
Message-Passing and MPI Programming

Datatypes and Collectives

N.M. Maclaren

Computing Service

nmm1@cam.ac.uk

ext. 34761

July 2010

2.1 Transfer Procedures

These are the procedures that actually transfer data; the point-to-point ones will be
described later. All of these need to specify one or more transfer buffers, which are used
to send or receive data, or both. Transfer buffer are specified using three arguments:

• The address of the buffer

• The size of the buffer

• The base datatype of the buffer

They also need to specify some control information:

• The root process for one-to-all or all-to-one transfers

• The communicator to be used for the collective

All MPI transfer buffers are vectors (i.e. 1-D arrays), and their base element datatypes
are always scalars. Their size is an element count argument (i.e. the length of the vec-
tor in elements). The transfer buffer arguments are type-generic (“choice arguments” in
MPI’s terminology). These are declared as “void *” in C and C++; Fortran relies on no
checking, which is technically a breach of standard, and is described later. The datatype
of the base elements is passed as a separate argument.

The vectors are always contiguous arrays (i.e. each element immediately follows its
predecessor). This is like Fortran 77 arrays (i.e. explicit shape or assumed size) or C/C++
arrays, and not like Fortran 90 assumed-shape ones; again, we will come back to Fortran
90 issues later. For example, consider transferring 100 integers. The element count is 100
and the datatype is MPI INTEGER (in Fortran) or MPI INT (in C and C++).

Fortran: INTEGER BUFFER (100)

C/C++: int buffer [100] ;

2.2 Datatypes

Because none of Fortran 90, C or C++ support polymorphic programming, MPI assumes
that arrays are passed as blocks of typeless data and requires the caller to specify the base
type of the array as a separate argument. Because you cannot pass a type as a function
argument in those languages, MPI defines some constants to indicate the type, and provides
mechanisms for programmers to create new type constants for derived types and classes.

1

Note that these datatypes are MPI constants, not necessarily language constants, and so
cannot be used in initialisers.

Each datatype has an associated size, and all counts and offsets are in units of that.
That is exactly the same rule as used for Fortran, C or C++ arrays. The following is how
to pass an array of double of length 100 to MPI in C (Fortran is very similar):

double buffer [100] ;

MPI_Bcast (buffer , 100 , MPI_DOUBLE ,

root , MPI_COMM_WORLD , error)

In general, the MPI and language datatypes must match – there are some exceptions,
but they are best avoided. You will not get warned if you make an error. That is exactly
the same as in K&R C, C casts and Fortran 77; there is no equivalent of C++ class- or
Fortran 90 type-checking. In theory, a compiler could detect a mismatch (as it could for
those other language errors), but it would have to be ‘MPI-aware’ and few (if any) are.

Here is a sample of recommended datatypes that are enough for the first examples. We
will come back to datatypes in more detail later:

Fortran: C: C++:
MPI INTEGER MPI INT MPI::INT

MPI DOUBLE PRECISION MPI DOUBLE MPI::DOUBLE

2.3 Collectives

We have already used the simplest collective, MPI Barrier; all of the others involve
some data transfer. The rules for their use are the same:

• All processes in a communicator are involved, and all must make the same call at the
same time. For use on a subset, you need to create another communicator, which
we shall come back to later.

• All datatypes and counts must be the same in all of the calls that match (i.e. on
all processes). There are a a few, obscure exceptions, and using them is not recom-
mended. Obviously the communicator must be the same!

• All of the buffer addresses may be different, because MPI processes do not share any
addressing. There is no need for each matching call to use the same array. This
generalises in more advanced use, where even the data layout may be different, and
that is covered later.

The easiest way of ensuring the communicator, datatypes and counts match, and all of
the collectives are called ‘at the same time’ is to the SPMD programming model, because
you can code just one collective call.

