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Overview of Course

Basic facilities – i.e. using Python
Integers, floating--point, complex etc.

Arithmetic details and exception handling
What we need to know, but don’t want to

Applications of Python for numerics
Some important ways of using it
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Practicals etc.

Many examples – to see what happens
Code is in directory Demos

Please run them and check for surprises
Ask questions if you are puzzled

There are a few, simple, real practicals
Assume that you already program in Python
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Beyond the Course

Email escience--support@ucs for advice

http: / /www--uxsup.csx.cam.ac.uk/courses/...
... /NumericalPython

http: / /www.scipy.org/
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Let’s Start Simply

Python makes an excellent desk calculator
Non--trivial work is a pain in most (e.g. dc)
Excel is better, but still can be painful

Not as powerful as Matlab, in that respect
But is much more powerful in others

Very useful for one--off calculations
No ‘‘cliff’’ between them and complex program
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Trivial Practical

What diameter circle has area of 10 cm2?
vol. = πr2 ⇒ diam. = 2

√

10/π

python
from math import pi, sqrt
print 2.0*sqrt(10.0/pi)

Try that and check result is about 3.568
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Python Output
3.56824823231
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Python’s Facilities

Will now go through all of built--in numerics
At each stage, will try out facilities
• What they DO, not just how to use

Python is very standard computer language
Most things apply to other ones, too
• Key factor is how to map mathematics

Simple use is not hard, if approached right

Numerical Programming in Python – p. 8/??



Python’s Integers

No limit on size, except memory
Definite errors (e.g. 123/0) raise exceptions
Exceptions can be trapped – see later

Very big integers (e.g. > 101000) can be slow
Multiply, divide, remainder, conversion, etc.

• Most things just work as you would expect
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Integer Operations

‘+’, ‘--’, ‘*’, ‘ / ’ (used for ÷) ops, as usual

‘ / ’ ⇒ –∞ – can also be written ‘ / / ’
x%y is remainder, same sign as ‘y’ – note!

Built--in functions:

abs – absolute (positive) value
Type conversion functions – int ≡ long
divmod(x, y) ⇒ (x/y, x%y)

pow(x, y) (or x**y) ⇒ xy
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Examples

x = divmod(+123, --45)
print +123/--45, +123%--45, x
print x[0]*--45+x[1]

Then try other combinations of signs

print 100+23, abs(--123), abs(+123)
print pow(2, 10), pow(--5, 3), pow(5, 0)

Will return to exception handling later
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Python Output
--3 --12 (--3, --12)
123

--3 12 (--3, 12)
--123
2 --33 (2, --33)
--123
2 33 (2, 33)
123

123 123 123
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Formatted Output

Formatted output based on C
Simple case: %d or %<width>d
If width too small, uses minimum necessary

print "%d %d " % (123, 1234567890)
print "%7d %7d" % (123, 1234567890)

Many more options, but can be ignored
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Python Output
123 1234567890

123 1234567890
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Logical (Bitwise) Operations

Dubiously numeric, so will gloss over
See documentation for more details

Treats number as binary, twos complement
Can input/output as hex. or octal
Usual selection of logical operations

Shifts scale by a power of two (useful)

a<<b ≡ a*2b, a>>b ≡ a/2b
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Python’s Floating-Point (1)

The type is called float and is numeric
• Does most things you learnt at A--level
Will return to numerical properties later

±<digits>.<digits>[<exponent>]
<exponent> is [e|E]±<digits>

Anything non--critical can be omitted
1.23, --0.00123, 1.23e5, +1e--5, 123.4E+5 etc.
Avoid unclear .23, 123., but will work
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Floating-Point Operations

Includes everything you can do with integers
‘ / ’ is floating--point division

‘ / / ’, ‘%’, divmod use integer quotient
• But all results remain as float
Also fmod, modf from math (see later)

Mixing integers and reals works as expected
• Result is almost always floating--point
pow(<int>, --<int>) ⇒ float
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Examples

print +12.3/--3.4, +12.3/ /--3.4, +12.3%--3.4, \
divmod(+12.3,--3.4)

Other combinations of signs are similar

print abs(--123.4), pow(1.2345, 10)
print 123.0/34, 123/34.0, 5*2.34567+98
x = --3
print pow(5, --3), pow(5, x), pow(5, --x)

Will return to exception handling later
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Python Output
--3.61764705882 --4.0 --1.3

(--4.0, --1.2999...99989)

--3.61764705882 --4.0 1.3 (--4.0, 1.29...989)
3.61764705882 3.0 --2.1 (3.0, --2.100...001)
3.61764705882 3.0 2.1 (3.0, 2.1000...0001)

123.4 8.22074056463
3.61764705882 3.61764705882 109.72835
0.008 0.008 125
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Floating-Point Formatting (1)

Very like integer formatting, for same reason
%<width>.<prec>f is fixed--point form
%<width>.<prec>e is scientific form

Lots of variations, but can ignore most
• Provide a precision – default is poor
A precision of zero prints in integer form

• Can trust only 15 sig. figs
• Need 18 sig. figs to guarantee reinput
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Floating-Point Formatting (2)

Try:

x = 100.0/7.0
print "%.3f %.5e" % (x, x)
print "%10.5f %20.3e" % (x, x)
print "%.0f %.0e" % (x, x)

print "%.30f %.30e" % (9.1, 9.1)
print "%.30f" % 1.0e--15
See where the numbers start to go wrong
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Python Output
14.286 1.42857e+01

