
Introduction to OpenMP

More Syntax and SIMD

N.M. Maclaren

Computing Service

nmm1@cam.ac.uk

ext. 34761

August 2011

1.1 C/C++ Parallel for-loop

C/C++ programmers need to know the rules more precisely. The syntax is:

for ([type] var = expr ;
var relop expr ;

increment expression)

The increment expression can be any of:
var++, ++var, var += expr, var = var +expr,
var– –, – –var, var –= expr, var = var –expr

The constraints are more like Fortran than C or even C++:

• var must be a signed integer variable.

• relop is one of the relational operators.

• Each expr must be invariant over the loop; do not include any side effects in them.

I recommend using only really simple expressions and, if in doubt, assign expressions
to temporary variables outside the loop and use those in the loop control.

1.2 More on Clauses

You can specify the scheduling for each loop; you can use it on the DO/for-loop directives
(both combined and split) and only on those. This is the OpenMP scheduling policy, and
not the system thread scheduling policy done by the kernel.

For normal SIMD work, use schedule(static); specifying it explicitly means that the
compiler knows it is using it, and this might generate better code than if it has to look at
an environment variable. This divides the loop into equal chunks, and then hands each
chunk to a single thread, in turn. Other schedule options are described later.

Data environment clauses are allowed on most parallel or work-sharing constructs, and
most have the syntax keyword(list), where list is a list of variable names. Most, including
shared and private, can be repeated, though you must not repeat any variable name, of
course. For example:

#pragma omp parallel private(joe), private(alf), shared(bert), \

private(i,j,k), shared(fred,n)

1

There are some apparently odd restrictions; some have good reasons, some others do
not. An example is that DO, for and sections without parallel are not allowed to have
shared. There are more restrictions on private, however, but there is no problem with
simple code, as in the examples.

• They are very important for practical use, and are described later, under critical guide-

lines.

1.3 Firstprivate

firstprivate is private with initialisation; the private objects start with the shared
values (i.e. the value in the variable outside the parallel section). Variables are copied as
if by assignment, which is particularly important for C++ programmers. There are other
forms of private, for advanced use only – they are not often useful, and this course does
not cover them.

Fortran Example:

module P

integer :: joe = 123, alf = 456

end module P

print *, joe, alf ! 123 456

!$omp parallel private(joe), firstprivate alf)

print *, joe ! Undefined value

print *, alf ! 456

joe = omp_get_thread_num ()

alf = joe

print *, joe, alf ! Thread num., twice

!$omp end parallel

print *, joe, alf ! Both undefined values

C/C++ Example:

int joe = 123, alf = 456;

printf("%d %d\n",joe,alf); /* 123 456 */

#pragma omp parallel private(joe), firstprivate(alf)

{

printf("%d\n",joe); /* Undefined value */

printf("%d\n",alf); /* 456 */

joe = alf = omp_get_thread_num();

printf("%d %d\n",joe,alf) ; /* Thread num., twice */

}

printf("%d\n",joe,alf); /* Both undefined values */

2

1.4 Reductions

These are exactly the same concept as reductions in MPI, and are one of the critical
parallel primitives; you can think of them as a summation across threads. They perform
some operation over all threads in an unspecified order, using hidden accumulators, and
return the aggregate result in the named variable. They are the most common form of
shared update access in a well-written program, and you should use them, to avoid a lot
of other problems.

OpenMP initialises the variable automatically – this is a ‘ gotcha’, because it is not like
serial mode, which obviously does not. You are strongly recommended to initialise them
yourself, because being able to run in serial mode is important, and you must initialise
to OpenMP’s value (no other will do), or you will change the meaning of the program
between serial and parallel modes.

1.5 Fortran Reductions

INTEGER FUNCTION Mysum (array)

INTEGER, INTENT(IN) :: array(:)

INTEGER :: k, n

n = 0

!$OMP PARALLEL DO REDUCTION(+:n)

DO k = 1, UBOUND(array,1)

n = n + array(k)

END DO

!$OMP END PARALLEL DO

Mysum = n

END FUNCTION Mysum

This is functionally equivalent to SUM(array), so you would not write it for serial code.
Summation is not the only reduction operator, and valid Fortran ones are:

Operator Initial value
+ 0

* 1

- 0

.AND. .true.

.OR. .false.

.EQV. .true.

.NEQV. .false.

MAX() -HUGE()

MIN() HUGE()

IAND() NOT(0)

IOR() 0

IEOR() 0

3

Examples:

x = x * (y+1.23)

k = k .OR. (b > 456.789)

z = MAX(z,p-3,q(5))

If the clause is something like:

!$omp parallel do reduction(op:list)

Then the allowed accumulation statements are of the form:

var = var op expression

Where op is the same as in the directive and var is in list. There are two key points to
note:

• var must not be used in expression.

• In the loop where it is a reduction variable, you must use var only for accumulation,
and not access it otherwise.

If the clause is something like:

!$omp parallel do reduction(intrinsic:list)

Then the allowed accumulation statements are of the form:

var = intrinsic(var,expression,...)

Where intrinsic is the same as in the directive and var is in list, with the same
restrictions on the use of var.

