Programming with M Pl
Using MPI

Nick Maclaren

Computing Service

nmml@cam.ac.uk, ext. 34761

May 2008

Proarammina with MPI = p. 1/?2?

Warning

This lecture covers a huge number of minor points
Including all of the ‘housekeeping’ facilities

Don’t try to remember all details, initially
Try to remember which facilities are included
Refer back to this when doing the practicals

It’s a lot easlier than it looks at first

Proarammina with MP| = p. 2/?2?

Using MPI

By default, all actual errors are fatal
MPI will produce some kind of an error message
With luck, the whole program will then stop
Can ask to do your own error handling — see later

Use one Iinterface: Fortran, C or C++
C can be used from C++, but don’t mix them

Yes, you can mix them — but it’s advanced use

Proarammina with MP| = p. 3/?2?

Function Declarations

There are proformas for all functions used
Anything merely mentioned is omitted, for clarity

Interfaces/Fortran
Interfaces/C
Interfaces/C++

The examples don’t give the syntax in detalil
Check those files when doing the practicals

MPI’s Fortran Interface (1)

® If possible, include the statement: USE mpi

* Ifnot,use: INCLUDE 'mpif.n’
after all “USE"s and “IMPLICIT”

Note the first is “mpi’’ and the second “mpif.h”
If both fail, usually a usage / installation problem

All MPI names start with MPI _
® Don’t declare names starting MP1_ or PMPI _
Names PMPI_ are used for profiling

MPI’s Fortran Interface (2)

Boolean values (true/false) are LOGICAL
Process numbers, error codes etc. are INTEGER

Element counts etc. are also plain INTEGER
This isn’t a problem on any current system

Almost all MPI constants are Fortran constants
One MPI-1 exception: MPI_BOTTOM

A few more in MPI-2, e.g. MPI_IN_PLACE

Arrays start at one, where it matters

Proarammina with MP| = p. 6/?27?

MPI’s Fortran Interface (3)

Type-generic arguments are a kludge
MP1I relies on Fortran not noticing them
Will describe the issues later

For now, just pass arrays of any type
If the compiler objects, ask for help
Some guidelines on how in a later lecture

MPI’s Fortran Interface (4)

Handles (e.g. communicators) are opaque types
| One you can’t break apart and look inside]
Undocumented and unpredictable INTEGER values

Use built-in equality comparison and assignment
Call MPI functions for all other operations

I.e. MPI returns INTEGER values as tokens
If their values match, they are the same token

MPI’s Fortran Interface (5)

® Almost all MPI functions are SUBROUTINES
The final argument returns an INTEGER error code

Success returns MPI_SUCCESS (always zero)
Failure codes are implementation dependent

Only three MPI-1 exceptions: mainly MPI_Wtime
There are only a couple more in MPI-2

All results are returned through arguments

Proarammina with MP| = p. 9/2?

MPI’s Fortran Interface (6)

As people will know, default REAL Is a disaster
DOUBLE PRECISION is tedious and out-of-date

Start all procedures, modules etc. with

USE double
USE mpi
IMPLICIT NONE

There Is a suitable file Programs/double.f90
Ask for help if you don’t know how to use it

MPI = p. 10/?7?

MPI’s C/C++ Interface (1)

This Is also usable from C++, of course
C++ people need to listen to this section, too
I will cover the common C/C++ aspects here

Include the statement: #include "mpi.h"

All MPI names start with MPI _
Don’t declare names starting MPI_ or PMPI _

Names PMPI_ are used for profiling

Proarammina with MPIl = p. 11/?27?

MPI’s C/C++ Interface (2)

Boolean values (true/false) are int, as usual
Process numbers, error codes etc. are int

Element counts etc. are also plain int
This isn’t a problem on any current system

Type-generic arguments are void *
These are called ‘“‘choice’ arguments by MPI

Proarammina with MPI = p. 12/?7?

