Message-Passing and MPI Programming

Miscellaneous Guidelines

N.M. Maclaren

Computing Service

nmml@cam.ac.uk
ext. 34761

July 2010

8.1 Introduction

This is a miscellaneous set of practical points, that over-simplifies some of the topics
covered in the extra lectures. Most of these are not actually about message-passing or
MPI, but about problems with its interaction with programming language and operating
system specifications and implementations. A summary is given at this stage, because the
course has become too long, and there was too much non-MPI material.

e Remember that everything here is a half truth hiding a serious, practical problem:;
i.e. it is good as a guideline, but no more than that.

e You should remember that there is more information in the extra lectures (and the
actual standards), if you hit a problem or use a facility in a non-trivial way.

8.2 Composite Types

So far, we have considered mainly contiguous arrays of basic types. Multi-dimensional
arrays are stored in array element order, in all of Fortran 77, C and C++, though which
subscript varies fastest differs. The advanced collectives allow one level of separation,
which can sometimes be useful. However:

e Fortran 90 assumed shape arrays are not always contiguous, and an N-dimensional
array may have N levels of separation. You do not need to know the details.

e Fortran 90, C and C++ have structures and pointers (though Fortran pointers are
less commonly needed or used), and structured “objects” are often built using them.

e Fortran 90 and C++ have “classes”, which call procedures for built-in operations.

In a simple case, you can put the code inline and transfer each contiguous unit of data
separately, or you can pack multiple transfers into one function. You should do whichever
is simplest and cleanest. I.e.:

1: Pack up your data for export
2: Do the actual data transfer
3: Unpack the data you have imported
or
1: Transfer the first simple array
2: Transfer the second simple array
n: Rebuild them into a consistent structure



8.3 C and C++

C++ PODs and similar C structs are easy; you just use sizeof to calculate their use,
and transfer as an array of bytes using the MPI datatype MPI_BYTE. But you must follow
these rules:

e Do it only when using the same executable

e Do it only between identical types, not just similar ones
e Do not do it if they contain pointers

e Do not do it if have any environment data

Environment data includes anything that may be process-specific, which is a little more
general than you might expect. And be careful to get the size right when using C99
variable sized structures. The above rules may seem excessive, especially that of using
identical types (which essentially means compatible ones in C terms), but are necessary to
avoid certain arcane C and C++ problems.

There are some C, C++ and POSIX features that are thoroughly toxic, and often cause
chaos to almost all other interfaces; MPI is no exception. They can be used safely, but only
by real experts, and very few people have that level of skill. These include <signal.h>
and <setjmp.h> (and the C++ equivalents) and C++ exceptions, as well as much of
POSIX: threading, signal handling, scheduling, timer control, alarm, sleep and so on.
These is some more information in the extra lectures, but generally try to avoid using
those features.

8.4 Fortran 90

Good Fortran 90 uses assumed shape arrays, but MPI uses assumed size arrays, because
it is a Fortran 77 interface. This generally requires a copy on call and return, but you
should ignore that if it does not cause a performance problem. The course Introduction
to Modern Fortran provides more details. The only real problem is with non-blocking
transfers, and the following rule is almost always safe:

e Convert them to a Fortran 77 form (i.e. explicit shape or assumed-size) in a common
parent of both the send (or receive) and the wait. I.e. do not convert them from
assumed shape to any of the Fortran 77 forms at any time between starting the
transfer and waiting for its completion.

If your compiler objects to your uses of the buffer argument type because you are calling
the same routine twice with incompatible arguments, there are a couple of simple hacks
to avoid the diagnostic. Either will usually work, so use whichever is easier.

e Keep all calls in one module (or file) the same (e.g. use only INTEGER buffers or
only REAL (KIND=KIND(0.0DO)) ones). Fortran compilers rarely check over the whole
program, but often do within a single module or file.

e Write trivial wrappers in external procedures, put each in a separate file, compile
them separately, and link them in (e.g. My_Send_Integer and My_Send Double).

Fortran 90 selectable precisions have already been described.

Fortran 2003 supports BIND(C) for C interoperability, and BIND(C) derived types can
be handled just like C++ PODs, using the facilities in the ISO_C_BINDING intrinsic module.