Some collectives are asymmetric; i.e. they transfer from one process to all processes
or vice versa. An example is broadcasting from one processor to the whole of the com-
municator – and that means all processes, including itself. Those all have a root process
argument (i.e. the ‘one’ process), which also must be the same on all processes ; any process
can be specified – not just zero. Symmetric ones do not have that argument; for example,
MPI Barrier does not.

2

Most collectives use separate send and receive buffers, both for flexibility and for stan-
dards conformance. They usually (but not always) have datatype and count arguments
for each buffer; this is needed for advanced features not covered in this course.

In some cases, especially for the asymmetric collectives, not all arguments are needed
on all processes, and MPI uses only the arguments it needs; unused ones are completely
ignored. However, you are advised to set them all compatibly, because it is much safer!
In particular, keep all datatypes and counts the same, even if they are not used.

2.4 Broadcast

Broadcast

B0

B0

B0

Count
elements

Process 0

Process 2

Count
elements

B0 Process 1

Figure 2.1

Broadcast copies the same data from the root process to all processors in the commu-
nicator. It is the second simplest collective.

Fortran:

REAL(KIND=KIND(0.0D0)) :: buffer (100)

INTEGER , PARAMETER :: root = 3

INTEGER :: error

CALL MPI_Bcast (buffer , 100 , MPI_DOUBLE_PRECISION , &

root , MPI_COMM_WORLD , error)

C:

double buffer [100] ;

int root = 3 , error ;

error = MPI_Bcast (buffer , 100 , MPI_DOUBLE ,

root , MPI_COMM_WORLD) ;

C++:

double buffer [100];

int root = 3 ;

MPI::COMM_WORLD . Bcast (buffer , 100 , MPI::DOUBLE , root) ;

3

2.5 Multiple Transfer Buffers

Many collectives need one buffer per process. That is, process X needs one buffer for
each of the processes in the collective. For example, take a 1⇒N scatter operation; the
root process sends different data to each process. MPI handles these by treating each
buffer as the concatenation of one pairwise transfer buffer for each process, in the order of
process numbers (i.e. 0...N-1), so: <size of source> = × <size of each result>.

Multiple Transfer Buffers

Argument is

address of first

A count (vector length) of 3

element (as usual)

Elements (i.e. one

unit of the datatype)

This is for 4 processes

Process 0 Process 1 Process 2 Process 3

Figure 2.2

The size specifications are slightly counter-intuitive, though it is done for consistency
and simplicity; if you think the design through, you will see why. You specify the size
of each pairwise transfer, and MPI will deduce the total size of the buffers – i.e. it will
multiply by process count, if needed. The process count is implicit, and is taken from the
communicator – i.e. the result from MPI Comm size.

‘void *’ defines no length in C and C++, nor does ‘<type> :: buffer(*)’ in Fortran.
It is up to you to get it right; no compiler can trap an error with such an interface.

We shall use scatter as our first example; this is one process sending different data to
every process in the communicator.

4

2.6 Scatter

Scatter

A1 A2A0 A0

A1

A2

Count
elements

Count
elements

Process 0

Process 2

Process 1

Figure 2.3

Scatter copies data from the root to all processors in the communicator – unlike broad-
cast, different data is sent to each process. The send buffer is used only on the root, but
the receive buffer is used on all processes (including the root).

The Following examples assume ≤30 processes; this is specified only in the send buffer
size and not in the call. Note the differences in the buffer declarations, and consider what
you would have to do to handle 50 processes.