1.6 C/C++ Reductions

int function Mysum (const int * array, int size) {

int k, n;

n = 0;

#pragma omp parallel for reduction(+:n)

for (k = 0; k < size; ++i)

n += array[k];

return n;

}

Summation is not the only reduction operator, and valid C/C++ ones are:

Operator Initial value
+ 0

* 1

- 0

& ˜0
| 0

ˆ 0

&& 1

|| 0

4

Note that there is no max or min, which is a real pain, though it is being added in
OpenMP 3.1. Examples are:

x *= (y+1.23)

k ||= (b > 456.789)

z &= (p-3 | q[5])

or:
x = x * (y+1.23)

k = k || (b > 456.789)

z = z & (p-3 | q[5])

If the clause is something like:

#pragma omp parallel for reduction(op:list)

Then the allowed accumulation statements are of the form:

var = var op expression

var op= expression

var++, ++var, var--, --var

Where op is the same as in the directive and var is in list. Obviously, both forms of ++
in the accumulation must match + in the directive, and similarly for -- and -. There are
three key points to note:

• var must not be used in expression.

• In the loop where it is a reduction variable, you must use var only for accumulation,
and not access it otherwise.

• You must not use the result of the accumulation as an expression; e.g. x = ++y is
not allowed if y is a reduction variable.

1.7 Debugging and Tuning

Most of this course is how to avoid the need for debugging, because that is such an evil
task for OpenMP, but one aspect is so critical that it needs mentioning now. Explaining
the reasons is left until later.

• Erronous code usually appears to work.

Most failures occur only rarely, in large problems or in only some implementations, so
it is very important not to assume that bugs will always show up. This is why I regard
shared-memory parallel debugging as so much harder than serial debugging, and even
harder than message-passing like MPI, even though it looks easier.

Almost all tuning information is left until later but, again, one aspect is so critical
that it needs mentioning now. It also applies to the tuning of serial programs, but it is
redoubled in spades for shared-memory parallelism. It can mean a factor of a hundred
slowdown but, more commonly, expect a factor of up to about ten.

• The key to shared memory performance is caching.

5

On almost all current systems, memory is divided into cache line units, typically between
32 and 128 bytes long, possibly even 256, aligned according to their size. The CPU loads
and stores whole cache lines only, even if it is using only one byte in a line. All CPUs can
read the same cache line at the same time, but precisely one must own it in order to write
to it. It the writing core does not own it, the cache line must be moved to that core.

Old New

CPU
core

CPU
core

L1 cache

CPU
core

L1 cache

CPU
core

L1 cache

L2 cacheL2 cache

Moving Ownership

main memory

L1 cache

Figure 1.1

CPU

Same

cycle

2−4 cycles

150−400 cycles

10−20 cycles

2−8 way associative

8+ way associative

A Typical Cache Hierarchy

16 KB − 256 KB

Memory

2 GB − 32 GB

256 KB − 4 MB

Level 2 Cache

Level 1 Cache

Registers

512 B − 8 KB

Figure 1.2

The hardware usually has direct cache-to-cache links, but transferring data over them
still takes time and it is very easy to overload them, which leads to cache thrashing and
dire performance.

• Each thread’s data should be well separated.

Remember that cache lines are 32–256 bytes long, and do not bother for occasional
accesses. Accessing locations in the same line in parallel works – it just runs very slowly.
Even a factor of 100 slowdown 0.01% of the time does not matter.

6

As an example of the problem, calculate Ṽ = a . Ṽ + c for a vector Ṽ , using separate
threads to copy the even and odd elements.

C/C++ example:

Thread 1: for (k = 0; k < n; k += 2) V[k] = a*V[k]+c;

Thread 2: for (k = 1; k < n; k += 2) V[k] = a*V[k]+c;

Fortran example:

Thread 1: DO k = 1,n,2

V(k) = a*V(k)+c

END DO

Thread 2: DO k = 2,n,2

V(k) = a*V(k)+c

END DO

Another example of how this affects OpenMP is a matrix copy – this one is bad, and
we need to reverse the order of either the loops or indices – it does not matter which.

Fortran example:

REAL(KIND=DP) :: here(:,:), there(:,:)

!$OMP PARALLEL DO

DO m = 1, UBOUND(here,1)

DO n = 1, UBOUND(here,2)

there(m,n) = here(m,n)

END DO

END DO

!$OMP END PARALLEL DO

C/C++ example:

double here[size1][size2], there[size1][size2];

#pragma omp parallel for

for (n = 0; n < size_2; ++n)

for (m = 0; m < size_1; ++m)

there[m][n] = here[m][n];

#pragma omp end parallel for

1.8 Conclusion

That is essentially all that you need for simple SIMD work, not just for doing the
examples, but for writing real programs. Of course, the devil is in the details, and writing
efficient SIMD code is rarely as easy as adding the directives.

We have not yet covered what not to do, and we shall return to that after covering simple
SPMD. Nor have we covered calling procedures in SIMD loops – i.e. Fortran subroutines
and Fortran/C/C++ functions. And there are a small number of other useful features,
which are needed only as you move on to more advanced SIMD work.

7

