
Numerical Programming in Python
Part I: The Basic Facilities

Nick Maclaren

Computing Service

nmm1@cam.ac.uk, ext. 34761

February 2006

Numerical Programming in Python – p. 1/??

Overview of Course

Basic facilities – i.e. using Python
Integers, floating--point, complex etc.

Arithmetic details and exception handling
What we need to know, but don’t want to

Applications of Python for numerics
Some important ways of using it

Numerical Programming in Python – p. 2/??

Practicals etc.

Many examples – to see what happens
Code is in directory Demos

Please run them and check for surprises
Ask questions if you are puzzled

There are a few, simple, real practicals
Assume that you already program in Python

Numerical Programming in Python – p. 3/??

Beyond the Course

Email escience--support@ucs for advice

http: / /www--uxsup.csx.cam.ac.uk/courses/...
... /NumericalPython

http: / /www.scipy.org/

Numerical Programming in Python – p. 4/??

Let’s Start Simply

Python makes an excellent desk calculator
Non--trivial work is a pain in most (e.g. dc)
Excel is better, but still can be painful

Not as powerful as Matlab, in that respect
But is much more powerful in others

Very useful for one--off calculations
No ‘‘cliff’’ between them and complex program

Numerical Programming in Python – p. 5/??

Trivial Practical

What diameter circle has area of 10 cm2?
vol. = πr2 ⇒ diam. = 2

√

10/π

python
from math import pi, sqrt
print 2.0*sqrt(10.0/pi)

Try that and check result is about 3.568

Numerical Programming in Python – p. 6/??

Python Output
3.56824823231

Numerical Programming in Python – p. 7/??

Python’s Facilities

Will now go through all of built--in numerics
At each stage, will try out facilities
• What they DO, not just how to use

Python is very standard computer language
Most things apply to other ones, too
• Key factor is how to map mathematics

Simple use is not hard, if approached right

Numerical Programming in Python – p. 8/??

Python’s Integers

No limit on size, except memory
Definite errors (e.g. 123/0) raise exceptions
Exceptions can be trapped – see later

Very big integers (e.g. > 101000) can be slow
Multiply, divide, remainder, conversion, etc.

• Most things just work as you would expect

Numerical Programming in Python – p. 9/??

Integer Operations

‘+’, ‘--’, ‘*’, ‘ / ’ (used for ÷) ops, as usual

‘ / ’ ⇒ –∞ – can also be written ‘ / / ’
x%y is remainder, same sign as ‘y’ – note!

Built--in functions:

abs – absolute (positive) value
Type conversion functions – int ≡ long
divmod(x, y) ⇒ (x/y, x%y)

pow(x, y) (or x**y) ⇒ xy

Numerical Programming in Python – p. 10/??

Examples

x = divmod(+123, --45)
print +123/--45, +123%--45, x
print x[0]*--45+x[1]

Then try other combinations of signs

print 100+23, abs(--123), abs(+123)
print pow(2, 10), pow(--5, 3), pow(5, 0)

Will return to exception handling later

Numerical Programming in Python – p. 11/??

Python Output
--3 --12 (--3, --12)
123

--3 12 (--3, 12)
--123
2 --33 (2, --33)
--123
2 33 (2, 33)
123

123 123 123

Numerical Programming in Python – p. 12/??

Formatted Output

Formatted output based on C
Simple case: %d or %<width>d
If width too small, uses minimum necessary

print "%d %d " % (123, 1234567890)
print "%7d %7d" % (123, 1234567890)

Many more options, but can be ignored

Numerical Programming in Python – p. 13/??

Python Output
123 1234567890

123 1234567890

Numerical Programming in Python – p. 14/??

Logical (Bitwise) Operations

Dubiously numeric, so will gloss over
See documentation for more details

Treats number as binary, twos complement
Can input/output as hex. or octal
Usual selection of logical operations

Shifts scale by a power of two (useful)

a<<b ≡ a*2b, a>>b ≡ a/2b

Numerical Programming in Python – p. 15/??

Python’s Floating-Point (1)

The type is called float and is numeric
• Does most things you learnt at A--level
Will return to numerical properties later

±<digits>.<digits>[<exponent>]
<exponent> is [e|E]±<digits>

Anything non--critical can be omitted
1.23, --0.00123, 1.23e5, +1e--5, 123.4E+5 etc.
Avoid unclear .23, 123., but will work

Numerical Programming in Python – p. 16/??

