
Programming with MPI
Introduction

Nick Maclaren

Computing Service

nmm1@cam.ac.uk, ext. 34761

April 2010

Programming with MPI – p. 1/??

Why Use MPI?

CPUs got faster at 40% per annum until ≈2003
Since then, they have got larger but not faster
The number of CPU cores per chip is now increasing

• The solution is to use more CPUs in parallel

MPI (Message Passing Interface) is a tool for that

We will come back to how to obtain MPI later

Programming with MPI – p. 2/??

Course Structure (1)

Start with essential background and basic concepts
And running minimal but useful MPI programs

Then move on to facilities used in practice
Based on analysis of initially twelve real applications
Also mention features you might want in the future

Will describe their underlying concepts as relevant
Not well covered in most books and Web pages
This is helpful for debugging and tuning

Programming with MPI – p. 3/??

Course Structure (2)

Also cover practical aspects that can cause trouble
Naturally, based on my personal experience!

Some of these (like I /O) are a bit weird
Will give simple guidelines for safe programming

Then give overview of more advanced features
Some are described in books and Web pages
But implementations may not be thoroughly tested

Will not go into detail for all of MPI

Programming with MPI – p. 4/??

Applications

Applications I have looked at include:

Casino, CASTEP, CETEP, CFX11, CPMD,
CRYSTAL, DLPOLY---3, Fluent, FFTW,
mpi---timer, ONETEP, PARPACK, SPOOLES
ScaLAPACK and TOMCAT

Only facility course omits entirely is parallel I /O
Only in Fluent and DLPOLY---3 when I looked
Very specialist – few people will be interested

Programming with MPI – p. 5/??

Course Objectives (1)

• The understanding of MPI’s essential concepts
How it is likely to be implemented (in principle)

• Be able to use all basic features of MPI

For an empirical meaning of ‘‘all basic features’’

• Be able to write highly parallel HPC code
Be able to work on almost all existing ones

• Be aware of the ancillary skills needed

Programming with MPI – p. 6/??

Course Objectives (2)

• Be able to use I /O and other system interfaces
Including knowing something of what not to do

• Concepts needed for debugging and tuning
Some experience of doing so in simple programs

• Knowing what advanced features exist in MPI

So that you don’t have to reinvent the wheel

• Also knowing which features are tricky to use
So that you don’t use them by accident

Programming with MPI – p. 7/??

Course Objectives (3)

• This teaches you to program MPI for real
It doesn’t skip over anything you need to know
You will still have to look up some interfaces
The intent is that you know what to look up

• You will know why and how things work
Helps with writing reliable, portable code
Minimises confusion when you make a mistake
And gives a good start with tuning your code

All of the above is easier than it looks

Programming with MPI – p. 8/??

Beyond the Course (1)

Email scientific--computing@ucs for advice etc.

The MPI standard home page – final authority
http: / /www.mpi--forum.org/

Most books / courses skip over basic concepts
And too much time on the more advanced features

This one seems pretty good:

http: / /www.cs.usfca.edu/mpi/
• This course does not follow it!

Programming with MPI – p. 9/??

Beyond the Course (2)

The materials for this course are available from:

http: / /www--uxsup.csx.cam.ac.uk/courses/MPI /

Several other relevant Computing Service courses
Some will be mentioned in passing, but see:

http: / /www--uxsup.csx.cam.ac.uk/courses/

Programming with MPI – p. 10/??

Beyond the Course (3)

All of these pages have reliable information
Most of the Web isn’t reliable, of course

http: / /www--users.york.ac.uk/∼mijp1/teaching/...
... /4th---year---HPC/notes.shtml

http: / /www.epcc.ed.ac.uk/ library/documentation/...
... / training/

http: / /www--unix.mcs.anl.gov/mpi/

Programming with MPI – p. 11/??

Distributed Memory

One of the basic parallelism models

A program is run as separate, independent processes
Can be considered as separate serial programs

Distributed memory means no shared data
• The processes interact only by message passing

May be run on the same system or on separate ones

Programming with MPI – p. 12/??

Message Passing

One of the basic communication designs

Process A sends a message to Process B
Process B then receives that message

• Think of it as process--to--process I /O or Email
Actually implemented using very similar mechanisms!

Some extra complications, but they use the same idea

Programming with MPI – p. 13/??

What Is MPI? (1)

• A library callable from Fortran, C and C++
Bindings also available for Python, Java etc.

