Message-Passing and MPI Programming
Error Handling

N.M. Maclaren
Computing Service

nmml@cam.ac.uk
ext. 34761

July 2010

4.1 Introduction
Most standards get error handling hopelessly wrong; MPI gets it at least half right, and
the following is a summary of its approach:

e All invalid uses are defined to be erroneous, and implementations are encouraged to
detect them.

e Most undefined results (as distinct from behaviour) are detectable; e.g. they are set
to a special, invalid value.

e Most nonsense is defined to be erroneous; e.g. you cannot legally create a deadlock.

e There is no concept of conforming but undefined; i.e. there are no valid programs
with no known meaning.

C is infested with the concept of conforming but undefined, C++ uses it and even
Fortran has it. MPI does have it in a very few places, but only as bugs in the standard.

e The default error handling is to stop; i.e. not handling errors is fairly fail-safe in
MPI.

However, as you might expect, not everything is sweetness and light:

e Implementations are not required to detect errors; some errors are usually detected,
but others rarely are.

e MPI has not specified a debugging mode; error detection is usually at the whim of
your implementor.

Errors that can be detected locally usually are detected (e.g. providing an out-of-range
process number). Inconsistencies across collectives may be detected — i.e. some implemen-
tations will, and others will simply fail horribly.

e Some errors are almost indetectable, and they include most language/MPT interface
ones (e.g. incorrect datatype for the buffer type).

e Non-MPI ones are obviously not handled, and they may cause MPI to fail horribly.
MPI cannot fix up other standards’ defects!

There are programmable error handling facilities, but they do not allow actual recovery.
This is essentially unavoidable, because the consequences of an error having occurred are
almost unpredictable, and are therefore impossible to reverse. You can use them only

1



for cleaning-up, which includes writing your own diagnostics, and even that is not fully
reliable.

However, you should always look at the implementation documents, because MPI en-
courages documented enhancements and this is an area where they are quite likely.

4.2 Simple Error Handling

There are several predefined error handlers. MPI_ERRORS_ARE_FATAL is the default and
does what it says; MPI produces some diagnostics and stops. MPI_ERRORS_RETURN re-
turns an error code, which is the last argument for Fortran, and the function result for
C; it is not recommended for use in C++. In C++, the recommended alternative is
MPI: :ERRORS_THROW_EXCEPTIONS; do not even think of using it in C or Fortran (including
in most mixed-language programs) — heaven alone knows what it would do!

You attach the error handling setting to a communicator, which is best set early (i.e.
before any serious use of MPI), once only, and consistently across processes. Those re-
strictions are not required but are simple, and reduce the chances of you forgetting and
making an error. The function is one that has changed name (from MPI_Errhandler_set
to MPI_Comm set_errhandler). Having done that, if an MPI function returns an error
code (i.e. anything that is not MPI_SUCCESS), call your code to diagnose, clean-up and
stop.

Error codes are implementation dependent, but there is a function to map them into an
error string, and you should use this for reasonable diagnostics. You do that by calling
MPI Error_string, which maps the error code to a textual message of maximum length
MPI_MAX_ERROR_STRING. This is a block of text and not a C string (though it is a C string
in C++); its length is returned via a separate argument in C (as in Fortran).

Warning: MPI_ERRORS_RETURN is dangerous. You must test for errors in all calls, be-
cause one undetected error will cause chaos later.

But the facility can be very useful to handle errors more ‘gracefully’. You can write
your own, helpful diagnostics in terms that may help you locate the problem. You can
flush all your output to files to avoid lost data, and ensure that previous output and
diagnostics are not lost. You can tidy up external state and not just crash, though doing
that is advanced use.

It can also be used temporarily for debugging, to print out some of your program’s data.
When using it like that, it is best to set the mode just around the failing call, so as not to
risk missing an error return somewhere else.

4.3 Fortran Error Handling

You set it as in the following example:
INTEGER :: error

CALL MPI_Comm_set_errhandler ( MPI_COMM_WORLD , &
MPI_ERRORS_RETURN , error )

2



Old versions of gfortran do not support this, because there was a bug in its generic
resolution handling, so you may get an error message saying that there is no specific
subroutine for the generic 'mpi_comm_set_errhandler’. If you do, there is a truly mind-
boggling bypass: just set a temporary integer variable to the value MPI_COMM_WORLD and
use that variable as an argument in the call to MPI_Comm_set_errhandler.