Floating-Point Operations

Includes everything you can do with integers
‘ / ’ is floating--point division

‘ / / ’, ‘%’, divmod use integer quotient
• But all results remain as float
Also fmod, modf from math (see later)

Mixing integers and reals works as expected
• Result is almost always floating--point
pow(<int>, --<int>) ⇒ float

Numerical Programming in Python – p. 17/??

Examples

print +12.3/--3.4, +12.3/ /--3.4, +12.3%--3.4, \
divmod(+12.3,--3.4)

Other combinations of signs are similar

print abs(--123.4), pow(1.2345, 10)
print 123.0/34, 123/34.0, 5*2.34567+98
x = --3
print pow(5, --3), pow(5, x), pow(5, --x)

Will return to exception handling later

Numerical Programming in Python – p. 18/??

Python Output
--3.61764705882 --4.0 --1.3

(--4.0, --1.2999...99989)

--3.61764705882 --4.0 1.3 (--4.0, 1.29...989)
3.61764705882 3.0 --2.1 (3.0, --2.100...001)
3.61764705882 3.0 2.1 (3.0, 2.1000...0001)

123.4 8.22074056463
3.61764705882 3.61764705882 109.72835
0.008 0.008 125

Numerical Programming in Python – p. 19/??

Floating-Point Formatting (1)

Very like integer formatting, for same reason
%<width>.<prec>f is fixed--point form
%<width>.<prec>e is scientific form

Lots of variations, but can ignore most
• Provide a precision – default is poor
A precision of zero prints in integer form

• Can trust only 15 sig. figs
• Need 18 sig. figs to guarantee reinput

Numerical Programming in Python – p. 20/??

Floating-Point Formatting (2)

Try:

x = 100.0/7.0
print "%.3f %.5e" % (x, x)
print "%10.5f %20.3e" % (x, x)
print "%.0f %.0e" % (x, x)

print "%.30f %.30e" % (9.1, 9.1)
print "%.30f" % 1.0e--15
See where the numbers start to go wrong

Numerical Programming in Python – p. 21/??

Python Output
14.286 1.42857e+01

14.28571 1.429e+01
14 1e+01

9.09999999999999644728632119950
9.09999999999999644728632119950e+00

0.000000000000001000000000000000

Numerical Programming in Python – p. 22/??

Floating-Point Formatting (3)

Results almost always round correctly:

x = (1.234567890125, 1.23456789012501)
print "%.20f %.20f " % x
print x[0], x[1]
print "%.11f %.11f " % x

Default is a bit odd, but still rounds:

print x[0], x[1], x

Numerical Programming in Python – p. 23/??

Python Output
1.23456789012499990044

1.23456789012500989244
1.23456789012 1.23456789013

1.23456789012 1.23456789013
(1.2345678901249999, 1.2345678901250099)

Numerical Programming in Python – p. 24/??

Integers In Reals

Up to > ± 1015 in float are exact
Conversion to int or long uses C’s rule
This almost always truncates towards zero

Alternatively, floor, ceil, from math
Towards –∞ and +∞, as float

Except for NaNs (see later), few problems
‘Reasonable’ behaviour OR raises exception

Numerical Programming in Python – p. 25/??

Examples

Try:

x = 1.0
for i in xrange(1,30) :

x = x*5.0
print "%2d: %.0f %.0f %.0f %.0f" % \

(i, x, pow(5,i), x--1, x+1)

Now look at line 23 – notice anything?
There are TWO things to notice

Numerical Programming in Python – p. 26/??

Output

1: 5 5 4 6
2: 25 25 24 26
3: 125 125 124 126
4: 625 625 624 626

. . .
21: ...125 ...125 ...124 ...126
22: ...625 ...625 ...624 ...626
23: ...124 ...124 ...124 ...124
24: ...624 ...624 ...624 ...624

Numerical Programming in Python – p. 27/??

The %d Descriptor

Watch out for %d with float data
It converts to an integer before formatting
• Use not recommended, as might change

x = 12345.6
y = --x
print "%.0f %.0f" % (x, y)
print "%d %d" % (x, y)

Numerical Programming in Python – p. 28/??

Python Output
12346 --12346
12345 --12345

Numerical Programming in Python – p. 29/??

Standard Modules

Module math includes functions, pi and e
sqrt, exp, log, log10 etc.
Normal and inverse trig. and hyperbolic
Plus those mentioned above and some others

Calls the C library directly – see later
• Watch out for exception handling!
• Use built--in pow, NOT from math

Module random includes reasonable generators

Numerical Programming in Python – p. 30/??