Fortran:

REAL(KIND=KIND(0.0D0)) :: sendbuf (100 , 30) , recvbuf (100)

INTEGER , PARAMETER :: root = 3

INTEGER :: error

CALL MPI_Scatter (&

sendbuf , 100 , MPI_DOUBLE_PRECISION , &

recvbuf , 100 , MPI_DOUBLE_PRECISION , &

root , MPI_COMM_WORLD , error)

C:

double sendbuf [30] [100] , recvbuf [100] ;

int root = 3 , error ;

error = MPI_Scatter (sendbuf , 100 , MPI_DOUBLE ,

recvbuf , 100 , MPI_DOUBLE , root , MPI_COMM_WORLD)

C++:

double sendbuf [30] [100] , recvbuf [100] ;

int root = 3 ;

MPI::COMM_WORLD . Scatter (sendbuf , 100 , MPI::DOUBLE ,

recvbuf , 100 , MPI::DOUBLE , root)

5

2.7 Hiatus

Those are the basic principles of collectives. Now might be a good time to do some
examples, and the first few questions cover the material so far. Once you are happy with
the basic principles, then you should read on.

2.8 Fortran Datatypes

The following datatypes are recommended – all match the obvious Fortran types except
where explained:

MPI CHARACTER

MPI LOGICAL

MPI INTEGER

MPI REAL

MPI DOUBLE PRECISION

MPI COMPLEX

MPI DOUBLE COMPLEX

MPI CHARACTER matches CHARACTER(LEN=1), which can be used for other lengths of
character variables using Fortran’s sequence association rules. This is covered briefly in a
much later lecture, and in more detail in the course An Introduction to Modern Fortran.

MPI DOUBLE COMPLEX matches COMPLEX(KIND=KIND(0.0D0)), i.e. double precision com-
plex, which is not a standard type in Fortran 77. However, almost all compilers have
supported it (under various names) since Fortran 66.

MPI-2 also supports Fortran 90 parameterized types (i.e. with KIND value selected by
precision); we shall return to these later.

For use from Fortran, that is all I recommend. There are two more built-in datatypes,
that you may want to use for advanced work, but which are not covered in this course.
What you can do with them, especially the latter, is a bit restricted.

MPI PACKED for MPI derived datatypes
MPI BYTE (uninterpreted 8-bit bytes)

You should definitely avoid MPI INTEGER1, MPI INTEGER2, MPI INTEGER4, MPI REAL2,
MPI REAL4 and MPI REAL8. MPI <type>N translates to <type>*N. While that notation is
common, it is non-standard and outmoded. Many people believe that the N is the size in
bytes, but that is not true! It may be so, on some compilers, but it may mean several
other things. E.g. REAL*2 works only on Cray vector systems.

2.9 C and C++ Datatypes

All of these datatypes are available in both C and C++, with identical meanings, though
C++ users need to use names like MPI::CHAR rather than MPI CHAR. The C names may
well be accepted in C++, but it is not good practice to use them if you are using the C++
interface.

6

The following integer datatypes are recommended – all match the obvious C types
except where explained:

MPI CHAR

MPI UNSIGNED CHAR

MPI SIGNED CHAR

MPI SHORT

MPI UNSIGNED SHORT

MPI INT

MPI UNSIGNED

MPI LONG

MPI UNSIGNED LONG

Note that MPI CHAR is for char, meaning characters. Do not use use it for small integers
and arithmetic, as MPI does not support it for that purpose – use the appropriate one of
MPI UNSIGNED CHAR or MPI SIGNED CHAR instead.

Also note that it is MPI UNSIGNED and not MPI UNSIGNED INT. I do not know why, nor
why MPI did not define the latter as an alias.

The following floating-point datatypes are recommended, and match the obvious C
types (but remember that long double is deceptive):

MPI FLOAT

MPI DOUBLE

MPI LONG DOUBLE

There is one more recommended datatype for both C and C++, though what you can
do with it is a bit restricted. It is useful primarily for C++ PODs and C structures that
would be C++ PODs.

MPI BYTE (uninterpreted 8-bit bytes)

There are a few recommended datatypes that are available only with the C++ interface,
which all correspond to the obvious C++ type.

MPI::BOOL

MPI::COMPLEX

MPI::DOUBLE COMPLEX

MPI::LONG DOUBLE COMPLEX

MPI PACKED can be used for MPI derived datatypes in C and C++, just as in Fortran,
but this course does not cover them.

