
Introduction to OpenMP

Intermediate OpenMP

N.M. Maclaren

Computing Service

nmm1@cam.ac.uk

ext. 34761

August 2011

1.1 Summary

This is a miscellaneous collection of facilities, most of which are potentially useful, but
many of which are more difficult to use correctly. It includes notes on tuning that do not
fit elsewhere, but nothing that you critically need to get started. Use these facilities when
you actually need them, but not just because they look neat. It does not cover the really
hairy facilities, nor does it explain why I regard them as such.

1.2 More on Design

Let us start with a reminder what was said in the first lecture. OpenMP design should
start with a well-structured serial program – in this context, that means that most of the
time is spent in a small number of components, which have clean interfaces and spend
their time in actual computation (rather than, say, I/O). You should not even attempt to
convert the whole program at once, but do it component by component, where possible.

Your data may need restructuring for efficiency, and this will affect multiple components,
some of which you are not intending to parallelise. Do not restructure your data unless
the gains look fairly large, but a new, OpenMP-friendly structure will usually help even
the serial performance by being more cache-friendly.

The same program can use both OpenMP and GPUs, but do not use them at the
same time; i.e. the OpenMP and GPU components should run serially, though there is no
restriction on how often you can run each. You can also use MPI to link multiple systems,
but use OpenMP and GPUs within a single system; this is not often done, as using pure
MPI is usually easier, but is done for some very large codes.

But what ‘most of the time’ actually mean? A good rule of thumb is that it means
75% or more of the time, or 85% or more if restructuring needed. Below that, the effort
involved in converting to OpenMP is likely to outweigh the gain, and remember that those
are practical minima (i.e. for relatively straightforward conversions). The same remarks
are true for MPI and GPUs, of course – you can very rarely get any gain for no effort.
You should also check that half of the core count is enough speedup factor; if not, you had
better think about using MPI.

This approach gives a major advantage over MPI, which is that intermediate results
match between the serial and parallel versions of your code, to within its numerical accu-
racy, of course. You can develop or modify a component using the serial form, and then

1

parallelise it if it becomes a bottleneck. Best of all, you can compare the intermediate
results of the serial and parallel forms when debugging. Theoretically you can do this
using distributed memory but, in practice, it turns out to be much harder to do and is
often infeasible.

As described earlier, the key to simple and safe OpenMP is to keep gotchas out of parallel
regions, which is usually fairly straightforward, but not always. Problem areas include
Fortran argument copying, fancy C++ class usage (usually with non-trivial constructors),
calling external interfaces (such as POSIX), or when component does a lot of critical I/O.
If you hit a problem with this, you should always stop and think before coding.

• Is synchronisation likely to solve the problem and be efficient?

• Is restructuring likely to solve the problem and be efficient?

• Or does this component need an actual redesign?

1.3 Running Serially

OpenMP directives are ignored when compiling in serial mode with a non-OpenMP
compiler or when not using OpenMP option, though you will usually get pragma ignored

warnings in C/C++.

• Remember to initialise the variable before the reduction; as mentioned, it is best to
do it even when running in OpenMP mode.

The main difficulty is using OpenMP library routines, which are obviously not there.
The OpenMP specification contains stub routines; e.g. omp get thread num always returns
zero and omp get num threads always returns one.

• Everything we have covered will work serially.

Generally, code like that when you can do so, then all you need to do is to code up stub
routines, and then only for the library routines you use, of course. Then your program
should work in serial mode, just as in parallel, with no change. There are more problems
when using an inherently parallel algorithm, but that is advanced use and is not covered.

1.4 More on Reductions

There are more allowed accumulation forms, but I do not recommend these, as I find
them unclear:

Fortran:

var = expression op var

var = intrinsic (expression, ..., var)

C/C++:

var = expression op var

In all languages, the above forms are not allowed for the - operator, of course.

2

1.5 The Workshare Directive

This is available only for Fortran; while it probably has its uses, I doubt that it has very
many.

!$OMP WORKSHARE

assignment statements etc.