2



In general, do not treat Fortran derived types like C++ PODs, and never do if they
contain allocatable arrays. You have no option but to transfer them as components, which
is tedious and messy, but not difficult. In particular, do not assume that SEQUENCE implies
compatibility or that sequence derived types can be used in the same way; SEQUENCE has
its uses for MPI, but not within this course.

8.5 Debugging and Tuning

In practice, debugging and tuning overlap to a large extent, and tuning MPI is more
like tuning I/O than tuning executable code. Also many performance problems are logic
errors (as is common in all forms of parallelism) — e.g. everything is waiting for one process.
Many logic errors show up as poor performance, so do not consider debugging and tuning
as completely separate.

A partial solution is to design primarily for debuggability, always remembering to KISS
(Keep It Simple and Stupid). This course has covered most of the MPI-specific points, and
there is more in the course Software Design; you may also like to look at the Computing
Service course How to Help Programs Debug Themselves. If you do that, you will rarely
need a debugger, and diagnostic output is usually good enough. Only when you have got
the program working, start to worry about performance.

The specimen answers to the practical examples waste most of the memory they use,
but they are just trivial examples. Here are some guidelines for memory optimisation in
real programs that need a lot of memory:

e Do not worry about small arrays and scalars; if they total less than 10% of the
memory you use, who cares?

e For big arrays, allocate only what you need; for example, with gather and scatter
you need a buffer for each process only on the root.

e Reuse large buffers or free them after use. Be careful about overlapping use if you
do reuse them, of course; this is particularly likely to cause trouble with non-blocking
transfers.

Ultimately only elapsed time matters to the performance of an MPI program — the real
time taken by the program, from start to finish. If you have CPUs that are dedicated
to the processors, how much CPU time they use is irrelevant. All other measurements
are just tuning tools, which actually simplifies things considerably — you can concentrate
on minimising just the elapsed time. You may want to analyse the elapsed time by CPU
count, because it will tell you the scalability of the code, and whether it needs redesigning
to make effective use of more processors.

8.6 Designing For Performance

Here is the simplest way to do this:

e Localise all major communication actions in a module, or whatever is appropriate
for your language and programming style, and keep its code very clean and simple.

3



e Do not assume any particular compiler, MPI implementation or or operating system.
This applies primarily to the module interface, which should be kept generic, clean
and simple.

e Keep the module interfaces fairly high level, such as a distributed matrix transpose.
Low level interfaces provide relatively little scope for tuning.

e Use the highest level appropriate MPI facility. Use its collectives where possible
(preferably the MPT_A11... forms), because collectives are easier to tune than point-
to-point, surprisingly.

Most MPT libraries have had extensive tuning, and it is a rare programmer who will do
as well. The mpi_timer code implements MPI_Alltoall in many ways, and was used for
benchmarking HPC systems. Usually, one or two of them were faster than the vendor’s
built-in MPT_Al1ltoall, but not often the same ones, and almost always by under 5% (often
by under 2%).

You should put enough timing calls into your module, so that you can summarise time
spent in MPI and in computation. You should also check for other processes or threads
(either ones started by MPI or other ones running on the system), but only for ones that
are active during MPI transfers — sleeping threads do not matter.

Now you should look at the timing to see if you have a problem. If it is none, which
is most likely, you need do nothing. If there is, try using only some of the cores on a
multi-core CPU for MPI (i.e. reducing the number of MPI processes per node); it is an
easy change, but may not help. If that fails, you need to start more detailed tuning.

8.7 High-Level Approach to Tuning

Try to minimise inter-process communication, and there are three main aspects to this:

e The amount of data transferred between processes. Inter-process bandwidth is a
limited resource, whether the problem is in the memory subsystem, the network card
or the switch.

e The number of transactions involved in transferring your data. Both the overheads
involved in a transfer and the message-passing latency are significant.

e When one process needs data from another and cannot proceed until it gets it — this
is mainly relevant to point-to-point. That may require the process to wait unneces-
sarily, wasting time.

Another aspect is that of data management. Partitioning is critical to efficiency, and
has already been mentioned. You can also bundle multiple messages together, because
sending one message has a lower overhead than sending several. You can minimise the
amount of data you transfer, but that is only worthwhile if your messages are large. And
you can arrange that all processors communicate at once — that can help a lot (surprisingly
enough) because of progress issues, and is one reason that collectives are efficient.