MPI’s C/C++ Interface (3)

Almost all MPI constants are C initialization constants

NOT usually preprocessor or integer constants
Cannot use In case, array sizes etc.

Only maximum sizes are preprocessor constants

Arrays start at , Where it matters

Proarammina with MPI = p. 13/?27?

MPI's C Interface (1)

The next two slides apply only to C, not C++

Handles (e.g. communicators) are opaque types
Names are set up by typedef and are scalars
Use built-in equality comparison and assignment
Call MPI functions for all other operations

The main such opaque types are:

MPI_Comm, MPI1_Datatype, MPI_Errhandler,
MPI1_Group, MPI_Op, MP1_Request,
MPI_Status

MPI’s C Interface (2)

Almost all MPI functions return an error code
This Is the function result as an int
Can ignore It, If using default error handling

Success returns MPI_SUCCESS (must be zero)
Failure codes are implementation dependent

Only MPI-1 exceptions: mainly MPI_Witime
There are only a couple more in MPI-2

All results are returned through arguments

Proarammina with MPI = p. 15/?7?

MPI and C++

MPI 2.0 introduced a C++ interface in 1997
It’s significantly better in a great many respects

However, MPI 2.2 deprecated it in 2009
Its recommendation Is to use the C interface

Currently, MPI 3.0 is being worked on

This course will teach both interfaces
It’s unclear what is going to happen in this area

Proarammina with MPIl = p. 16/?27?

MPI's C++ Interface (1)

A ‘“‘proper’” C++ Interface, not just a hacked C one
Include the statement: #include "mpi.h"

Almost all names omit the MPI_ prefix
and are declared in the namespace MPI

E.g. MPI_Init becomes MPI::Init
And MPI_TYPE_INT becomes MPI::TYPE INT

MPI's C++ Interface (2)

Some name changes — will mention when needed
Mostly because MPI-2 has cleaned up its naming

The new names will often work in C and Fortran
The old ones are deprecated, and are not in C++

Some other systematic changes, though
E.g. Get_ Is added before information calls

C. MPI_Comm_size(MPI_COMM_WORLD)
C++: MPI.:COMM_WORLD . Get_size()

Namespace PMPI is used for profiling

MPI’s C++ Interface (3)

Most Is almost identical to the C interface
E.g. the definitions of most constants

I won’t repeat the information that is unchanged

Only three major differences (in a moment)
Minor differences will be described when needed

This course describes only what it needs

MPI’'s C++ Interface (4)

MPI1 handles are classes in C++
I.e. C opague types become C++ classes

Almost all MPI functions are member functions

E.g. MPI_Send becomes MPI::Comm . Send
A typical use is MPI::COMM_WORLD.Send

Classes have a proper C++ interface
You must read the detalls, for more than trivial use
Esp. creation, deletion, copying and comparison

Proarammina with MPI = p. 20/?7?

MPI’s C++ Interface (5)

In C++, Comm Is purely a base class
You always declare one of its derived classes
The only one relevant here is Intracomm

Some methods are only in Intracomm
Though many are moved to Comm in MPI-2
| Don’t bother understanding why, for now |

So we shall always use Intracomm in C++
Everywhere that C uses the opaque type Comm
C++ Inheritance means that will work

Proarammina with MPI = p. 21/?7?

MPI’s C++ Interface (6)

The next big difference is in error handling
That has consequential changes on the interface

Functions do not return error values
Instead, they throw a C++ exception
There Is a new class Exception

Functions that deliver a scalar result
return that value as the function result
Others become void functions in C++

Proarammina with MPIl = p. 22/?7?

MPI's C++ Interface (7)

The last big difference Is the use of references

Essentially all output arguments become references
Here, MPI's C++ Is more like Fortran than C

MPI_Init(&argc,&argv) = MPI_Init(argc,argv)

That doesn’t apply to array and pointer arguments
E.g. all ones that are transfer buffers stay the same

More on Interfaces

That is all you need for now
We will return to language interfaces later
Advanced language facilities to avoid
Interfaces for advanced MPI programming

Performance and optimisation issues

Proarammina with MPI = p. 24/?7?

