
Message-Passing and MPI Programming

More on Collectives

N.M. Maclaren

Computing Service

nmm1@cam.ac.uk

ext. 34761

July 2010

5.1 Introduction

There are two important facilities we have not covered yet; they are less commonly used,
but are fairly often needed. In particular, one of them can help a lot with I/O.

There is also some information on how to use collectives efficiently, including one po-
tentially useful MPI-2 feature.

5.2 Searching

You can use global reductions for searching. The bad news is that it needs MPI’s
derived datatypes, but the good news is that there are some useful built-in ones. All
we need to do is a reduction with a composite datatype (<value>,<index>). As with
summation, we build up the reduction from a binary operator, and there are two built-in
operators, MPI MINLOC and MPI MAXLOC. We shall use finding the minimum as an example.

We start with two values, (value 1,index 1) and (value 2,index 2), and produce a
result(value x,index x). The algorithm for the binary operator is simply:

If value 1 ≤ value 2 then
value x ⇐ value 1

index x ⇐ index 1

Else
value x ⇐ value 2

index x ⇐ index 2

Equality is a bit cleverer, but it rarely matters; if it does matter to your program, see
the MPI standard for the detailed specification. Operator MPI MINLOC does precisely what
we have described; operator MPI MAXLOC searches for the maximum, and is the same with
≤ replaced by ≥.

Note that you create the (value,index) pairs first, and the the index can be anything,
so set it to whatever is useful for your program. Generally, an index should usually be
globally unique (i.e. not just the index into a local array). For example, you can combine
the processor number and a local index. So how do we set up the data?

1

5.3 Fortran Searching

Fortran 77 does not have structures (though Fortran 90 does), so the datatypes are
arrays of length two. The ones to use are MPI 2INTEGER and MPI 2DOUBLE PRECISION.
Note that DOUBLE PRECISION can hold any INTEGER value, on any current MPI system; in
fact, it is almost required by the Fortran standard, and so is a safe assumption in almost
all programs. MPI 2REAL is not recommended, except on Cray vector systems.

Using these for searching is very simple, as in the following example:

INTEGER :: sendbuf (2 , 100) , &

recvbuf (2 , 100) , myrank , error , i

INTEGER, PARAMETER :: root = 3

CALL MPI_Comm_rank (MPI_COMM_WORLD , myrank , error)

DO i = 1 , 100

sendbuf (1 , i) = <value>

sendbuf (2 , i) = 1000 * myrank + i

END DO

CALL MPI_Reduce (sendbuf , recvbuf , 100, MPI_2INTEGER , &

MPI_MINLOC , root , MPI_COMM_WORLD , error)

5.4 C and C++ Searching

These do have structures, so the datatypes are “struct {<value type>; int;}”.
Unfortunately, C/C++ structure layout is a can of worms, so certain compiler options
may cause trouble. What is described here will usually work; if it does not, you will need
to ask for help from an expert on both C and your compiler. Most probably, you will
never encounter the problems if you follow these rules.

The recommended datatypes are MPI 2INT, MPI LONG INT and MPI DOUBLE INT, corre-
sponding to <value type>s of int, long and double. You can also use
MPI LONG DOUBLE INT for “long double”, if you use that. Do not use MPI FLOAT INT or
SHORT INT for C/C++ reasons you do not want to know!

C:
struct { double value ; int index ; }

sendbuf [100] , recvbuf [100] ;

int root = 3, myrank , error , i;

for (i = 1 ; i < 100 ; ++i) {

sendbuf [i] . value = <value> ;

sendbuf [i] . index = 1000 * myrank + i ;

}

error = MPI_Reduce (sendbuf , recvbuf ,

100, MPI_DOUBLE_INT , MPI_MINLOC ,

root , MPI_COMM_WORLD)

2

C++:
struct { double value ; int index ; }

sendbuf [100] , recvbuf [100] ;

int root = 3, myrank , error , i;

for (i = 1 ; i < 100 ; ++i) {

sendbuf [i] . value = <value> ;

sendbuf [i] . index = 1000 * myrank + i ;

}

MPI::COMM_WORLD . Reduce (sendbuf , recvbuf ,

100, MPI::DOUBLE_INT , MPI::MINLOC , root)

5.5 Data Distribution

It can be inconvenient to make all counts the same, such as with a 100×100 matrix on
16 CPUs. One approach is to pad the short vectors, and that is usually more efficient
than it looks. There are also extended MPI collectives for handling non-identical counts
(MPI Gatherv, MPI Scatterv, MPI Allgatherv and MPI Alltoallv) but, obviously, their
interface is more complicated. You should use whichever approach is easiest for you.