On a typical cluster or multi-core system, packets of less than 1 KB are inefficient,
because the overhead/latency dominates the time, and packets of more than 10 KB do not
need bundling, because the bandwidth does. You should avoid transferring a lot of small

4



packets, which is why packing up multiple small transfers helps, but only if significant
amount of time is spent in them. There is no point in writing complicated code to tune
something that accounts for only a few percent of the total time. And remember that
integers can be stored in doubles.

8.8 Timer Synchronisation

Timer synchronisation means synchronisation across processes — i.e. are all results from
MPI _Wtime consistent? It will almost always the case on SMP systems, and will often
be the case even on clusters. Generally, you should try to avoid assuming or needing it,
because you rarely need to compare timestamps across processes. If you use only local
intervals, you will not have a problem, because time passes at the same rate on all processes,
and so time intervals are comparable between processes.

Beyond that is a job for real experts only. The simplest way of thinking of it is that
parallel time is like relativistic time, where the ordering of events depends on the observer.
There is a partial solution to the problem of inconsistent clocks in directory Posixtime,
which provides functions to return globally consistent timestamps. I wrote this for a
system with inconsistent clocks, where I needed a global time to investigate some problems.

8.9 MPI and Normal I/0

This means language, POSIX and Microsoft I/O - i.e. the normal file and network I/O
that every program uses. There are serious problems, and not because of MPI; they are
caused by the system environment it runs under. This will describe the most common
configuration only; if it does not apply, you should look at the extra lecture on I/0, or ask
your system administrator to help you.

There are two, very different, classes of file: normal named and scratch files, and the
standard units, stdin, stdout and stderr. The reason is that the former are local to a
process, and the latter are global to the whole program. Almost all problems are caused
by the system environments and implementations (e.g. clusters of distributed memory
systems versus shared file descriptors on SMP systems).

e These issues are not specific to MPI, and all other parallel interfaces (including
POSIX threads) have the same problems, though they may show up differently.

We shall assume all processes share a filing system. This may be shared directly, using
POSIX on a SMP system, or indirectly, using NFS or something similar. The equivalents
on Microsoft and other operating systems are very similar. We shall also assume that all
processes share a working directory; with luck, that is either controllable (by you) or your
home directory. The details are very system-dependent, as usual.

Here are some rules on how to use files safely:

e Always use write-once or read-many (i.e. a file is either written to by a single process
or read by an arbitrary number of them, but not both). That applies to the whole
duration of the run, and not just at any instant.

e All updates and accesses must be considered, including any that are done outside
MPI, such as you accessing the file interactively.

5



To rephrase it, if a file is updated at any time in the run, only one process opens it in the
whole run. Any number of processes may read a file, provided that no process updates it
at any time during the run. This may seem extreme, but is safe. If you need to do more
than this, and it is fairly often necessary, there are some instructions on how to minimise
the risks in the extra lecture on I/0O.

Regard a directory as a single file (which is often the way it is implemented). If you
change it in any way in any process, do not access it from any other process during the
run. Creating a file in it counts as a change, of course. If you do, a directory listing run
in parallel may fail in any one of a number of obscure ways. Listing a read-only directory
(i.e. one which is not changed during the run) is safe.

There is one exception to this , where you can update a single directory from multiple
processes. You can create, delete and rename separate files in the same directory from
different processes fairly safely, though not under Microsoft DFS. But you should do all
operations on any single file in a single process — e.g. you should not create it in one and
delete it in another.

You should not assume where scratch files go. While that statement applies even on
serial systems, it gets it is even more complicated on parallel ones. It is common to
have shared working directories, but separate, distributed scratch directories, or scratch
directories shared between some processes and not others. This is just a warning, because
clean code rarely has trouble.

8.10 Standard Units

The issues with these arise from implementation details. They almost always show up
with standard output, which is probably just because almost all programs use it! It is
an almost unbelievable can of worms, and you should not even try to program round the
problems; the only good solution is to bypass the issue entirely. And remember that these
issues are not specific to MPI; all other parallel interfaces have the same problems.

The “right” solution is also the simplest. Only the root process does I/O to or from
the standard units. The root process does all the reading from stdin, and broadcasts or
scatters it to the others. It gathers all of the output from the others, and then it writes
it to stdout. It can also done for ordinary file I/O, and some MPI programs do that.