Starting and Stopping

® For now, we will ignore error handling

All processes must start by calling MPI_Init
And, normally, finish by calling MPI_Finalize

®* These are effectively collectives
Call both at predictable times, or risk confusion

® You can’t restart MPI after MPI_Finalize
MPI_Init must be called exactly once

Proarammina with MPIl = p. 25/?7?

Fortran Startup/Stopping

Fortran argument decoding iIs behind the scenes

USE double

USE mpi
IMPLICIT NONE
INTEGER :: error

CALL MPI_Init (error)
CALL MPI_Finalize (error)
END

If that doesn’t work, see the MP1 documentation
®* Though you will probably need to ask for help

Proarammina with MPI = p. 26/?7?

C Startup/Stopping

MPI_Init takes the addresses of main’s arguments

® You must call it before decoding them
Some implementations change them in MPI_Init

#include "mpi.h"

int main (int argc , char * argv []) {
MPI_Init (& argc , & argv) ;
MPI_Finalize () ;
return O ;

}

Proarammina with MPI = p. 27/?7?

C++ Startup/Stopping (1)

using namespace std ;
#include "mpi.h"

int main (int argc , char * argv []) {
MPI::Init (argc , argv) ;
MPI::Finalize () ;
return O ;

}

Any other valid use of namespace MPI is OK
E.g. you could add ‘‘using namespace MPI ;"
and omit all of the MP1I::

Proarammina with MPI = p. 28/?7?

C++ Startup/Stopping (2)

The arguments are references not pointers

You can also call MPI::Init with no arguments
* Watch out with that — I am not sure how it works

Proarammina with MPI = p. 29/?27?

Aside: Examples

I will omit the following statements, for brevity:

USE double
USE mpi
IMPLICIT NONE

#include "mpi.h"

using namespace std ;
#include "mpi.h"

Include them in any ““module’ where you use MPI
Don’t rely on implicit declaration

Proarammina with MPI = p. 30/?7?

Version Numbers

MPI 1.2 and up provide version number information

® Not needed for simple use, as in this course
All versions of MPI are essentially compatible

Constants MPI_VERSION, MPI_SUBVERSION

iIn ALL of Fortran, C and C++
Setto 1, 3 for MPI 1.3 or 2, 2 for current MPI-2

There Is also a function MPI_Get_version
MPI::Get_version in C++
Which can be called even before MPI _Init

Proarammina with MPI = p. 31/?27?

Testing MPI’s State (1)

You can test the state of MPI on a process
® This is needed only when writing library code
[MPI_Finalized is only in MPI-2]

Fortran example:
LOGICAL :: started , stopped

INTEGER :: error
CALL MPI_Initialized (started , error)

CALL MPI_Finalized (stopped , error)

Proarammina with MPI = p. 32/?7?

Testing MPI’s State (2)

C example:

Int started , stopped , error ;
error = MPI_Initialized (& started) ;

error = MPI_Finalized (& stopped) ;

C++ example:

Int started , stopped ;
started = MP1::Is_initialized () ;
stopped = MPI::Is_finalized () ;

Note C++ uses different names to Fortran and C

Proarammina with MPI = p. 33/?7?

Global Communicator

The global communicator is predefined:
MPI_COMM_WORLD

It includes all usable processes
e.g. the <n> set up by “mpiexec —n <n="

Many applications use only this communicator
* Almost all of this course does, too

There Is one lecture on communicators

Proarammina with MPI = p. 34/?7?

Process Rank

The rank is the process’s index
always within the context of a communicator

A rank is an integer from 0 to <n>-1
Yes, this applies to Fortran, too

There is one predefined rank constant:
MPI_PROC_NULL - no such process

MPI::PROC_NULL in C++
Don’t assume this is negative — or that it isn’t

We shall describe the use of it when relevant

Proarammina with MPIl = p. 35/?7?