!$OMP END WORKSHARE

The statements may contain only Fortran assignments (including WHERE and FORALL),
and OpenMP critical and atomic constructs. The scheduling of the assignments is
unspecified.

There is one rather nasty gotcha. If one statement depends on a previous one in the
same workshare construct, OpenMP is inconsistent with itself, so you should not rely on
statement ordering.

1.6 More Library Functions

These are useful mainly in conjunction with more advanced features that we have not
covered, and are mentioned here only for completeness.

int omp get max threads (void);

INTEGER FUNCTION OMP GET MAX THREADS ()

This returns the maximum number of threads supported.

int omp get dynamic (void);

LOGICAL FUNCTION OMP GET DYNAMIC ()

This returns true if dynamic thread adjustment is enabled.

int omp get nested (void);

LOGICAL FUNCTION OMP GET NESTED ()

This returns true if nested parallelism is enabled.

There are a few others, but they all set OpenMP’s internal state, and I do not recom-
mend doing that.

1.7 The Flush Construct

OpenMP regards this as a fundamental primitive, but it is deceptive and hard to use cor-
rectly. It is what is normally called a fence, and that feature is dangerous in all languages
that have it, but not always as ill-defined as in OpenMP.

#pragma omp flush [(variable list)]

!$OMP FLUSH [(variable list)]

If a variable list is supplied, it synchronises all variables named in it , except for pointers,
where the specification is inconsistent. There are also specific gotchas for arguments, but
the situation is just too complicated to describe here.

3

If there is no variable list, the specification is ambiguous; it may apply only to directly
visible shared data, or it may apply to all shared data, anywhere in the code.

• The latter interpretation is assumed by critical, on entry and exit. Heaven help you
if the implementation does not do it in this case.

• And remember Fortran association problems, as with barrier.

If you do use OpenMP flush, be very cautious, and I do not recommend using it
for arguments at all. Despite appearances, it is a purely local operation, and it is also
needed for reading. In order to transfer data between thread A and thread B, you need
to do the following:

· Update the data in thread A

· Invoke flush in thread A

· Handshake between thread A and thread B, somehow

· Invoke flush in thread B

· Read the data in thread B

There is more information later, under atomic.

1.8 OpenMP Tuning

Unbelievably, tuning is a worse problem than debugging! Most compilers will help with
parallel efficiency, i.e. the proportion of time spent in parallel mode, as used in Amdahl’s

Law, but most users know that from their profiling, anyway.

At the level below that, all you have is hardware performance counters; they are not
easy to use, largely because the measurements are not well-suited for programmers, and are
only recently supported under Linux. If you want to use them, try Intel’s vtune, pfmon,
perfex and so on.

• But try to avoid having to do any detailed tuning.

You can also lose a factor of two or more in overheads, and have to analyse the assembler
of both the serial and OpenMP versions to work out why. The very worst problem is
kernel scheduling glitches, where the only useful tool is dtrace in Solaris, and recently
and partially in Linux.

Most people who try tuning OpenMP retire hurt; I have succeeded, but not often. The
same applies to POSIX threads, incidentally, and is one of the reasons people often back
off them and OpenMP to MPI. So these are my recommendations:

• KISS, KISS (again).

• Use the simple tuning techniques in this course: setting environment variables, ex-
perimenting with schedule options and so on.

• Do a rough analysis of the data access patterns in your code, and see if you can
reorganise your data to help.

• If that does not work, consider redesigning; yes, it really is likely to be quicker than
beating your head against this brick wall.

4

It is important to note some general rules:

• Never, ever, use tuning facilities to fix a bug, because hidden bugs almost always
resurface later.

• Do not use them until you understand the behaviour, because tuning by random
hacking very rarely works.

• What helps on one system may well hinder on another, and the same remark applies
when analysing different data with different properties.

