
Numerical Programming in Python
Part II: Arithmetic and Exception Handling

Nick Maclaren

Computing Service

nmm1@cam.ac.uk, ext. 34761

February 2006

Numerical Programming in Python – p. 1/??

Computer Arithmetic (1)

Include some material from another course
‘‘How Computers Handle Numbers’’

Integers (Z), reals (R) and complex (C)
Hardware has limited approximations
• Python’s integers already covered

• Principles apply to all languages
You won’t have to relearn for another one

Numerical Programming in Python – p. 2/??

Computer Arithmetic (2)

Most (not all) details apply to any language
Fortran, C++, Matlab, Excel etc.

To summarise the problem:

Mismatch between mathematics and computing
Not just floating--point, nor even just hardware

A lot more that will not be covered
• Just what programmers need to know

Numerical Programming in Python – p. 3/??

Basics of Floating-Point

Also called (leading zero) scientific notation

sign × mantissa × baseexponent

E.g. +0.12345×102 = 12.345

Like fixed--point –1.0 < sign+mantissa < +1.0

Scaled by baseexponent (102 in above)

Numerical Programming in Python – p. 4/??

Precision And Range

1 > mantissa ≥ 1/base (‘‘normalised’’)
P sig. digits ⇒ relative acc. × (1 ± base1--P)

base1--P is called machine epsilon

Smallest value such that 1.0+base1--P > 1.0

Also (roughly) –maxexp < exponent < maxexp

–basemaxexp to +basemaxexp called range

Numerical Programming in Python – p. 5/??

Floating-Point versus Reals (1)

Floating--point effectively not deterministic
Predictable only to representation accuracy

Differences are either trivial – × (1 ± base1--P)
Or only for infinitesimally small numbers

• Regard floating--point results as ‘‘noisy’’
Not worth trying to predict exact result

Numerical Programming in Python – p. 6/??

Floating-Point versus Reals (2)

Fixed--point breaks many rules of real arithmetic
Floating--point breaks even more
Wrong assumptions cause wrong answers

• Key is to think floating--point, not real
Practice makes this semi--automatic
50 years of Fortran can’t be wrong . . .

Seriously, that IS all you need to do

Numerical Programming in Python – p. 7/??

Python’s Floating-Point (2)

Almost always IEEE 754 double precision
http: / /754r.ucbtest.org/standards/754.pdf
Binary, signed magnitude – details are messy

Double precision is 64--bit = 8 byte

• Accuracy is 2.2 × 10--16 (52/53 bits)

• Range is 2.2 × 10--308 to 1.8 × 10308

Not quite as simple or the same on all systems
• You can ignore most of the differences

Numerical Programming in Python – p. 8/??

Things That Just Work

Mathematicians will recognise this . . .
It describes what you can assume in your code

A+B = B+A, A*B = B*A
A+0.0 = A, A*0.0 = 0.0, A*1.0 = A
Each A has a B = –A, such that A+B = 0.0
A ≥ B and B ≥ C means that A ≥ C
A ≥ B is equivalent to NOT B > A

Numerical Programming in Python – p. 9/??

Things To Watch Out For (1)

(A+B)+C may not be A+(B+C) (ditto for ‘*’)
(A+B)–B may not be A (ditto for ‘*’ and ‘ / ’)

Try:

x = 0.001
y = (1.0+x)--1.0
print x, y, x == y

print "%.16f %.16f" % (x,y)

Numerical Programming in Python – p. 10/??

Python Output
0.001 0.001 False

0.0010000000000000 0.0009999999999999

Numerical Programming in Python – p. 11/??

Things To Watch Out For (2)

A+A+A may not be exactly 3.0*A

Try:

x = 1.0/6.0
y = x+x+x+x+x+x
print y, y == 1.0

print "%.18f %.18f" % (x, y)

Numerical Programming in Python – p. 12/??

Python Output
1.0 False

0.166666666666666657 0.999999999999999889

Numerical Programming in Python – p. 13/??

Things To Watch Out For (3)

Not all A have a B = 1.0/A, such that A*B = 1.0

Try:

from math import e
x = e/11.0
y = 1.0/x
z = 1.0/y
print x == z

print "%.18f %.18f %.18f" % (x,y,z)

Numerical Programming in Python – p. 14/??

Python Output
False

0.247116529859913198 4.046673852885865230
0.247116529859913225

Numerical Programming in Python – p. 15/??

Things To Watch Out For (4)

B > 0.0 may not mean A+B > A
A > 0.0 may not mean 0.5*A > 0.0

Try:

x = 1.0e--20
y = 5.0e--324
print 1.0+x == 1.0, y/2.0

print "%.6e %.6e" % (x,y)

Numerical Programming in Python – p. 16/??

Python Output
True 0.0

1.000000e--20 4.940656e--324

Numerical Programming in Python – p. 17/??

