
Programming with MPI
Communicators etc.

Nick Maclaren

Computing Service

nmm1@cam.ac.uk, ext. 34761

May 2008

Programming with MPI – p. 1/??

Basic Concepts

A group is a set of process identifiers
Programs view them as integers 0...(size--1)

A context is the communication environment
Separate contexts are entirely independent
Programs don’t (and can’t) view contexts directly

A communicator is a group plus a context
So separate communicators are independent, too
• Even if they have the same group of processes

Normally, we work solely on communicators

Programming with MPI – p. 2/??

Predefined Communicators

There are several predefined communicators
Use these when appropriate

MPI---COMM---WORLD is all processors together

MPI---COMM---SELF is just the local processor

MPI---COMM---NULL is an invalid communicator
Used as an error result from several functions

Programming with MPI – p. 3/??

Use of Communicators (1)

Most people use only MPI---COMM---WORLD
We covered information calls in the first lecture

MPI---Comm---rank and MPI---Comm---size
Why do we need to go beyond that?

• To use collectives on only some processes
• Need to do a task on only some processes
• Want to do several tasks in parallel

Can do those messily by using point--to--point
Or by creating new, subset communicators

Programming with MPI – p. 4/??

Use of Communicators (2)

Avoid using two communicators that overlap
Including one together with a subset of itself
Clean up the use of one before starting the other

• MPI won’t get confused – but you and I will
And don’t even think of trying to tune such a mess!

Design your communicator use to be hierarchical
Like recursion in groups of processors

This is easier to show using pictures

Programming with MPI – p. 5/??

MPI_COMM_WORLD

General Communicators

Programming with MPI – p. 6/??

MPI_COMM_WORLD

Hierarchical Communicators

Programming with MPI – p. 7/??

Using Hierarchies

Programming with MPI – p. 8/??

Splitting Communicators (1)

• You always start with an existing communicator
And subdivide it to make one or more new ones
A collective call on the existing communicator

• Each process specifies a non--negative integer
The value is commonly called the colour

Each new communicator corresponds to one colour
E.g. all processes that specify the integer 42

If two processes specify different colours
the call returns different communicators

• A communicator is a value not an identifier

Programming with MPI – p. 9/??

Splitting Communicators (2)

Can also specify MPI---UNDEFINED to opt out
That is an unspecified negative integer
Note that zero is a valid colour

Call will return MPI---COMM---NULL
• This is an invalid communicator – don’t use it

Programming with MPI – p. 10/??

7777 3 3

Splitting Communicators

UU

U UA:0 A:1 A:3A:2B:0 B:1

Programming with MPI – p. 11/??

Splitting Communicators (3)

Can also set the rank in the new communicator
A key argument that has an integer value

Any values are allowed, even negative ones

Processes have ranks in key order
All keys to zero says you don’t care
• I recommend doing just that – one less detail

Doing anything else with keys is advanced use
Comparable to operating on groups directly

Programming with MPI – p. 12/??

Destroying Communicators

When you have finished with a communicator
You should free (delete/destroy) it
A collective call on the communicator

This will free any resources it uses

• You must tidy up all transfers first
Some libraries and tools may check that is so

• You needn’t free it if you only stop using it
I.e. when you are going to reuse it later

Programming with MPI – p. 13/??

Split (1)

Fortran example:

INTEGER :: colour , newcomm , error
! ’colour’ is set to an appropriate value

CALL MPI---Comm---split (&
MPI---COMM---WORLD , &
colour , 0 , newcomm , error)

IF (newcomm /= MPI---COMM---NULL) THEN
CALL My---collective (newcomm , ...)
CALL MPI---Comm---free (newcomm , error)

END IF

Programming with MPI – p. 14/??

Split (2)

C example:

int colour , error ;

/* ’colour’ is set to an appropriate value */
MPI---Comm newcomm ;

error = MPI---Comm---split (MPI---COMM---WORLD ,
colour , 0 , & newcomm) ;

if (newcomm != MPI---COMM---NULL) {
My---collective (newcomm , ...) ;

error = MPI---Comm---free (newcomm) ;

}

Programming with MPI – p. 15/??

Split (3)

C++ example:

int colour , error ;

// ’colour’ is set to an appropriate value
MPI::Comm newcomm ;

newcomm = MPI::COMM---WORLD . Split (colour , 0) ;

if (newcomm != MPI::COMM---NULL) {
// Not a member function to avoid subclassing
My---collective (newcomm , ...) ;

MPI::COMM---WORLD . Free (newcomm) ;

}

Programming with MPI – p. 16/??

More Complex Uses (1)

You can obviously do the above recursively
Change MPI---COMM---WORLD to newcomm
Change newcomm to evennewercomm

I said don’t use overlapping communicators
Inactive communicators aren’t a problem

• Just tidy up all transfers before proceeding
Suggest using barriers for tuning reasons

Will give just a very simple, C++--style example

Programming with MPI – p. 17/??

Using Two Levels

Programming with MPI – p. 18/??

More Complex Uses (2)

My---global---collective (MPI::COMM---WORLD) ;

newcomm = MPI::COMM---WORLD . Split (colour) ;

if (newcomm != MPI::COMM---NULL)
My---split---collective (newcomm , ...) ;

My---global---collective (MPI::COMM---WORLD) ;

if (newcomm != MPI::COMM---NULL)
My---split---collective (newcomm , ...) ;

My---global---collective (MPI::COMM---WORLD) ;

Note newcomm is actually three communicators
They can’t overlap, so the above use is safe
Yes, that is parallel use of collectives

Programming with MPI – p. 19/??

