
Message-Passing and MPI Programming

More on Point-to-Point

N.M. Maclaren

Computing Service

nmm1@cam.ac.uk

ext. 34761

July 2010

6.1 Introduction

These facilities are the most complicated so far, but you may well want to use them.
There is a Latin aphorism “festina lente”, which translates as “make haste slowly”, and
means do not trip over your own feet trying to rush ahead. Make sure that you understand
the earlier lectures before starting to use this one.

We shall start with a couple of potentially useful minor features, which are not difficult.
We shall then cover non-blocking transfers, which are easy to use, but not always easy to
understand. However, they are correspondingly important and useful.

6.2 Sending to Oneself

A process can send a message to itself. That is not generally a good idea, though some of
the practical examples and specimen answers do, mainly to demonstrate particular points.
If you use blocking calls carelessly, and a process sends to itself, it will deadlock; the only
safe and easy case is send-receive. For all other point-to-point transfers, you must use
buffering and call the send before the receive – that is guaranteed to work. Otherwise, a
process should send to itself only with non-blocking calls (covered in a moment), but care
is still needed, even with those.

Consider when writing your own collectives. You can treat the local process separately,
or you can use the whole communicator symmetrically. If you do the latter, processes will
send to themselves. The obvious code will work in MPI, but only subject to the above
constraints. You should do whatever makes your code cleanest.

6.3 Null Processes

You can specify a null source or destination. Sends and receives return immediately (or
some approximation to that), successfully, and receives do not update the transfer buffer.
This may enable you to simplify code at boundaries, and you should use the facility only
if it clarifies your code.

Warning: be very careful if you use this with non-blocking transfers, because MPI is
not entirely clear what happens in that case. It probably creates a normal request that is
flagged as having completed, but does not say so explicitly.

1

To do this, use MPI PROC NULL as a process number (MPI::PROC NULL in C++). The
status will contain MPI PROC NULL (or possibly MPI ANY SOURCE) as the source and
MPI ANY TAG as the tag; MPI Get count on it returns zero. The ambiguity in the source
value is not important, because reasonable programs will not look at it, anyway.

6.4 Non-Blocking Transfers

These are also called asynchronous communication, and books and Web pages may use
either term, or other variants. Old mainframe programmers know these are the best way
to implement I/O, and books often describe these as more efficient. Unfortunately, all
modern systems are synchronous at the hardware and network transfer levels, so most of
the potential efficiency is not realised. This lecture will describe only how to use them, and
not the implementation issues and consequent effects on tuning. A lot of it is describing
what not to do, because experience with asynchronism is rare nowadays.

MPI non-blocking transfers are a very good example of classic asynchronous communi-
cation, so learning them is more general than for just using MPI. The basic logic is:

• The main call starts an asynchronous transfer, and returns a handle, called a request.

• Later, you wait on the request until finished; only then has the transfer completed.

In MPI, the wait frees the request and sets the status, and you rarely need to free the
request yourself. You can also test whether a request is ready.

• The actual buffer update is anywhere in between those two calls (i.e. asynchronous
to the process) and, indeed, bytes may change in a random order or more than once.

The buffer must not even be inspected during the window, except that pure send buffers
are read-only objects and may be read. The buffer obviously must not move, so no real-
location or other manipulation is permitted. You need to take care in Fortran (covered
later) and garbage collected languages, and C++ copy or move constructors (which in-
cludes when using the STL), and may need to play fancy games to stop that. Once the
transfer has completed, you can use the buffer as normal.

The window of restriction is between initiating the send or receive and completing the
wait for the request to complete. To summarise:

• For a non-blocking send, you must not update, reallocate or free the buffer in the
window; reading the buffer does not cause problems.

• For a non-blocking receive, you must not access, reallocate or free the buffer in the
window.

Chaos awaits if you break those rules, though it will often not show up in simple tests,
so, regrettably, there are no practical exercises to demonstrate it. Non-blocking transfers
are the only cause of race conditions causing wrong answers (rather than simple deadlock)
in the subset of MPI that this course covers.

Fortran warning: you need to watch out for array copying, especially when using mod-
ern Fortran (e.g. assumed-shape arrays). That counts as a form of reallocation. For
more details on this, see the lecture Miscellaneous Guidelines and the course Introduction

to Modern Fortran, especially Advanced Use Of Procedures.

2

6.5 Using Non-Blocking Transfers

Generally, you should start them as soon as possible, and wait for completion only when
you need the buffer. A more advanced use is waiting on several requests, and and dealing
with them in the order they are ready. The most advanced use covered here is checking
for the first to complete, and carrying on with something else if none have completed yet.

You can use non-blocking transfers together with the blocking forms – e.g. a non-
blocking send can match a blocking receive – and all reasonable combinations work as
expected. You should use them only if you can start them ahead of time – if you cannot
start them well in advance, it is likely to be more efficient to use the simpler blocking
forms.

There are also advanced uses for avoiding deadlock, though you should generally leave
that sort of thing to experts. However, this course does describe the techniques, as there
are circumstances when you may need to use them, such as for I/O (see later).