14.28571 1.429e+01
14 1e+01

9.09999999999999644728632119950
9.09999999999999644728632119950e+00

0.000000000000001000000000000000
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Floating-Point Formatting (3)

Results almost always round correctly:

x = (1.234567890125, 1.23456789012501)
print "%.20f %.20f " % x
print x[0], x[1]
print "%.11f %.11f " % x

Default is a bit odd, but still rounds:

print x[0], x[1], x
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Python Output
1.23456789012499990044

1.23456789012500989244
1.23456789012 1.23456789013

1.23456789012 1.23456789013
(1.2345678901249999, 1.2345678901250099)
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Integers In Reals

Up to > ± 1015 in float are exact
Conversion to int or long uses C’s rule
This almost always truncates towards zero

Alternatively, floor, ceil, from math
Towards –∞ and +∞, as float

Except for NaNs (see later), few problems
‘Reasonable’ behaviour OR raises exception
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Examples

Try:

x = 1.0
for i in xrange(1,30) :

x = x*5.0
print "%2d: %.0f %.0f %.0f %.0f" % \

(i, x, pow(5,i), x--1, x+1)

Now look at line 23 – notice anything?
There are TWO things to notice
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Output

1: 5 5 4 6
2: 25 25 24 26
3: 125 125 124 126
4: 625 625 624 626

. . .
21: ...125 ...125 ...124 ...126
22: ...625 ...625 ...624 ...626
23: ...124 ...124 ...124 ...124
24: ...624 ...624 ...624 ...624
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The %d Descriptor

Watch out for %d with float data
It converts to an integer before formatting
• Use not recommended, as might change

x = 12345.6
y = --x
print "%.0f %.0f" % (x, y)
print "%d %d" % (x, y)
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Python Output
12346 --12346
12345 --12345
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Standard Modules

Module math includes functions, pi and e
sqrt, exp, log, log10 etc.
Normal and inverse trig. and hyperbolic
Plus those mentioned above and some others

Calls the C library directly – see later
• Watch out for exception handling!
• Use built--in pow, NOT from math

Module random includes reasonable generators
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Examples

Try:

from math import sqrt, cos, log, atan, pi, e
print sqrt(10), log(10), cos(4)
print log(pow(e,3)), cos(pi /4)
print 4*atan(1.0), atan(1.0e6)

from random import random, gauss
for i in xrange(0,10) :

print random(), gauss(100.0,20.0)
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Python Output
3.16227766017 2.30258509299

--0.653643620864
3.0 0.707106781187
3.14159265359 1.57079532679

0.774001216879 102.136112561
0.68237930206 105.101301637
0.28760594402 139.895961878

. . .
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Practical

Calculate ‘e’ by summing series
1 + 1/1 + 1/2 + 1/6 + 1/24 + . . . + 1/(n!) . . .
Use floating--point, add until no change

Print e, exp(1) from math and your result
They should all be the same!

Numerical Programming in Python – p. 33/??



Sample Code

from math import e, exp
total = 0.0
fact = 1.0
n = 1
while total+fact > total :

total = total+fact
fact = fact /n
n = n+1

print e, exp(1), total
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Decimal Floating-Point

Included in new IEEE 754R standard
Unclear when (and if!) hardware will have it
Python has it in the decimal module

NOT a panacea – or significantly worse
The exactness claims are propaganda

Try π, 1.0/3.0, 1.0125, scientific code

Experiment with it if you are interested
Not yet recommended for real work

Numerical Programming in Python – p. 35/??



Complex Numbers (1)

Imaginary parts are <number>J (or ‘j’)
1.23+4.56j or --1.0j ≡ --1j are complex
complex(x,y) ≡ x+y*1j even if ‘y’ is complex

• Most things just work as you would expect
Assuming that you use complex numbers!

• Convert to float for formatted I /O
Default I /O (e.g. print 1.23+4.56j) is fine
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Complex Numbers (1)

All the built--ins that float has
• divmod, ‘ / / ’ and ‘%’ are deprecated

Built--in real, imag attributes
Built--in conjugate method

Module cmath is analogue of math
It doesn’t have pow, but that is good
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Complex Examples

from cmath import sqrt, cos, exp, pi, e
x = complex(12.3,3.4)
y = 5.67+8.9j
print x, y, x+y, x*y, x/y, cos(x)
print x*x, pow(x,2), sqrt(--1)
print exp(x), pow(e,x)

print x.real, x.imag, x.conjugate()
print pow(abs(x),2), x*x.conjugate()

Numerical Programming in Python – p. 38/??



Python Output
(12.3+3.4j) (5.67+8.9j) (17.97+12.3j)

(39.481+128.748j)
(0.898006356025--0.809921793409j)
(14.4697704817+3.93935941325j)

(139.73+83.64j) (139.73+83.64j) 1j
(--212401.684765--56141.3550562j)

(--212401.684765--56141.3550562j)

12.3 3.4 (12.3--3.4j)
162.85 (162.85+0j)
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Where Are We?

The basics of all Python built--in numerics
• Many people can go on and write code
Provided that nothing goes wrong!

• But, in real life, things do go wrong
Will now describe the arithmetic model
Including basics of exceptions

• Need to understand this to avoid pitfalls
Get right answers, not just plausible ones
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