Things To Watch Out For (5)

A > B and C > D may not mean A+C > B+D

Try:

a = 0.75+1.0e--16
b = 0.75
c = 0.5
d = 0.5--1.0e--16
print a > b, c > d, a+c > b+d

print "%.16f %.16f %.16f %.16f" % (a,b,c,d)
print "%.16f %.16f" % (a+c,b+d)

Numerical Programming in Python – p. 18/??

Python Output
True True False

0.75000...000111 0.75000...000
0.5000...000 0.4999...999889

1.25000...000 1.25000...000

Numerical Programming in Python – p. 19/??

Reminder

Above are either trivially small differences
Or only for infinitesimally small numbers

• They can build up – not covered here

Remaining problem is errors and exceptions
Messiest part of IEEE 754 arithmetic

Numerical Programming in Python – p. 20/??

Exceptional Values (1)

±infinity represents value that overflowed
Not necessarily huge – e.g. log(exp(1000.0))

NaN (Not--a--Number) represents result of error
Typically mathematically invalid calculation

In theory, both propagate appropriately
In practice, the error state is not not reliable
Python avoids most IEEE 754 ‘‘gotchas’’

Numerical Programming in Python – p. 21/??

Exceptional Values (2)

Python raises exceptions to avoid ‘‘gotchas’’
Always delivers exceptional value if not

Try:

print 1.0/1.0e--320
print 1.0/0.0

But invariants may break near limits:

x = 5.0e--324
print 1.0/x == 2.0/x, x > 0.8*x
print x, 1.0/x, 2.0/x, 0.8*x

Numerical Programming in Python – p. 22/??

Python Output
inf
Traceback (most recent call last):

File "Demos/demo---15a.py", line 2, in
<module>

print 1.0/0.0
ZeroDivisionError: float division

True False
4.94065645841e--324 inf inf

4.94065645841e--324

Numerical Programming in Python – p. 23/??

Exceptional Values (3)

Be a little cautious, especially of math:

Two main trap areas that I know of:

from math import fmod, modf
x = float("inf") # or 1e400
print x/1.0, x/ /1.0, x%1.0, modf(x), fmod(x,1.0)
Neither approach is actually wrong

print pow(0.0,x)
But 0.0∞ is mathematically invalid!

Numerical Programming in Python – p. 24/??

Python Output
inf nan nan (0.0, inf) nan

0.0

Numerical Programming in Python – p. 25/??

Conversions

Left to C – which is not good news

float("inf") etc. will usually work
Expect "±infinity", "±inf" and "nan"

Have copied an error from Java and C99:

x = 0.0*1.0e400
n = int(x)
print x, n

Numerical Programming in Python – p. 26/??

Python Output
nan 0

Numerical Programming in Python – p. 27/??

NaN Comparison

Main IEEE 754 ‘‘gotcha’’ in Python
NaN comparison is numerical nonsense
Everything is False except for ‘!=’

x = 1.0/1.0e--320
y = x/x
print y > y, y <= y, y < y, y >= y
print y == y+0.0, y == y
print y != y+0.0, y != y

Numerical Programming in Python – p. 28/??

Python Output
False False False False
False False
True True

Numerical Programming in Python – p. 29/??

Sanity Checking and NaNs (1)

if x != x then we have a NaN
• But it may not always detect NaNs

Don’t make all tests positive checks
For example, NaN--safe code is like:

if speed > 0.0 and speed < 3.0e8 :

Do the real work
else :

panic("Speed error")

Numerical Programming in Python – p. 30/??

Sanity Checking and NaNs (2)

Following is almost as reliable (in Python):

if not (speed > 0.0 and speed < 3.0e8) :

panic("Speed error")

• Put quite a lot of such tests in your code
Helps to pick up problems close to failure

• Check all args on input to major functions
• Consider checking results before return

Numerical Programming in Python – p. 31/??

Exception Handling (1)

Not strictly numeric, so will gloss over
Will briefly describe how to handle them

• Don’t need to do anything in Python

If you don’t handle them, will get diagnostic
Unlike most C and Fortran compilers

Or can check data is valid before operation

Numerical Programming in Python – p. 32/??

Exception Handling (2)

This is what happens by default:

array = [1,2,3,4,0,5,6,7,0,8,9]
sum = 0
for x in array :

sum = sum+100/x

print sum

Numerical Programming in Python – p. 33/??

Python Output
Traceback (most recent call last):

File "Demos/demo---19.py", line 4, in
<module>

sum = sum+100/x
ZeroDivisionError: integer division or

modulo by zero

Numerical Programming in Python – p. 34/??

Exception Handling (3)

array = [1,2,3,4,0,5,6,7,0,8,9]
sum = 0
errors = 0
for x in array :

try :

sum = sum+100/x
except (ZeroDivisionError) :

errors = errors+1

print sum, errors

Numerical Programming in Python – p. 35/??

Python Output
281 2

Numerical Programming in Python – p. 36/??