All of the send variants have non-blocking forms, including MPI Issend and MPI Ibsend,
which have potential, but obscure, uses. They are easy to use, but knowing when and why
is hard, and this course will not mention them further. It will cover only MPI Isend and
MPI Irecv; few programmers will want any of the other forms.

6.6 Completion

Blocking waits have names like MPI Wait and non-blocking have names like MPI Test.
These is only one difference between the two forms, which matters only if the transfer is
not ready: waits hang until the transfer has finished, but tests return successfully and
immediately. Obviously, tests have an extra Boolean flag variable indicating whether the
transfer has finished (except in C++, as described later).

An active request is one that has started but has not yet been completed. Requests are
completed by two-step procedure: they become ready (i.e. finish transferring), and then
a wait or test call returns their status. A request is released automatically as part of the
completion process, and you almost never have to take any special action.

Wait and test also work on send requests, but the status is largely meaningless (i.e.
unset) – the few meanings it has are covered in the extra lectures. It does not include
the arguments (e.g. destination and tag); that decision was taken on efficiency grounds.

Wait and test (when the transfer has finished, that is) update the request; upon release,
it is set to MPI REQUEST NULL. You rarely need to know or check that, but it is useful for
some advanced uses, because you can check if a request has been completed. To do this
reliably, you should also initialise requests to MPI REQUEST NULL; that is good practice.

6.7 Usage

Non-blocking send and receive are very similar to the blocking forms, and almost all
arguments are used identically. It is just splitting the calls in two, using the request as an
opaque handle to transfer data between the two calls; you do nothing with it. MPI Isend

and MPI Irecv return a request, and the latter does not return a status. MPI Wait and
MPI Test take a request and return a status.

3

Fortran Send:

REAL(KIND=KIND(0.0D0)) :: buffer (100)

INTEGER :: error , request , status (MPI_STATUS_SIZE)

INTEGER , PARAMETER :: from = 2 , to = 3 , tag = 123

CALL MPI_Isend (buffer , 100 , MPI_DOUBLE_PRECISION , &

to , tag , MPI_COMM_WORLD , request , error)

CALL MPI_Wait (request , status , error)

Fortran Receive:

REAL(KIND=KIND(0.0D0)) :: buffer (100)

INTEGER :: error , request , status (MPI_STATUS_SIZE)

INTEGER , PARAMETER :: from = 2 , to = 3 , tag = 123

CALL MPI_Irecv (buffer , 100 , MPI_DOUBLE_PRECISION , &

from , tag , MPI_COMM_WORLD , request , error)

CALL MPI_Wait (request , status , error)

C Send:

double buffer [100] ;

MPI_Request request ;

MPI_Status status ;

int from = 2 , to = 3 , tag = 123 , error ;

error = MPI_Isend (buffer , 100 , MPI_DOUBLE ,

to , tag , MPI_COMM_WORLD , & request) ;

error = MPI_Wait (& request , & status) ;

C Receive:

double buffer [100] ;

MPI_Request request ;

MPI_Status status ;

int from = 2 , to = 3 , tag = 123 , error ;

error = MPI_Irecv (buffer , 100 , MPI_DOUBLE ,

from , tag , MPI_COMM_WORLD , & request) ;

error = MPI_Wait (& request , & status) ;

C++ has a slightly different syntax, and the request is the result of MPI::Isend and
MPI Irecv. Wait is a member function of the request class. You can omit the status
argument for Wait, but I recommend doing that only for requests created by MPI::Isend,
and you can provide it even for them.

4

C++ Send:

double buffer [100] ;

MPI::Request request ;

MPI::Status status ;

int from = 2 , to = 3 , tag = 123 ;

request = MPI::COMM_WORLD . Isend (buffer , 100 ,

MPI::DOUBLE , to , tag) ;

request . Wait () ;

C++ Receive:

double buffer [100] ;

MPI::Request request ;

MPI::Status status ;

int from = 2 , to = 3 , tag = 123 ;

request = MPI::COMM_WORLD . Irecv (buffer , 100 ,

MPI::DOUBLE , from , tag) ;

request . Wait (status) ;

6.8 Wait versus Test

Remember MPI Iprobe versus MPI Probe? The difference is also the difference between
MPI Test and MPI Wait. The former has an extra Boolean argument saying if the request
is ready, which is returned as the function result in C++.

• If ready, it sets the flag to True, and sets the status (i.e. it behaves just like MPI Wait).

• If not, the request is not completed, it sets the flag to False, and the status becomes
undefined.

Here are just the actual differences that would be needed for the above examples – they
include the declaration of the flag, and the test call that replaces the wait one.

Fortran:
LOGICAL :: flag

CALL MPI_Test (request , flag , status , error)

C:
int flag ;

error = MPI_Test (& request , & flag , & status) ;

C++:
int flag ;

flag = request . Test (status) ;

5

6.9 Multiple Completion

You can test or wait for an array of requests until one, all or some complete. The
last form is omitted here, because it is more complicated and generally not advised. The
functions are very difficult to teach because there are so many special cases, but they are
not hard to use, if you KISS. For now, we make the following assumptions:

• The array has length one or more.