1.9 The Parallel Directive

Most clauses control the data environment, and there are only two exceptions, used
mainly for tuning.

if (expression)

This causes the region to be executed in parallel only if the expression is true.

num threads(expression)

The expression is the number of threads to use for running the parallel region. Do not
make the num threads expression greater than OMP NUM THREADS; OpenMP says that is
implementation defined.

Fortran example:

!$OMP PARALLEL IF (size > 1000), NUM_THREADS(4)

< code of structured block >

!$OMP END PARALLEL

C/C++ example:

#pragma omp parallel if (size > 1000), num_threads(4)

{

< code of structured block >

}

The clauses may be in either order, and both are optional.

The general rules for the number of subthreads used to run a parallel region are quite
complicated but, in the cases we cover in this course:

If an if clause is present and its expression is false, then use one (i.e. run in serial).

If a num threads clause is present, then the value of the expression is used.

Otherwise, use OMP NUM THREADS.

These are useful because increasing the number of threads does not always reduce the
time, due to overheads, caching issues and increased communication. Because of this
threading often helps only for large problems, and you can disable parallelism if it will
slow things down. There is often an optimal number of threads for a particular problem
or size of problem, and both fewer and more run more slowly; this can be different for
different places in the code.

5

• But these clauses are a real pain to use effectively, and their best values are very
system- and even data-specific.

If you want to preserve threadprivate values between parallel regions for all threads,
you should also run with OMP DYNAMIC=false and set OMP NUM THREADS explicitly. Also,
should not change those, watch out for libraries doing so behind your back, and use only
facilities taught in this course. Even using if or num threads clauses is a little risky. Or
you can read the OpenMP specification (and even then be cautious).

1.10 The Atomic Construct

There is an atomic construct that looks useful; however, its appearance is very decep-
tive, because its actual specification is not all that useful and it is not entirely clear exactly
what it means. Specifically, its memory consistency is not clear; that concept is explained
a bit later.

• Do not start off by using it.

It performs an assignment statement ‘atomically’, and may be more efficient than using
critical. Syntactically, it is very like a reduction, and most of the rules of reductions
apply to it (i.e. those that apply to the accumulation statements). In C/C++, the form
var = var op expr is not allowed, but I can think of no good reason for that.

• Note the evaluation of the expression on the right hand side is not atomic; that is
really quite a nasty gotcha.

Fortran example:

!$OMP ATOMIC

min_so_far = min_so_far - delta

Note that there is no !$OMP END ATOMIC.

C/C++ example:

#pragma omp atomic

min_so_far -= delta ;

The following examples are wrong in all of the languages:

!$OMP ATOMIC

min_so_far = min_so_far - search(start,min_so_far)

This one is a bit more subtle, and is easy to do by accident:

#pragma omp atomic

lower_bound += upper_bound-y

#pragma omp atomic

upper_bound -= x-lower_bound

You often want to read or write a value atomically; implementing this is much simpler
than updating a variable atomically. However, OpenMP 2.5 has no special facility to do
that, and you need to use a heavyweight critical construct. OpenMP 3.1 does provide
such a facility, as part of a revision that makes atomic very complicated indeed.

• Do not be tempted to Just Do It.

6

That will usually appear to work, and may do so today, but it is almost certain to fail
in the future. If you do not understand the following explanation, do not worry. You will
usually get atomicity if all of these conditions hold:

• You are reading or writing single integer values; this includes boolean values, enums
etc.

• They are of sizes 1, 2, 4 and usually 8 bytes.

• They are aligned on a multiple of their size.

Pointer algorithms that assume atomicity are common, and it is usually possible to code
them, fairly safely, even if not portably. A decade ago, that was not possible – and it may
not be a decade from now. It is also very language- and compiler-dependent and, even
today, there are systems where even the cleanest C code will not generate atomic pointer
loads and stores.

• You must know the details of your hardware and how the compiler generates pointer
accesses; the issues are far too complicated for this course.

Similar (though even stronger) remarks apply to loading and storing floating-point, and
the actual operations on it are very rarely atomic; I strongly advise never assuming
atomicity for those types. Beyond that (e.g. for structures or complex numbers), do not
even think about it – always use critical.