More Complex Uses (3)

And here is the first half, with some barriers
Probably easier to tune, and possibly faster
Note which communicator they are used with!

My---global---collective (MPI::COMM---WORLD) ;

newcomm = MPI::COMM---WORLD . Split (colour) ;

if (newcomm != MPI::COMM---NULL) {
My---split---collective (newcomm , ...) ;

newcomm . Barrier () ;

}
MPI::COMM---WORLD . Barrier () ;

My---global---collective (MPI::COMM---WORLD) ;

Programming with MPI – p. 20/??

Error Handling

• The error handler is inherited

You can change that subsequently
I can’t imagine many people wanting to

• Remember to set any error handler first
obviously on MPI---COMM---WORLD

Before creating any sub--communicators

Programming with MPI – p. 21/??

Replication

You can make an exact copy of a communicator
It is then completely independent of the first one
The function is MPI---Comm---dup

• Could be useful to bypass implementation bugs
Another possible use is mentioned in extra lectures
But, in general, very few people will want it

FFTW and SPOOLES use MPI---Comm---dup
I think only because they misunderstood MPI

Possibly to fix up some broken implementation

Programming with MPI – p. 22/??

Other Facilities

• That’s more--or--less all you need to know!

You can add names to communicators in MPI--2
Might improve your diagnostics considerably
MPI---Comm---get---name & MPI---Comm---set---name

One other function, useful for advanced use only
MPI---Comm---compare

Programming with MPI – p. 23/??

Groups (1)

There are facilities for operating on groups
Not often used (though I have and CPMD does)
So here is just a very brief summary

Operations on groups are entirely local
Just operating on sets of integers, after all

For cleanliness, MPI hides them behind a handle
This is called MPI---Group in C/C++
You should use only the facilities it provides

Take effect only when you create a communicator

Programming with MPI – p. 24/??

Groups (2)

Alternative way of creating subset communicators

• MPI---Comm---group gets the current group
I.e. it extracts it from the communicator

• MPI---Group---incl creates a subset group
You pass it the ranks you want to keep

• MPI---Comm---create makes a new communicator
using the new subset group

• MPI---Group---free releases the groups
Highly desirable to avoid resource leaks

• MPI---Comm---free is used as earlier

Programming with MPI – p. 25/??

Groups (3)

Strongly advised to program those collectively
I.e. do identical group calculations on all processes
Not because MPI needs that – but to avoid errors

Only two actual collectives:

MPI---Comm---create and MPI---Comm---free
But group membership in all processes must match

You may find that easier than MPI---Comm---split
It’s purely a matter of personal preference

Programming with MPI – p. 26/??

Other Group Functions

MPI---Group---compare MPI---Group---range---incl
MPI---Group---difference MPI---Group---rank
MPI---Group---excl MPI---Group---size
MPI---Group---intersection MPI---Group---translate---ranks
MPI---Group---range---excl MPI---Group---union

Many of them are alternatives to MPI---Group---incl
I doubt you will ever want to use the others
Some of the C++ names are slightly different

Programming with MPI – p. 27/??

Orphan Topic

Following topic doesn’t fit naturally anywhere

Relevant only to Fortran 90 programmers

But it’s almost trivial to use, so here it is

Programming with MPI – p. 28/??

Fortran Precisions (1)

Fortran 90 allows selectable precisions
KIND=SELECTED---INTEGER---KIND(precision)
KIND=SELECTED---REAL---KIND(precision[,range])

Can create a MPI derived datatype to match these
Then can use it just like a built--in datatype

Surprisingly, it is a predefined datatype
Do NOT commit or free it
[Don’t worry if that makes no sense to you]

Programming with MPI – p. 29/??

Fortran Precisions (2)

INTEGER (KIND = &
SELECTED---INTEGER---KIND (15)) , &

DIMENSION (100) :: array
INTEGER :: root , integertype , error

CALL MPI---Type---create---f90---integer (&
15 , integertype , error)

CALL MPI---Bcast (array , 100 , &
integertype , root , &
MPI---COMM---WORLD , error)

Programming with MPI – p. 30/??

Fortran Precisions (3)

REAL and COMPLEX are very similar

REAL (KIND = &
SELECTED---REAL---KIND (15 , 300)) , &

DIMENSION (100) :: array
CALL MPI---Type---create---f90---real (&

15 , 300 , realtype , error)

COMPLEX (KIND = &
SELECTED---REAL---KIND (15 , 300)) , &

DIMENSION (100) :: array
CALL MPI---Type---create---f90---complex (&

15 , 300 , complextype , error)

Programming with MPI – p. 31/??

Epilogue

You now know what you can do with communicators
Most of you will use only MPI---COMM---WORLD

One simple exercise using MPI---Comm---split
And one on Fortran 90 allows selectable precisions

Programming with MPI – p. 32/??

	Basic Concepts
	Predefined Communicators
	Use of Communicators (1)
	Use of Communicators (2)
	Splitting Communicators (1)
	Splitting Communicators (2)
	Splitting Communicators (3)
	Destroying Communicators
	Split (1)
	Split (2)
	Split (3)
	More Complex Uses (1)
	More Complex Uses (2)
	More Complex Uses (3)
	Error Handling
	Replication
	Other Facilities
	Groups (1)
	Groups (2)
	Groups (3)
	Other Group Functions
	Orphan Topic
	Fortran Precisions (1)
	Fortran Precisions (2)
	Fortran Precisions (3)
	Epilogue