You should avoid MPI LONG LONG INT, MPI UNSIGNED LONG LONG and MPI WCHAR, as they
are not reliably portable; it is a good idea to avoid using long long and wchar t, anyway.
There is no support for C99’s new types (the extended integer types), which is good,
because they are an obstacle to long-term portability.

7

2.10 Gather

Gather

C0

B0

A0

Count
elements

Count
elements

Process 0

Process 2

Process 1

A0 B0 C0

Figure 2.4

Gather is precisely the converse of scatter; it collects data rather than distributing it.
All you have to do is to change the Scatter to Gather in the function names. Of course,
the array sizes need changing, because it is now the receive buffer that needs to be bigger.
Similarly, the send buffer is used on all processes, and the receive buffer is used only on
the root.

2.11 Allgather

Allgather

C0

B0

A0 A0

A0

A0 B0

B0

B0 C0

C0

C0

Count
elements

Count
elements

Process 0

Process 2

Process 1

Figure 2.5

You can gather data and then broadcast it to all processes; the interface is very similar,
with one difference. This is now a symmetric operation, so has no argument specifying
the root process. You just Change Gather to Allgather in the calls and remove the root
process argument. The receive buffer is now used on all processes, so you need to make
sure that it is large enough.

8

Fortran:

REAL(KIND=KIND(0.0D0)) :: sendbuf (100) , recvbuf (100 , 30)

INTEGER :: error

CALL MPI_Allgather (&

sendbuf , 100 , MPI_DOUBLE_PRECISION , &

recvbuf , 100 , MPI_DOUBLE_PRECISION , &

MPI_COMM_WORLD , error)

C:

double sendbuf [100] , recvbuf [30] [100] ;

int error ;

error = MPI_Allgather (

sendbuf , 100 , MPI_DOUBLE ,

recvbuf , 100 , MPI_DOUBLE ,

MPI_COMM_WORLD)

C++:

double sendbuf [100] , recvbuf [30] [100] ;

MPI::COMM_WORLD . Allgather (

sendbuf , 100 , MPI::DOUBLE ,

recvbuf , 100 , MPI::DOUBLE)

2.12 Alltoall

Alltoall

C0 C1 C2

B1 B2

A1 A2

B0

A0 A0

A1

A2 B2

B1

B0 C0

C1

C2

Process 0

Process 2

Count
elements

Count
elements

Figure 2.6

You can do a composite gather/scatter operation, which uses essentially the same in-
terface as MPI Allgather. You just change Allgather to Alltoall in the calls but, now,
both buffers need to be bigger.

The easiest way to think of this is as a sort of parallel transpose, changing from blocks
of rows being distributed across processors to blocks of columns being distributed; in
fact, it is used when implementing matrix transpose. It is very powerful and is a key for

9

performance in many programs. You are advised to learn how to use it (even if you put
it on one side while you get more experienced with MPI).

2.13 Global Reductions

Global reductions are one of the basic parallelisation primitives. Logically, these start
with a normal gather operation and then sum the values across all processors. By imple-
menting that as a single call, it can often can be implemented much more efficiently. Note
that summation is not the only reduction – anything that makes mathematical sense can
be used, all of the standard ones are provided, and you can define your own (though that
is advanced use).

Aside: mathematically, any operation that is associative can be used in a MPI-style
reduction; the values do not have to be numbers, and can be composite values (classes,
structures or derived makes that optionaltypes). I prefer a stricter form that requires
commutativity as well, but MPI makes that optional.

Reduce

C0

B0

A0

Count
elements

Process 0

Process 2

Process 1

C0+B0+A0

elements
Count

Figure 2.7

Note that MPI Reduce specifies the datatype and count once, and not separately for the
source and result, unlike for the copying operations. It makes no mathematical sense to
do have different source and result types, so MPI does not support that.