People who know a little about hardware architecture think that is all that you need,
but unfortunately it is not.

• It does not guarantee the consistency you expect, and that applies even on single
socket, multi-core CPUs.

It gets rapidly worse on distributed memory systems, of course. It is possible to read
and write fairly safely; it is not guaranteed, but is pretty reliable. In addition to the above
rules, you should do either of the following (but not both):

A : Set a variable in a single thread, and read its value in any of the threads.

B : Set a variable in any of the threads, and read its value in a single thread.

• Do not rely on any other ordering, not between two atomic objects, nor the order as
seen in other threads.

• Use the value only within the receiving thread.

The last constraint has some non-obvious consequences, because you must not pass
derived information on, either. If you have used the atomic value to control the logic of
or change any values in your code, do not communicate with any other thread without
synchronising first. That includes using or setting any shared objects, whether atomic,
reductions or anything else.

• And, if in any doubt, use critical.

Even that may not provide consistency, because the specification is unclear, but you
can probably do nothing if it does not. I know that this sounds paranoid, but it is not.
The new C++ standard does define memory consistency, so things may improve over the
next decade or so. The picture we saw at the start is very relevant:

7

conditions C

Works under

conditions A

Works under

conditions D

Works under

X

conditions B

Works under

Safe

Portability, RAS, etc. of Code

Specified in standard

Just coding and

’’testing until it works’’

may end up here

Figure 1.1

1.11 Nowait

A work-sharing construct has an implicit barrier at its end; now consider a parallel region
with several of them, and ask whether it would run faster if the barrier were removed.

• MPI experience is generally that it does not.

However, that is for MPI, and it might help with some OpenMP code, especially for
SPMD. In Fortran, you just put a NOWAIT clause after the !$OMP END ... directive. In
C/C++, with no end directive, you add a nowait clause after the #pragma omp

• If you get it wrong, you are in real trouble, because you need to be very, very careful
about aliasing issues.

This will not work in any language – but it may appear to:

!$OMP PARALLEL

!$OMP DO REDUCTION (+:total)

< some DO-loop that calculates total >

!$OMP END DO NOWAIT

. . .

!$OMP DO

DO n = 1, ...

array(n) = array(n)/total

END DO

!$OMP END DO

!$OMP END PARALLEL

1.12 Environment Variables

We have already covered OMP NUM THREADS, and the settings of OMP SCHEDULE.
OMP DYNAMIC=true has been mentioned and is mainly for SPMD; it allows the number of

8

threads to vary dynamically. OMP NESTED=true enables nested parallelism; the details are
too complicated to cover in this course, and I shall give just a summary of the intent.

Nested SPMD Task Structure

Figure 1.2

Ideally, we want as many threads as possible, and the compiler and system choose which
ones to run; that is what I call the sea of threads model, but OpenMP does not handle
it very well. It does not even nested parallelism very well, where subthread can spawn
a parallel region, but that can be done, and can be useful. Doing that is is advanced
OpenMP and is not covered here.

1.13 Locks

OpenMP has facilities for thread locking, which are essentially a dynamic form of
critical, but I do not recommend using locking.

• It is very easy to cause deadlock or hard-to-debug livelock.

• It can often cause very poor performance or worse.

• It generally indicates that the program design is wrong.

But, if you really must use them, there are two kinds, which OpenMP calls simple locks
and nested locks, though the usual terminology for them is simple and recursive mutexes.
OpenMP also uses the term setting rather than locking, for some reason.

• Do not mix these types in any way; that is an almost sure sign of a completely broken
design.

Simple locks are set or unset. Once a thread has set a lock, it owns that lock. If
it already owns it, then attempting to set it is undefined behaviour. Another thread
attempting to set it when it is set waits until it is unset. Only the owning thread can
unset a lock, and attempting to unset a lock that it does not own or that is not set is also
undefined behaviour. Examples are given only for simple locks.