The count argument is now a vector of counts instead of a single count, with one count
for each process, but only where there are multiple buffers. That is the receive counts for
MPI Gatherv and MPI Allgatherv, the send counts for MPI Scatterv and both counts for
MPI Alltoallv. It is used only on the root process for MPI Gatherv and MPI Scatterv.
For MPI Allgatherv, the count vectors must match on all processes. MPI Alltoallv is
described in a moment. The most reliable approach is always to make them match, for
sanity; if you then change the root process, nothing will break.

The scalar counts may all be different, of course, because they must match for each
pairwise send and receive. For example:

• For MPI Gatherv, the send count on process N matches the Nth receive count element
on the root. MPI Scatterv just the converse of MPI Gatherv.

Process 0

Process 1

Process 2

A0 B0 C0A0

B0

C0

Gatherv

Figure 5.1

3

• For MPI Allgatherv, the send count on process N matches Nth receive count element
on all processes.

Process 0

Process 1

Process 2

A0

B0

C0

Allgatherv

A0 B0 C0

A0 B0 C0

A0 B0 C0

Figure 5.2

The most complicated one is MPI Alltoallv, though it is not hard to use, if you keep a
clear head. You should use a pencil and paper if you get confused, which is a good general
rule for programming. Consider processes M and N:

• For MPI Alltoallv, the Nth send count on process M matches the Mth receive count
on process N.

As was said earlier, think of it as a matrix transpose with the data vectors as its elements.

Process 0

Process 2

Alltoallv

A0 A0

A1

A2

B0 B1

C0

A1 A2 B0 C0

C1

C2B2

B1 B2

C2C1

Figure 5.3

Where they have a vector of counts, they also have a vector of offsets. This is the offset
of the sub-vector of data corresponding to each process, and not the offset of the basic
elements. This allows for discontiguous buffers, but each pairwise transfer must still be
contiguous. Normally, the first offset will be zero, But here is a picture of when it is not:

4

Multiple Transfer Buffers

Process 0 Process 1 Process 2 Process 3

Argument Offsets

Counts = (

Offsets = (

)

)

4

2

2

8

3

14

7

18

Figure 5.4

Unlike the counts, the offsets are purely local, and they need not match on all processes;
even in the case of MPI Alltoallv, the offset vectors need not match in any way. Each
one is used just as a mapping for the local layout of its associated buffer.

Keep your use of these collectives simple; MPI will not get confused, but you and I
will, and remember that any overlap is undefined behaviour. The following picture of a
fairly general MPI Alltoallv is just to see what can be done, and not to recommend such
practice:

Process 0

Process 2

Alltoallv

A0 A1 A2

A1

A2

B0 B1 B1B2

B2

C1

C1 C2 C2

A0 B0 C0

C0

Figure 5.5

The examples are simple ones of using MPI Gatherv; you should start with either this
or MPI Scatterv when testing.

5

Fortran:

INTEGER , DIMENSION (0 : *) :: counts

REAL(KIND=KIND(0.0D0)) :: &

sendbuf (100) , recvbuf (100 , 30)

INTEGER :: myrank , error, i

INTEGER , PARAMETER :: root = 3 , &

offsets (*) = (/ (100 * i , i = 0 , 30 - 1) /)

CALL MPI_Gatherv (&

sendbuf , counts (myrank) , MPI_DOUBLE_PRECISION , &

recvbuf , counts , offsets , MPI_DOUBLE_PRECISION , &

root , MPI_COMM_WORLD , error)

C:

int counts [] ;

double sendbuf[100] , recvbuf[30][100] ;

int root = 3 , offsets[30] , error, i ;

for (i = 0 ; i < 30 ; ++ i)

offsets [i] = 100 * i ;

error = MPI_Gatherv (

sendbuf , counts [myrank] , MPI_DOUBLE ,

recvbuf , counts , offsets , MPI_DOUBLE ,

root , MPI_COMM_WORLD) ;

C++:

int counts [] ;

double sendbuf[100], recvbuf[30][100];

int root = 3 , offsets[30] , error, i ;

for (i = 0 ; i < 30 ; ++ i)

offsets [i] = 100 * i ;

MPI::COMM_WORLD . Gatherv (

sendbuf , counts [myrank] , MPI::DOUBLE ,

recvbuf , counts , offsets , MPI::DOUBLE ,

root) ;

Using these functions is fairly easy when the counts are predictable, but a lot of the
time, they will not be. The easiest way to solve that problem is:

• For scatter, calculate the counts on the root process, use MPI Scatter to distribute the
count values, and then do the full MPI Scatterv on the data.