Also, note that it does not reduce over the vector; the count is the size of the result,
too. It sums the values for each element separately (i.e. it does N simultaneous reductions,
where N is the length of the vector). If you want to, you have to reduce over the vector
yourself; doing it beforehand is more efficient, because you transfer less data.

Fortran:

REAL(KIND=KIND(0.0D0)) :: sendbuf (100) , recvbuf (100)

INTEGER , PARAMETER :: root = 3

INTEGER :: error

CALL MPI_Reduce (

sendbuf , recvbuf , 100 , MPI_DOUBLE_PRECISION , &

MPI_SUM , root , MPI_COMM_WORLD , error)

10

C:

double sendbuf [100] , recvbuf [100] ;

int root = 3 , error ;

error = MPI_Reduce (

sendbuf , recvbuf , 100 , MPI_DOUBLE ,

MPI_SUM , root , MPI_COMM_WORLD)

C++:

double sendbuf [100] , recvbuf [100] ;

int root = 3 ;

MPI::COMM_WORLD . Reduce (

sendbuf , recvbuf , 100 , MPI::DOUBLE ,

MPI::SUM , root)

2.14 Allreduce

C0+B0+A0

C0+B0+A0

C0+B0+A0

Allreduce

C0

B0

A0

Count
elements

Process 0

Process 2

Process 1

elements
Count

Figure 2.8

You can reduce data and then broadcast it. Just as with MPI Allgather and MPI Gather,
the interface is essentially identical to MPI Reduce, but this is now a symmetric operation
and so has no argument specifying the root process. All you do is change Reduce to
Allreduce and remove the root process argument. Again, the receive buffer is now used
on all processes.

2.15 Reduction Operations

There are operations for the sum and product, which can be used for all precisions and
all classes of number: integer, real and complex.

Fortran: C: C++:
MPI SUM MPI SUM MPI::SUM Summation
MPI PROD MPI PROD MPI::PROD Product

11

The minimum and maximum are similar, but are not applicable to complex numbers.

Fortran: C: C++:
MPI MIN MPI MIN MPI::MIN Minimum
MPI MAX MPI MAX MPI::MAX Maximum

There are no reductions on character data (i.e. MPI CHARACTER and MPI CHAR).

Remember that the Boolean type is int in C/C++ and LOGICAL in Fortran, and the
supported values are only True and False. It has the following operations.

Fortran: C: C++:
MPI LAND MPI LAND MPI::LAND Boolean AND

MPI LOR MPI LOR MPI::LOR Boolean OR

MPI LXOR MPI LXOR MPI::LXOR Boolean Exclusive OR

You can also perform bitwise operations on integers (i.e. using them as bit masks),
which has the same operations as for Boolean values, but with different names.

Fortran: C: C++:
MPI BAND MPI BAND MPI::BAND Integer bitwise AND

MPI BOR MPI BOR MPI::BOR Integer bitwise OR

MPI BXOR MPI BXOR MPI::BXOR Integer bitwise Exclusive OR

2.16 Conclusion

There is a little more to say on collectives, but that is quite enough for now. The
above has covered all of the essentials, and the remaining aspects to cover are only a few
more advanced collectives, searching as a reduction, more flexible buffer layout, and using
collectives efficiently. In fact, you have now covered enough to start writing real scientific
applications, though there is more that you need to know in order to write efficient and
reliable ones.

There are a lot of exercises on the above, which will take you through almost all aspects
that have been shown, so that you get a little practice with every important feature. Each
one should need very little editing or typing, and you can usually start from a previous
one as a basis. But please check that you understand the point, that you get the same
answers as are provided, and that you understand what it is doing and why. The exercises
are pointless if you do them mechanically, because coding MPI is not where the problems
arise; understanding how it works and how it should be used is.

You are recommended to make sure that you understand what has been covered so far
before proceeding to new topics. This lecture covers topics that are critical to understand-
ing MPI.

12