Nested locks are very similar in most respects; the only difference from simple locks is
that an owning thread can set a lock, and what that does is to increment a lock count.
Similarly, unsetting just decrements the lock count, and only when that is zero does the

9

lock become unset. Again, it is undefined behaviour to attempt to unset a lock that is
not owned or where the count is zero.

Generally, you should avoid nested locks, but they have some uses, though nothing that
you cannot program in other ways. If you want to, see the specification for details of their
use.

Lock variables should be static or SAVE; OpenMP does not say that, but not doing
so may fail, because it is essentially unimplementable if they are not. It is generally best
for them to have file scope or be in a module. You should initialise and destroy them in
serial code, though you could do that in a single, synchronised thread, with care.

• You must initialise them before using them in any other way.

Preferably, you should destroy them after their last use as locks. You could then reini-
tialise them, but doing that is not recommended.

C/C++ initialisation example:

static omp_lock_t lock;

omp_init_lock (& lock);

. . . use the lock . . .

omp_destroy_lock (& lock);

Fortran initialisation example:

INTEGER(KIND=omp_lock_kind), SAVE :: lock

CALL omp_init_lock (lock)

. . . use the lock . . .

CALL omp_destroy_lock (lock)

C/C++ usage example:

omp_set_lock (& lock);

. . . we now own the lock . . .

omp_unset_lock (& lock);

Fortran usage example:

CALL omp_set_lock (lock)

. . . we now own the lock . . .

CALL omp_unset_lock (lock)

You can also test whether a lock is set; if it is not set, the action also sets the lock;
you must not test in owning thread for simple locks. I do not recommend using this
feature, because it is trivial to cause livelock or dire performance. It can also cause some
extremely subtle consistency problems, so subtle that I do not fully understand them
myself! Using this facility to improve performance is very hard indeed.

• Using lock testing (or nested locks) to ensure correctness is a mistake, and almost
always indicates a broken design.

10

1.14 Locks and Synchronisation

Remember flush? Locks have the same issues and, as usual, OpenMP is seriously
ambiguous about this.

• A lock is global, but only the lock itself.

It only does local synchronisation on the the memory, and the following is all that is
guaranteed:

If some data are accessed only under a particular lock, then all such accesses will be
consistent.

That can be extended to serial code as well, but it cannot be extended to other syn-
chronisation. That is less useful than it appears, as the problem then becomes how to get
information into or out of the locked region, and you need another synchronisation mech-
anism to do that. So, how can you use locks to force consistency between two variables
A and B? A and B must be protected by the same lock; using a separate lock for each will
not work. The basic rules for using locks correctly are:

• Protect everything to be made consistent, either by a lock or putting it in serial code.

• Separately locked data should be independent; that means that they should not just
be different data, but no ordering between them should be assumed.

This is how you set up the lock:

static omp_lock_t lock;

int A = 0, B = 0, X, Y;

omp_init_lock (& lock);

#pragma omp parallel shared(A,B), private(X,Y)

{

. . .

}

omp_destroy_lock(& lock);

and this is how you use the lock:

omp_set_lock (& lock);

switch (omp_thread_num()) {

case 1 : A = 1; break;

case 2 : B = 1; break;

case 3 : X = A; Y = B; break;

case 4 : Y = B; X = A; break;

}

omp_unset_lock (& lock);

1.15 Not Covered

Many other things in OpenMP 2.5 have been deliberately not covered, mostly because
they are too difficult to teach. This usually means that they are very hard to use correctly,
but some are hard to implement, and may not be reliable. They include:

11

• Library functions to set OpenMP’s state.

• The ordered clause, because it is probably not useful.

And quite a few minor features and details, plus the ones mentioned earlier and not
recommended.

OpenMP 3.0 introduces tasks, which is a huge change, and also adds C++ iterators
and related support.

OpenMP 4.0 may add GPU features, which makes me gibber, given the mess the current
specification makes of even quite simple activities.

There has also been no discussion about how to configure your system in order to use
OpenMP; there is a little in Parallel Programming: Options and Design.

12