Information Calls (1)

MPI_Comm _size returns the number of processes
MPI_Comm_rank returns the local process number

Fortran example:

INTEGER :: nprocs , myrank , error
CALL MPI_Comm_size (&

MPI_COMM_WORLD , nprocs , error)
CALL MPI_Comm_rank (&
MPI_COMM_WORLD , myrank , error)

Remember & means continuation in Fortran

Proarammina with MPI = p. 36/?27?

Information Calls (2)

C example:

Int nprocs , myrank , error ;
error = MPI_Comm_size (MPI_COMM_WORLD ,

& nprocs) ;
error = MPI_Comm_rank (MPI_COMM_WORLD ,

& myrank) ;

C++ example:
Int nprocs , myrank ;
nprocs = MPI::COMM_WORLD . Get_size () ;
myrank = MPI::COMM_WORLD . Get_rank () ;

Note the addition of Get In C++

Proarammina with MPI = p. 37/?27?

Information Calls (3)

You can query the local processor name
A string of length MPI_MAX_PROCESSOR_NAME

Fortran example:

CHARACTER (LEN = &
MPI_MAX_PROCESSOR_NAME) :: prochame

INTEGER :: namelen , error
CALL MPI_Get_processor_name (procname , &

namelen , error)

Proarammina with MPI = p. 38/?7?

Information Calls (4)

C example:
char procname [MPI_MAX_PROCESSOR_NAME]| ;

Int namelen , error ;
error = MPI_Get_processor_name (prochame ,

& namelen) ;

C++ example:
char procname [MPI::MAX_PROCESSOR_NAME | ;

Int namelen ;
MPI::Get_processor_name (procname , namelen) ;

The second argument is a reference not a pointer

Proarammina with MPI = p. 39/?27?

Information Calls (5)

MPI_Wtime gives elapsed time (‘‘wall-clock time’’)
Seconds since an unspecified starting point

The starting point is fixed for a process
Doesn’t change while the process Is running

I have seen start of process, system boot time,
Unix epoch and 00:00 Jan. 1st 1900

MPI_Wiick similar but gives timer resolution
Few people bother — but it’s there if you want it

Proarammina with MPI = p. 40/?7?

Information Calls (6)

Fortran:

REAL(KIND=KIND(0.0DO)) :: now
now = MPI_Wtime ()

C:
double now ;
now = MPI_Wtime () ;

C++:

double now ;
now = MPI::Wtime () ;

Proarammina with MPI = p. 41/?°?

Information Calls (7)

Anywhere from MPI_Init to MPI_Finalize

They are all purely local operations
Use them as often as you need them

MPI_Comm_size same result on all processes
Others may give different ones on each process

That includes MPI_Wtime’s starting point
As well as the value returned from MPI_Wtick

Proarammina with MPI = p. 42/?7?

Barrier Synchronisation (1)

MPI_Barrier synchronises all processes
They all wait until they have all entered the call
Then they all start up again, independently

The only collective that synchronises
We will come back to this later

Barrier Synchronisation (2)

Fortran example:

INTEGER :: error

CALL MPI_Barrier (MPI_COMM_WORLD , error)
C example:

INt error ;

error = MPI_Barrier (MPI_COMM_WORLD) ;
C++ example:

MPI::COMM_WORLD . Barrier () ;

Proarammina with MPI| = n. 44/??

Abandoning All Hope (1)

MPI1_Abort is the emergency stop
® Always call it on MPI_COMM_WORLD

Not a collective but should stop all processes
and, on most systems, it usually does ...

® Qutstanding file output is often lost
Far better to stop normally, if at all possible
I.e. all processes call MPI_Finalize and exit

e MPI_Abort is the emergency stop

Proarammina with MPI = p. 45/?7?