Primarily for HPC programs on multi--CPU systems
Assumes a number of processes running in parallel
Usually with dedicated CPUs (i.e. gang scheduling)

• Essentially all HPC work on clusters uses MPI

It works nearly as well on multi--core SMP systems

• Poorly for background work (e.g. cycle stealing)

Programming with MPI – p. 14/??

What Is MPI? (2)

• It is a specialist communications library
Like POSIX I /O, TCP/IP etc. – but different purpose
Almost completely system--independent

• Using its interface is almost never a problem
If you can use any library, you can use MPI

• Most important step is to understand its model
I.e. the assumptions underlying its design
Ditto for C++, POSIX, Fortran, TCP/IP and .NET

Programming with MPI – p. 15/??

The MPI Standard (1)

This was a genuinely open standardisation process
Mainly during the second half of the 1990s

http: / /www.mpi--forum.org/docs/docs.html

MPI--1 is basic facilities – all most people use
Most people use only a small fraction of it!

MPI--2 is extensions (other facilities)
Also includes the MPI 1.3 update

Programming with MPI – p. 16/??

The MPI Standard (2)

• This is a standard, not a user’s guide
Designed to be unambiguous, not easy to follow

As good as Fortran, much better than C or POSIX
• But its order and indexing are ghastly
⇒ I am still finding new features after a decade

• Use it to look up the precise specifications
• Use something else to find what to look up

This course is mainly MPI--1 (and a little MPI 2)

Programming with MPI – p. 17/??

Available Implementations

Two open source versions – MPICH and OpenMPI

You can install as packages or build from source
Most vendors have own, inc. Intel and Microsoft

Usually use shared--memory on multi--core machines
And TCP/IP over Ethernet and other networks
And often InfiniBand on suitable HPC clusters

• But NO code changes are needed!
MPI programs are very portable, and efficiently so

Programming with MPI – p. 18/??

The MPI Model (1)

You start up N independent processes
All of them start MPI and use it to communicate
• There is no ‘‘master’’ (initial or main process)

Communications may be ‘‘point--to--point’’ (pairwise)
• Only two communicating processes are involved

Communications may be ‘‘collective’’
All of the processes are involved
• They must all make the same call, together

Programming with MPI – p. 19/??

Time

CPU A

CPU A

CPU A

CPU B CPU C CPU D

CPU B

CPU B

CPU C

CPU C CPU D

CPU D

Point−to−point Communication

Programming with MPI – p. 20/??

Time

CPU A

CPU A

CPU A

CPU B CPU C CPU D

CPU B

CPU B

CPU C

CPU C CPU D

CPU D

Collective Communication

Programming with MPI – p. 21/??

The MPI Model (2)

• Communication may not always synchronise
That applies to collectives as well as point--to--point
[The previous picture is misleading in that respect]

• Processes need wait only when they need data
E.g. a send may return before the receive
In theory, this allows for faster execution

• If you want synchronisation, you must ask for it
There are plenty of facilities for doing so

Programming with MPI – p. 22/??

The MPI Model (3)

Some MPI operations are non--local
May involve behind--the--scenes communication
Which means they can hang if you make an error

And some operations are purely local
They can never hang, and will return ‘‘immediately’’

Generally, this matters mainly to MPI implementors
• You only need to know that both forms exist

Programming with MPI – p. 23/??

The MPI Model (4)

• Almost everyone uses MPI in SPMD mode
That is Single Program, Multiple Data

You run N copies of one executable

• The programs can execute different instructions
They don’t have to run in lockstep (SIMD mode)

That is Single Instruction, Multiple Data
But start off by designing them to do that

• All CPUs are dedicated to your MPI program
That avoids certain problems I won’t describe now

Programming with MPI – p. 24/??

The MPI Model (5)

SPMD isn’t required by MPI, which surprises people
In theory, don’t even need compatible systems
Could use it on a random collection of workstations

• Don’t go there – and not because of MPI

For more detail on the reasons, see:

Parallel Programming: Options and Design

• This course will assume SPMD mode
Many implementations support only SPMD mode

Programming with MPI – p. 25/??

Communicators

• All communications occur within communicators
A context, defining a group of processes
Actions in separate communicators are independent

• You start with the communicator of all processes
You can subset any existing communicator

Facilities for that will be described later
• For now, use only MPI---COMM---WORLD

Programming with MPI – p. 26/??

MPI_COMM_WORLD

Hierarchical Communicators

Programming with MPI – p. 27/??

Number of CPUs (1)

• Parallelism counting is ‘‘one, two, many’’
You need to use different algorithms and code

One CPU is necessarily serial programming
Two CPUs are this CPU and the other CPU
Most issues arise only with many CPUs

• Serial codes may not work on many CPUs
• Parallel codes may not work on one CPU
• Two CPU codes may not work on either

Programming with MPI – p. 28/??