• For gather, calculate a count on each process, use MPI Gather to collect the count values,
and then do the full MPI Gatherv on the data.

6

5.6 Efficiency

Generally, you should use collectives whereever possible, because they provide most
opportunity for the implementation to tune the calls. Similarly, you should use the com-
posite ones (MPI Allgather, MPI Allreduce and MPI Alltoall) where that makes sense,
just as you should use the level 3 BLAS (DGEMM etc.) in preference to the level 2 ones
(DGEMV etc.)

You should also do as much as possible in one collective – fewer, larger transfers are
always better than a lot of small ones. Consider packing scalars into arrays for copying,
even converting integers to reals (double precision, please!) to do so. It is not worth
packing multiple large arrays into one, and a good rule of thumb is that the boundary
between ‘small’ and ‘large’ is a single, pairwise transfer buffer of about 4 KB. But remember
that it is only a rule of thumb, and do not waste time packing data unless you actually
need to. If the code is not critical to performance, do not worry about it.

5.7 Using Barriers

The actual execution of collectives is not synchronised at all – except for MPI Barrier,
that is. Up to three successive collectives on the same communicator can overlap – in the-
ory, this allows for improved efficiency. Note that this is taking the global viewpoint; from
the viewpoint of a single process, collectives are executed sequentially. Programmers do
not notice this in practice, except that it makes it hard to measure times. To synchronise,
call MPI Barrier; the first process leaves only after the last process enters, so all processes
will run in lock-step.

Implementations usually tune for gang scheduling, and collectives often run faster when
synchronised. Consider adding a barrier before every collective – it is an absolutely trivial
change, after all. The best approach is to run 3–10 times with barriers, and 3–10 without;
either one will be consistently faster than the other, or it will not matter which you choose.
If you have major, non-systematic differences, then you have a nasty problem andmay need
help from either or both of an MPI or operating tuning expert.

You can overlap collectives and point-to-point; MPI requires implementations to make
that work, but it is strongly recommended to avoid doing that when performance is impor-
tant. A correct program will definitely not hang or crash, but it may run horribly slowly.
Remember that three collectives can overlap – point-to-point can interleave with those,
and the scheduling can get very confused. It is much better to alternate the modes of use,
and makes the program a lot easier to validate and debug, as well. For example:

Start here ...

[Consider calling MPI Barrier here]

Any number of collective calls

[Consider calling MPI Barrier here]

Any number of point-to-point calls, but remember to wait for all of those calls to
finish.

And repeat from the beginning ...

7

5.8 In-Place Collectives

In MPI-1, using the same array twice will usually work, but it is a breach of the Fortran
standard, and is not clearly permitted in C++ or even C (the latter two standards can be
read either way). If you are seriously masochistic, you can ask for the reasons offline, but
I recommend not bothering. It is much better to avoid doing this if at all possible. It will
rarely cause trouble or get diagnosed – but, if it does, the bug will be almost unfindable.
There have been systems on which it would fail, for good reasons – the Hitachi SR2201
was one, for example.

MPI-2 defines a MPI IN PLACE pseudo-buffer, which specifies the result overwrites the
input (i.e. the real buffer is both source and target). You should read the MPI standard for
its full specification; it is probably most useful for MPI allgather[v], MPI alltoall[v]

and MPI allreduce[v]. In those cases, you use it for the send buffer on all processes,
and the send counts, datatype and offsets are ignored. Here is a C example; the Fortran
and C++ are very similar.

double buffer [30] [100] ;

int error ;

error = MPI_Alltoall (

MPI_IN_PLACE , 100 , MPI_DOUBLE ,

/* Or even ’MPI_IN_PLACE , 0 , MPI_INT ,’

buffer , 100 , MPI_DOUBLE ,

MPI_COMM_WORLD)

5.9 Epilogue

That is essentially all you need to know about collectives! We have covered everything
that seems to be used; MPI collectives look very complicated, but are really quite simple.
There are a few more features, which are rarely used, and were mainly introduced by
MPI-2 for advanced uses. They are mentioned in the extra lectures, but only in passing.
There are two exercises on searching and scatterv.

8