And this is how you use it:

INTEGER :: error , length , temp
CHARACTER ( LEN = MPI_MAX_ERROR_STRING ) :: message

< call some MPI function >

IF ( error !'= MPI_SUCCESS ) THEN
CALL MPI_Error_string ( error , message , length , temp )
PRINT * , message(l:length)
CALL MPI_Abort ( MPI_COMM_WORLD , 1 , temp )

END IF

4.4 C Error Handling

You set it as in the following example:

int error ;

error = MPI_Comm_set_errhandler ( MPI_COMM_WORLD ,
MPI_ERRORS_RETURN ) ;

And this is how you use it:

int error ;
char message[MPI_MAX_ERROR_STRING] ;

< call some MPI function >

if ( error != MPI_SUCCESS ) {
MPI_Error_string ( error , message , & length ) ;
printf ("%.*s\n") length , message ;
MPI_Abort ( MPI_COMM_WORLD , 1 ) ;

}
Note the way that the length is returned.

4.5 C++4 Error Handling

You set it as in the following example:

MPI::COMM_WORLD . Set_errhandler (
MPI: :ERRORS_THROW_EXCEPTIONS )

Note that OpenMPI does not support this by default, because there are problems with
some C++ compilers (though not gec) and it needs to be configured with an optional
setting. That is when building it, and not when not using it, so you usually need to

b

3



contact your administrator if it does not work.. If you are your own administrator, you
need to set ——enable-cxx-exceptions when invoking configure.



And this is how you use it:
try {
< use some MPI functions >
} catch ( MPI::Exception failure ) {
cerr << failure . Get_error_string ( ) << endl ;
MPI::COMM_WORLD . Abort ( 1 ) ;
}

Note that this does return a C string, but not a basicstring instance. If you need
the error code, you will need to use <exception>.Get_error_code(), because Exception
is an opaque class.

There is one point that is not specific to MPI, but is worth mentioning. If you really
want to shoot your own foot off, write code like the following:

try {
< use some MPI functions >
} catch ( ... ) {
cerr << "Well, that didn’t work - " <<
"let’s try something else" << endl ;
fallback_code () ; // Or just drop through
b

Now try to guess what will happen if the exception was something unexpected!

4.6 Advanced Error Handling

Few people will want to do this, but it is worth knowing what can be done.

You can map error codes into error classes with the function MPI_Error_class. Error
classes are a documented set of 60 distinct values (of which only about 25 are relevant to
this course) with names MPI_ERR_.... You can use these to distinguish various types of
error, and you may want to do this, for advanced handling; I cannot offhand imagine why,
but the facility is there.

You can define your own error handlers — these are simply functions to call when there
is an error. Doing this is safer than using MPI_ERRORS_RETURN, provided that you code
the function carefully. You use the same logic as for MPT_ERRORS_RETURN in the examples
given above. This course does not cover it, for simplicity, but experienced programmers
will have no trouble.

You need to create an error handler (i.e. register the function) before using it, and the
function is another that has changed name (from MPI_Errhandler _create to
MPI _Comm create__errhandler). When it is no longer needed, it should be cleaned up by
calling MPI_Errhandler free. There is also a C type name MPI_Handle function (class
MPI::Handle function in C++) and a MPI constant MPI_ERRHANDLER _NULL
(MPI::ERRHANDLER NULL in C++).

You can go beyond that, but it is not recommended; even experts will very rarely need
or want to.



Error handling is purely local, and every process can have a different handler — actually,
every communicator in every process can! And MPI-2 extends it to some other classes,
though it is not always clear which handler will be called if an operation is associated with
two objects each of which has its own handler. You can also change it whenever you want;
for saving and restoring the old one, you need another function that has changed name
from MPI_Errhandler_get to MPI_Comm Get_errhandler.

And that is more-or-less all there is to MPI error handling. The only exercise is trying
out a simple case of handling errors yourself.