Exception Handling (4)

array = [1,2,3,4,0,5,6,7,0,8,9]
sum = 0
errors = 0
for x in array :

if x != 0 :

sum = sum+100/x
else :

errors = errors+1

print sum, errors

Numerical Programming in Python – p. 37/??

Python Output
281 2

Numerical Programming in Python – p. 38/??

Exception Practical

Use previous method to add NaN checking
Change:

array = [1,2,1.0e400,float("NaN"),1.0e400, \
3,4,0,5,float("NaN"),1.0e400,6,7,0,8,9]

Test that your code gets the result right
Remember that 100/∞ is zero

Numerical Programming in Python – p. 39/??

Exception Answer

array = [1,2,1.0e400,float("NaN"),1.0e400, \
3,4,0,5,float("NaN"),1.0e400,6,7,0,8,9]

sum = 0
errors = 0
for x in array :

if x == x and x != 0 :

sum = sum+100/x
else :

errors = errors+1

print sum, errors

Numerical Programming in Python – p. 40/??

Complex Exceptions

Numbers apply to IEEE double precision
You will be fairly safe if following is true:

• No infinities or NaNs in float ⇒ complex

• abs of all args/results ≤ 10150 and ≥ 10--150

• Arc functions stay well clear of branch cuts
• Don’t push pow/ ‘**’ or cmath too far

• Numbers with abs ≤ 10--150 are OK IF
your code still works if they become zero

Numerical Programming in Python – p. 41/??

Branch Cuts

• Arcane aspect of complex arithmetic

Most fields that use them have conventions
• Must check Python does them ‘‘right’’
May need to wrap functions to fix them up

Other fields don’t need them, or make no sense
Have lost out politically, at least for now
• Treat as errors, and check for yourself

Numerical Programming in Python – p. 42/??

Check Complex Values

Can assume that abs is reliable

if not abs(current) < 1.0e150 :

panic("Speed error")

if not abs(value) > 1.0e--150 :

panic("Value error")
else :

return exp(sqrt(log(1/value))

Numerical Programming in Python – p. 43/??

The Sordid Reasons (1)

Some implementations may ‘lose’ NaN state
C99 specifies such behaviour, too often
Python follows C in many places

You can expect system differences
You can expect changes with Python versions
You can expect errors to escape unnoticed

• This is why NaNs are not reliable
Complex exception handling isn’t, either

Numerical Programming in Python – p. 44/??

Complex Exceptions Summary

This is an intrinsically foul problem
IEEE 754 makes a bad situation much worse
• NO language gets this even half--right
Not even Fortran, the numeric leader

Can get spurious zeroes, infinities, NaNs
Failures often occur without an exception

• Only safe rule is to stay clear of limits
Don’t rely on any language to protect you

Numerical Programming in Python – p. 45/??

The Sordid Reasons (2)

Why is this?

Operations like complex division are evil
http: / /www--uxsup.csx.cam.ac.uk/courses/...

... /Arithmetic/ foils---extra.pdf
[Python complex divide is actually pretty good]

Also relies largely on C’s primitives
C99 has complex as (real,imaginary) tuple
Its exception handling is completely broken

Numerical Programming in Python – p. 46/??

The Sordid Reasons (3)

Python CURRENTLY mostly fails safe
Some oddities, spurious NaNs and exceptions
Here are some examples of many:

from cmath import sqrt, atan
x = 1.0e400+0.0j
print x, x+0.0, x*1.0
print pow(x,--x), atan(x)
print sqrt(x)

Numerical Programming in Python – p. 47/??

Python Output
(inf+0j) (inf+0j) (inf+nanj)
(nan+nanj) (nan+nanj)
Traceback (most recent call last):

File "Demos/demo---22.py", line 5, in
<module>

print sqrt(x)
OverflowError: math range error

Numerical Programming in Python – p. 48/??

	Computer Arithmetic (1)
	Computer Arithmetic (2)
	Basics of Floating-Point
	Precision And Range
	Floating-Point versus Reals (1)
	Floating-Point versus Reals (2)
	Python's Floating-Point (2)
	Things That Just Work
	Things To Watch Out For (1)
	Python Output
	Things To Watch Out For (2)
	Python Output
	Things To Watch Out For (3)
	Python Output
	Things To Watch Out For (4)
	Python Output
	Things To Watch Out For (5)
	Python Output
	Reminder
	Exceptional Values (1)
	Exceptional Values (2)
	Python Output
	Exceptional Values (3)
	Python Output
	Conversions
	Python Output
	NaN Comparison
	Python Output
	Sanity Checking and NaNs (1)
	Sanity Checking and NaNs (2)
	Exception Handling (1)
	Exception Handling (2)
	Python Output
	Exception Handling (3)
	Python Output
	Exception Handling (4)
	Python Output
	Exception Practical
	Exception Answer
	Complex Exceptions
	Branch Cuts
	Check Complex Values
	The Sordid Reasons (1)
	Complex Exceptions Summary
	The Sordid Reasons (2)
	The Sordid Reasons (3)
	Python Output

