and Expressions
	Really Basic I/O
	Repeated Instructions
	Sequences and Conditionals
	Summary
	Developing a Computer Program
	Errors