Examples

Try:

from math import sqrt, cos, log, atan, pi, e
print sqrt(10), log(10), cos(4)
print log(pow(e,3)), cos(pi /4)
print 4*atan(1.0), atan(1.0e6)

from random import random, gauss
for i in xrange(0,10) :

print random(), gauss(100.0,20.0)

Numerical Programming in Python – p. 31/??

Python Output
3.16227766017 2.30258509299

--0.653643620864
3.0 0.707106781187
3.14159265359 1.57079532679

0.774001216879 102.136112561
0.68237930206 105.101301637
0.28760594402 139.895961878

. . .

Numerical Programming in Python – p. 32/??

Practical

Calculate ‘e’ by summing series
1 + 1/1 + 1/2 + 1/6 + 1/24 + . . . + 1/(n!) . . .
Use floating--point, add until no change

Print e, exp(1) from math and your result
They should all be the same!

Numerical Programming in Python – p. 33/??

Sample Code

from math import e, exp
total = 0.0
fact = 1.0
n = 1
while total+fact > total :

total = total+fact
fact = fact /n
n = n+1

print e, exp(1), total

Numerical Programming in Python – p. 34/??

Decimal Floating-Point

Included in new IEEE 754R standard
Unclear when (and if!) hardware will have it
Python has it in the decimal module

NOT a panacea – or significantly worse
The exactness claims are propaganda

Try π, 1.0/3.0, 1.0125, scientific code

Experiment with it if you are interested
Not yet recommended for real work

Numerical Programming in Python – p. 35/??

Complex Numbers (1)

Imaginary parts are <number>J (or ‘j’)
1.23+4.56j or --1.0j ≡ --1j are complex
complex(x,y) ≡ x+y*1j even if ‘y’ is complex

• Most things just work as you would expect
Assuming that you use complex numbers!

• Convert to float for formatted I /O
Default I /O (e.g. print 1.23+4.56j) is fine

Numerical Programming in Python – p. 36/??

Complex Numbers (1)

All the built--ins that float has
• divmod, ‘ / / ’ and ‘%’ are deprecated

Built--in real, imag attributes
Built--in conjugate method

Module cmath is analogue of math
It doesn’t have pow, but that is good

Numerical Programming in Python – p. 37/??

Complex Examples

from cmath import sqrt, cos, exp, pi, e
x = complex(12.3,3.4)
y = 5.67+8.9j
print x, y, x+y, x*y, x/y, cos(x)
print x*x, pow(x,2), sqrt(--1)
print exp(x), pow(e,x)

print x.real, x.imag, x.conjugate()
print pow(abs(x),2), x*x.conjugate()

Numerical Programming in Python – p. 38/??

Python Output
(12.3+3.4j) (5.67+8.9j) (17.97+12.3j)

(39.481+128.748j)
(0.898006356025--0.809921793409j)
(14.4697704817+3.93935941325j)

(139.73+83.64j) (139.73+83.64j) 1j
(--212401.684765--56141.3550562j)

(--212401.684765--56141.3550562j)

12.3 3.4 (12.3--3.4j)
162.85 (162.85+0j)

Numerical Programming in Python – p. 39/??

Where Are We?

The basics of all Python built--in numerics
• Many people can go on and write code
Provided that nothing goes wrong!

• But, in real life, things do go wrong
Will now describe the arithmetic model
Including basics of exceptions

• Need to understand this to avoid pitfalls
Get right answers, not just plausible ones

Numerical Programming in Python – p. 40/??

	Overview of Course
	Practicals etc.
	Beyond the Course
	Let's Start Simply
	Trivial Practical
	Python Output
	Python's Facilities
	Python's Integers
	Integer Operations
	Examples
	Python Output
	Formatted Output
	Python Output
	Logical (Bitwise) Operations
	Python's Floating-Point (1)
	Floating-Point Operations
	Examples
	Python Output
	Floating-Point Formatting (1)
	Floating-Point Formatting (2)
	Python Output
	Floating-Point Formatting (3)
	Python Output
	Integers In Reals
	Examples
	Output
	The %d Descriptor
	Python Output
	Standard Modules
	Examples
	Python Output
	Practical
	Sample Code
	Decimal Floating-Point
	Complex Numbers (1)
	Complex Numbers (1)
	Complex Examples
	Python Output
	Where Are We?