Number of CPUs (2)

MPI communicators can have any number of CPUs
From zero CPUs upwards – yes, no CPUs

Use 4+ CPUs when debugging generic MPI codes
• Most applications assume at least that many
This course will cover only this case

Otherwise, you need different code for:
• 0: typically do nothing
• 1: use serial code for this
• 2–3: a few generic algorithms fail
• 4+: ‘proper’ parallel working

Programming with MPI – p. 29/??

Diversion – a Worked Example

Shall now give a worked example of the use of MPI

Calculate the area of the Mandelbrot set

This is to give a feel for what MPI is about
Don’t worry if you don’t understand the details
Every facility used will be explained later

• The whole source is in the extra files
There are Fortran 90, C and C++ versions

Programming with MPI – p. 30/??

The Mandelbrot Set

This is defined in the complex plane

Consider the recurrence xn+1 ⇐ x2
n
+ c

With the starting condition x0 = 0

The Mandelbrot set is the set of all c, such that

|xn| ≤ 2, for all n

This is, er, complicated – let’s see a picture

Programming with MPI – p. 31/??

Programming with MPI – p. 32/??

Calculating its Area

All points within it have |c| ≤ 2

It’s also symmetric about the X--axis

So we consider just points c, such that

−2 < re(c) ≤ +2

0 < im(c) ≤ +2

Choose a suitable iteration limit and step size
See if each point stays small for that long
Accumulate the scaled count of those that do

Programming with MPI – p. 33/??

Programming with MPI – p. 34/??

Example Program

This is the crudest form of numerical integration
Not strictly Monte--Carlo, but is related
Sometimes a sledgehammer is the best tool!

I have chosen to use Fortran 90
The C or C++ are very similar

Most of it is just the ordinary, serial logic
I will go through the core of it first

Programming with MPI – p. 35/??

Testing a Point

PURE FUNCTION Kernel (value)
IMPLICIT NONE
LOGICAL :: Kernel
COMPLEX(KIND=DP), INTENT(IN) :: value
COMPLEX(KIND=DP) :: work
INTEGER :: n

work = value
DO n = 1, maxiters

work = work**2 + value

IF (ABS(REAL(work)) > 2.0 .OR. &
ABS(AIMAG(work)) > 2.0) EXIT

END DO
Kernel = (ABS(WORK) <= 2.0)

END FUNCTION Kernel

Programming with MPI – p. 36/??

Scanning an Area

PURE FUNCTION Shell (lower, upper)
IMPLICIT NONE
REAL(KIND=DP) :: Shell
COMPLEX(KIND=DP), INTENT(IN) :: lower, upper
COMPLEX(KIND=DP) :: work

Shell = 0.0---DP
work = CMPLX(REAL(lower), &

AIMAG(lower)+step/2.0---DP,KIND=DP)
DO WHILE (AIMAG(work) < AIMAG(upper))

DO WHILE (REAL(work) < REAL(upper))
IF (Kernel(work)) Shell = Shell+step**2

work = work+step
END DO
work = CMPLX(REAL(lower),AIMAG(work)+step,KIND=DP)

END DO
END FUNCTION Shell

Programming with MPI – p. 37/??

MPI Initialisation

LOGICAL, PARAMETER :: UseMPI = .True.
INTEGER, PARAMETER :: root = 0
INTEGER :: maxiters, error, nprocs, myrank
REAL(KIND=DP) :: buffer---1(2), step, x

IF (UseMPI) THEN
CALL MPI---Init(error)

CALL MPI---Comm---size(MPI---COMM---WORLD,nprocs,error)
CALL MPI---Comm---rank(MPI---COMM---WORLD,myrank,error)

ELSE
nprocs = 1
myrank = root

END IF

Programming with MPI – p. 38/??

Divide Area into Domains

COMPLEX(KIND=DP), ALLOCATABLE :: buffer---2(:,:)

IF (myrank == root) THEN
ALLOCATE(buffer---2(2,nprocs))
buffer---2(1,1) = CMPLX(--2.0---DP,0.0---DP,KIND=DP)
DO i = 1,nprocs--1

x = i*2.0---DP/nprocs

buffer---2(2,i) = CMPLX(2.0---DP,x,KIND=DP)
buffer---2(1,i+1) = CMPLX(--2.0---DP,x,KIND=DP)

END DO
buffer---2(2,nprocs) = CMPLX(2.0---DP,2.0---DP,KIND=DP)

ELSE
ALLOCATE(buffer---2(2,1)) ! This is not actually used

END IF

Programming with MPI – p. 39/??