You have learnt all of the techniques you need, or you can look at the extra I/O lecture
for details. If the root process both handles I/O and does computation, I do not recom-
mend doing them asynchronously (i.e. so that they overlap each other). You should code
the I/O transfers as a collective, which is relatively easy to debug and tune. Once you
are reasonably confident with the basics of MPI, I recommend looking at the practicals
associated with the I/O lecture.

You can just write error messages and other diagnostics to stderr or its equivalent;
Fortran users may need to use FLUSH (either a system-dependent subroutine or the Fortran
2003 I/0 statement). It may well get mangled for reasons given above, and it may get
lost on a crash or following MPI_Abort, but it is simple to code, and errors should be rare!
The same applies to stdout, with some programs (i.e. where it does not matter if it gets a

6



bit mangled). Beyond that, you need to use a dedicated I/O process, just as we described
above for stdout.

8.11 Practicals

There are some practicals on how to handle I/O, mainly how to spool it through the
root process. You have already learnt all of the techniques needed to do them, so reading
the later I/O lecture is not necessary. You are recommended to do at least some of these,
as you are likely to need to use the techniques. There is also a trivial one on transferring
structures.

8.12 Appendix: Progress

MPI has an arcane concept called progress. The good news is that you do not need to
understand it in detail; the bad news is that you do need to understand the issues before
starting any advanced tuning, and this appendix summarises them. Readers who use only
the simple tuning rules described above may ignore this appendix; it is included here to
explain why those rules are so simplistic.

No valid MPI program can get stuck (often called ‘hang’ or ‘deadlock’); the MPI speci-
fication does not allow any way of creating ‘deadly embraces’. If the program is valid, an
implementation must always make progress and eventually complete. Obviously, a pro-
grammer must not make that impossible, so there are a few restrictions to ensure that it is
possible. If you write sanely and follow the instructions in these lectures, you will almost
certainly never notice the restrictions.

e Mistakes will happen, but deadlock almost always means that there is a bug in your
code, so fix that.

MPI does not specify how it is implemented, and progress can be achieved in many
ways. All valid MPI programs will work in all cases, but the implementation differences
do change the most efficient coding style. The following will describe a few of the most
common methods, and indicate the main consequences of them.

MPI does not specify synchronous behaviour, even for collectives and blocking trans-
fers; all that it specifies is the ordering semantics. The actual transfers can occur asyn-
chronously and, in theory, so can almost all other actions. This allows an implementation
to overlap transfers and computation; unfortunately, it is not as simple as that, because
many I/O mechanisms are often actually CPU bound.

On most shared memory systems, a CPU core is needed to copy data, but that is also
the case for TCP/IP, especially over Ethernet; sent data has to be packed into TCP, IP
and Ethernet messages, and unpacked from them on receipt. Also, some MPI transfers
include data management, such as scatter/gather in MPI derived datatypes. Again, in
theory, InfiniBand has such functionality in hardware, but not all InfiniBand interfaces use
it. There are more hardware and operating system variations, too.

FEager Execution is one of the mainly synchronous methods, and if the easiest to under-
stand, but not usually most efficient — for that reason, it is rarely used. In this case, all
MPI calls complete the operation they perform, or as much of it as they can, at the time

7



of call. MPI Wtime gives the obvious results; slow calls look slow, and fast ones look fast.
With this, there is often little point in non-blocking transfers.

Lazy FExecution is also one of the mainly synchronous methods, just not in the way
that most people expect. In this case, most MPI calls put the operation onto a queue,
and all calls check the queue for operations that are ‘ready’ in some sense. The call
that detects the readiness completes the queued operation. MPI Wtime gives fairly strange
results, because one MPI call often does all of the work for another, but the total time is
fairly reliable. This is possibly the most common implementation type.

Asynchronous Execution is where MPI calls put the operation onto a queue, but another
process or thread does the actual work (or, rarely, special hardware). MPI_Wtime gives
very strange results indeed, and you need to check the time used by the other process
or thread. This is fairly rare — I have seen it only on IBM AIX, but have heard of other
implementations — however, it is almost universal when using one-sided communication on
clusters. With this, the only simple tuning is not to use all CPUs for MPI, and beyond
that tuning gets very tricky.