• MPI ERRORS ARE FATAL is set.

• You use only the facilities that the course has covered so far.

Multiple completions are simply shorthand for coding a loop, though with some impor-
tant optimisations. They behave exactly like the individual request forms, and the only
complexity is in explaining the details.

In Fortran, unlike C and C++, a status is already an array. An array of statuses
in Fortran is a two-dimensional array, with the second dimension indexing which status
(remember that Fortran first dimensions vary fastest). For example:

INTEGER , DIMENSION (MPI_STATUS_SIZE , *)

6.10 Waiting and Testing for All

These are easy to use, given our assumptions, and are almost a shorthand for a loop that
waits or tests each request in turn. They take arrays of requests and statuses and check
for or complete all the requests. The functions are called MPI Testall and MPI Waitall.

When MPI Waitall and when MPI Testall’s flag is True, all of the statuses are set,
appropriately. The statuses all become undefined when MPI Testall’s flag is False; they
may well end up being full of random rubbish.

Fortran:

INTEGER :: i , error , requests (100) , &

statuses (MPI_STATUS_SIZE , 100)

LOGICAL :: flag

DO i = 1 , 100

CALL MPI_Irecv (. . . , &

MPI_COMM_WORLD , requests (i) , error)

END DO

CALL MPI_Waitall (100 , requests , statuses , error)

CALL MPI_Testall (100 , requests , flag , statuses , error)

6

C:

int i , error , flag ;

MPI_Request requests [100] ;

MPI_Status statuses [100] ;

for (i = 1 ; i < 100 ; ++ i)

error = MPI_Irecv (. . . ,

MPI_COMM_WORLD , requests (i)) ;

error = MPI_Waitall (100 , requests , statuses) ;

error = MPI_Testall (100 , requests , & flag , statuses) ;

C++:

int i , flag ;

MPI::Request requests [100] ;

MPI::Status statuses [100] ;

for (i = 1 ; i < 100 ; ++ i)

MPI::COMM_WORLD . Irecv (. . . , requests (i)) ;

requests[0] . Waitall (100 , requests , statuses) ;

flag = requests[0] . Testall (100 , requests , statuses) ;

Note that even these are class methods in C++, and so you have to attach them to a
request – any request will do, even one that is not part of the array and not active, but
the usage above is about the cleanest way of doing it. That usage is an example of why I
dislike object orientation when it is made compulsory.

6.11 Waiting and Testing for Any

These are not much harder to use, given our assumptions. They take arrays of requests
and statuses, check for or complete one of the requests and return its index and status.
If more than one request is ready, an arbitrary one is selected. The functions are called
MPI Testany and MPI Waitany. The status is undefined when MPI Testany’s flag is False.

A common way of using these is to loop round until there is nothing to do; MPI’s
specification simplifies this. If there are no active requests in the array, it will return an
index of MPI UNDEFINED and an empty status (for now, treat it as undefined). The flag of
MPI Testany is True in that case.

7

Fortran:

INTEGER :: i , error , requests (100) , &

index , status (MPI_STATUS_SIZE)

LOGICAL :: flag

DO

CALL MPI_Testany (100 , requests , index , flag , &

status , error)

IF (.NOT. flag) THEN

! Do something while waiting

CALL MPI_Waitany (100 , requests , index , &

status , error)

END IF

IF (index == MPI_UNDEFINED) EXIT

! Now handle requests (index)

END DO

C:

int i , error , index , flag ;

MPI_Request requests [100] ;

MPI_Status status ;

while (1) {

error = MPI_Testany (100 , requests , & index ,

& flag , & status) ;

if (! flag) {

/* Do something while waiting */

error = MPI_Waitany (100 , requests ,

& index , & status) ;

}

if (index == MPI_UNDEFINED) break ;

/* Now handle requests [index] */

}

8

The C++ interfaces are rather irregular: MPI::Waitany returns the index, but
MPI::Testany returns the flag and the index is returned as for C and Fortran.

C++:

int i , requests [100] , index , flag ;

MPI::Request requests [100] ;

MPI::Status status ;

while (1) {

flag = requests[0] . Testany (100 , requests ,

index , status) ;

if (! flag) {

// Do something while waiting

index = requests[0] . Waitany (100 ,

requests , status) ;

}

if (index == MPI::UNDEFINED) break ;

// Now handle requests [index]

}

6.12 Reminders

Remember the assumptions described earlier?

• The array has length one or more.

• MPI ERRORS ARE FATAL is set.

• You use only the facilities that the course has covered so far.

An extra lecture covers when those are not so, but you are recommended not to open
that can of worms. MPI’s specification is clean and well-designed, but the problem is
inherently complicated, and so the specification is, too.

And, lastly, calling non-blocking functions is very easy; do not be fooled into thinking
that using them is. You now have a loaded, semi-automatic footgun ...

The difficulties arise with race conditions and all that they imply; adding diagnostics
often makes them vanish, and they can be diabolically difficult to track down. Remember
the aphorism “festina lente” – do not rush into asynchronous programming, and start by
using it very simply, and package the uses into higher-level primitives.

9