Reading the Parameters

INTEGER :: maxiters
REAL(KIND=DP) :: step

IF (myrank == root) THEN
READ *, maxiters, step

IF (maxiters < 10) THEN
PRINT *, ’Invalid value of MAXITERS’
CALL MPI---Abort(MPI---COMM---WORLD,1,error)

END IF
IF (step < 10.0---DP*EPSILON(step) .OR. step > 0.1---DP) THEN

PRINT *, ’Invalid value of STEP’
CALL MPI---Abort(MPI---COMM---WORLD,1,error)

END IF
END IF

Programming with MPI – p. 40/??

Distribute the Data (1)

REAL(KIND=DP) :: buffer---1(2)
COMPLEX(KIND=DP), ALLOCATABLE :: buffer---2(:,:)
COMPLEX(KIND=DP) :: buffer---3(2)

IF (myrank == root) THEN
buffer---1(1) = maxiters
buffer---1(2) = step

END IF

Programming with MPI – p. 41/??

Distribute the Data (2)

IF (UseMPI) THEN
CALL MPI---Bcast(&

buffer---1,2,MPI---DOUBLE---PRECISION, &
root,MPI---COMM---WORLD,error)

maxiters = buffer---1(1)
step = buffer---1(2)
CALL MPI---Scatter(&

buffer---2,2,MPI---DOUBLE---COMPLEX, &
buffer---3,2,MPI---DOUBLE---COMPLEX, &
root,MPI---COMM---WORLD,error)

ELSE
buffer---3 = buffer---2(:,1)

END IF

Programming with MPI – p. 42/??

Accumulate in Parallel

buffer---1(1) = Shell(buffer---3(1),buffer---3(2))
IF (UseMPI) THEN

CALL MPI---Reduce(&
buffer---1(1),buffer---1(2), &
1,MPI---DOUBLE---PRECISION, &
MPI---SUM,root,MPI---COMM---WORLD,error)

ELSE
buffer---1(2) = buffer---1(1)

END IF

Programming with MPI – p. 43/??

Print Results and Terminate

IF (myrank == root) THEN
PRINT ’(A,F6.3)’, &

’Area of Mandelbrot set is about’, &
2.0---DP*buffer---1(2)

END IF
IF (UseMPI) THEN

CALL MPI---Finalize(error)
END IF

Programming with MPI – p. 44/??

So What Happens?

Running with parameters ‘10000 0.001’
We get about 1.508 (true result is about1.506)

Number of processors Elapsed time taken
1 67 seconds
4 46 seconds
16 23 seconds

Not very scalable, is it? That is quite common
Using MPI is much easier than tuning it

Programming with MPI – p. 45/??

Doing Better (1)

There is an alternative Fortran 90 version, too
Generates all of the points and randomises them
Each processor has a roughly matching workload

It is a store hog, and takes some time to start

Number of processors Elapsed time taken
1 70 seconds
4 19 seconds
16 8 seconds

It would scale better with more points

Programming with MPI – p. 46/??

Doing Better (2)

There is a better way than even that, too
Covered in the Problem Decomposition lecture
The first practical of that gets you to do it

Suitable for embarrassingly parallel problems
E.g. parameter searching and Monte--Carlo work
Mandelbrot set was merely a convenient example

But that’s a lot later . . .

Programming with MPI – p. 47/??

	Why Use MPI?
	Course Structure (1)
	Course Structure (2)
	Applications
	Course Objectives (1)
	Course Objectives (2)
	Course Objectives (3)
	Beyond the Course (1)
	Beyond the Course (2)
	Beyond the Course (3)
	Distributed Memory
	Message Passing
	What Is MPI? (1)
	What Is MPI? (2)
	The MPI Standard (1)
	The MPI Standard (2)
	Available Implementations
	The MPI Model (1)
	The MPI Model (2)
	The MPI Model (3)
	The MPI Model (4)
	The MPI Model (5)
	Communicators
	Number of CPUs (1)
	Number of CPUs (2)
	Diversion -- a Worked Example
	The Mandelbrot Set
	Calculating its Area
	Example Program
	Testing a Point
	Scanning an Area
	MPI Initialisation
	Divide Area into Domains
	Reading the Parameters
	Distribute the Data (1)
	Distribute the Data (2)
	Accumulate in Parallel
	Print Results and Terminate
	So What Happens?
	Doing Better (1)
	Doing Better (2)