Abandoning All Hope (2)

Fortran:

INTEGER :: error
CALL MPI_Abort (MPI_COMM_WORLD , &

<failure code>, error)

C:
INt error ;
error = MPI_Abort (MPI_COMM_WORLD ,
<failure code>) ;
C++:

MPI::COMM_WORLD . Abort (<failure code>) ;

Proarammina with MPI = p. 46/?2°?

| ookahead to 1/0O

I/0 In parallel programs Is always tricky
It's worse In MPI1, because of MPI’'s portability
Each type of parallelism has different oddities

For now, just write to stdout or stderr
And the default output in Fortran, of course
It will work well enough for the examples

We will come back to using 1/0O later

Proarammina with MPI = p. 47/?7?

First Practical

You can actually do quite a lot with just these
Start by writing a trivial test program

Then writing a command spawner

This is very useful, and there are several around

Yes, some practical uses ARE that simple!

Use any language you like, that can call MPI
Examples will be in Fortran, C and (bad) C++

Proarammina with MPI = p. 48/?7?

Compiling and Running

This i1s all very implementation-dependent, of course
But, on most systems, do something like this:
Compile and link using mpif90, mpicc, mpiCC

Run using “mpiexec —n <n> <program= |args ...|"
<n>1s the number of processes to use

When using a job scheduler (queuing system)
you may need to put the latter in a script

® This course will use MPI only in SPMD mode

Proarammina with MPI = p. 49/?7?

PWF Usage

Unfortunately, the PWF uses single core systems
All the examples will work, but very slowly

I have set up OpenMPI, which has a few bugs
You need to ignore a few warnings — but only those

Proarammina with MPI = p. 50/?7?

|gnorable Warnings

Fortran:
Warning: Procedure ...’ called with an implicit interface at (1)

For most of the MPI calls — but only those

C++:
/usr/local/lOPENMPI/include/openmpi/ompi/mpi/cxx/comm_inin.h:...
warning: unused parameter ...’

Regrettably, there are quite a lot of these

C:
/usr/local/lOPENMPI/include/mpi.n:220: warning:
ISO C90 does not support *long long’

Proarammina with MPIl = p. 51/?27?

| nstructions

If running Microsoft Windows, CTRL-ALT-DEL
Select Restart and then Linux

Log into Linux and start a shell and an editor
Create programs called prog.f90, prog.c, prog.cpp.

® Run by typing commands like
mpif90 prog.f90, mpicc prog.c, mpiCC prog.cpp
mpiexec -n 4 a.out

®* Analyse what went wrong
® Fix bugs and retry

	Warning
	Using MPI
	Function Declarations
	MPI's Fortran Interface (1)
	MPI's Fortran Interface (2)
	MPI's Fortran Interface (3)
	MPI's Fortran Interface (4)
	MPI's Fortran Interface (5)
	MPI's Fortran Interface (6)
	MPI's C/C++ Interface (1)
	MPI's C/C++ Interface (2)
	MPI's C/C++ Interface (3)
	MPI's C Interface (1)
	MPI's C Interface (2)
	MPI and C++
	MPI's C++ Interface (1)
	MPI's C++ Interface (2)
	MPI's C++ Interface (3)
	MPI's C++ Interface (4)
	MPI's C++ Interface (5)
	MPI's C++ Interface (6)
	MPI's C++ Interface (7)
	More on Interfaces
	Starting and Stopping
	Fortran Startup/Stopping
	C Startup/Stopping
	C++ Startup/Stopping (1)
	C++ Startup/Stopping (2)
	Aside: Examples
	Version Numbers
	Testing MPI's State (1)
	Testing MPI's State (2)
	Global Communicator
	Process Rank
	Information Calls (1)
	Information Calls (2)
	Information Calls (3)
	Information Calls (4)
	Information Calls (5)
	Information Calls (6)
	Information Calls (7)
	Barrier Synchronisation (1)
	Barrier Synchronisation (2)
	Abandoning All Hope (1)
	Abandoning All Hope (2)
	Lookahead to I/O
	First Practical
	Compiling and Running
	PWF Usage
	Ignorable Warnings
	Instructions

