
Parallel Programming
Options and Design (Part II)

Nick Maclaren

Computing Service

nmm1@cam.ac.uk, ext. 34761

May 2011

Parallel Programming – p. 1/??

Summary

Topic has been (slightly artificially) split into two
Simple solutions are mentioned as they arise

• Reasons for parallelism, and basic design
Strengths and weaknesses of each approach
Thread pools, client--server, CPU farms etc.
Most important models of HPC parallelism

• Available parallel implementations
OpenMP and other shared--memory models
PGAS (Fortran coarrays, UPC etc.)
MPI and other message passing models

Parallel Programming – p. 2/??

Beyond the Course

Email scientific--computing@ucs for advice

http: / /www--users.york.ac.uk/∼mijp1/teaching/...
... /4th---year---HPC/notes.shtml

http: / /www.hector.ac.uk/support /documentation/...
... /userguide/hectoruser/hectoruser.html

See ‘‘References and Further Reading’’

http: / /www.epcc.ed.ac.uk/ library/documentation/...
... / training/

Parallel Programming – p. 3/??

Contents

Some commonly misunderstood terminology

Distributed memory, MPI, etc.

Shared memory, POSIX threads, OpenMP etc.

Fortran coarrays, UPC etc.

Memory models and similar cans of worms

Kernel scheduling issues (for sysadmins only)

Parallel Programming – p. 4/??

SIMD – The Easy Case

SIMD means Single Instruction, Multiple Data
I.e. a serial program runs with parallel data
Think of a vector system when you say this
This includes indexed and masked arrays

Great advantage: code and debug just like serial
Optimisation of it is well--understood and automatic
Actually implemented as simplest case of SPMD

It also includes MMX, SSE and Aptivec
• But regard them as part of serial optimisation
GPUs will be described later

Parallel Programming – p. 5/??

MIMD

MIMD means Multiple Instruction, Multiple Data

All modern parallel systems are MIMD
And almost all parallel languages and libraries
You can run SIMD designs on MIMD systems

• So the term isn’t practically useful nowadays
Incorrectly used to mean distributed memory

Most MIMD languages are actually SPMD

Parallel Programming – p. 6/??

SPMD (1)

SPMD means Single Program, Multiple Data
I.e. exactly the same program runs on all cores
But programs are allowed data--dependent logic

So each thread may execute different code
Can test the thread identifier or do it explicitly

#pragma omp sections
{

#pragma omp section
{ ... }
#pragma omp section
{ ... }

}
Parallel Programming – p. 7/??

SPMD (2)

The more like SIMD it is, the easier it is
At least for coding, debugging and tuning

Minimise thread--specific code as far as possible
It isn’t a major problem, except for efficiency
It makes tuning quite a lot harder

• Watch out for locking and communication
Best to leave all communication to compiler
Locking indicates SPMD may be wrong model

Parallel Programming – p. 8/??

Multiple Programs

This is where each process runs independently
MPI is a widespread and classic example
Term MPMD is almost never used, but could be

• But they usually run a single executable
So some people call them SPMD models
And, as implied, some people don’t ...

• This is not really a meaningful debate
There is a continuum from SIMD onwards ...

to each process running different executables

Parallel Programming – p. 9/??

SMP

SMP stands for Shared Memory Processor
All threads can access all the memory

• It does NOT guarantee consistency!
We will return to this minefield later

It used to mean Symmetric Multi--Processing
That use still occasionally crops up

Parallel Programming – p. 10/??

NUMA

NUMA means Non--Uniform Memory Architecture
I.e. not all memory is easily fast to access
Usually, some sort of memory/CPU affinity

All large SMP systems are NUMA nowadays
Even AMD Opteron ones are

• Caches make even Intel look like it
Details are too complicated for this course

Parallel Programming – p. 11/??

Distributed Memory (1)

This refers to separate CPUs (e.g. clusters)
Including separate processes on SMP systems

• Each thread is a completely separate process
No shared memory, real or virtual – see later
Code and debug each process as if serial

• Communication is by message passing
That is simply a specialist form of I /O
Usually a library, but may use language syntax

Parallel Programming – p. 12/??

Distributed Memory (2)

Can trace or time the message passing
That is how to do debugging and tuning
It is complicated, but no harder than serial

Some parallel debuggers and tuning tools
Mostly for MPI – even built--in to libraries

• Hardest problem is data distribution
Each process owns some of the data
But other processes may need to access it

Parallel Programming – p. 13/??

Message Passing

Many interfaces used in commerce, Web etc.
CORBA, SOAP etc. – let’s ignore them

Some languages – Smalltalk, Erlang etc.
Few used outside computer science research

MPI (Message Passing Interface) dominates
A library callable from Fortran and C/C++
Bindings available for Python, Java etc.

• Essentially all HPC work on clusters uses MPI

Parallel Programming – p. 14/??

Take a Breather

That has covered most of the terminology

Will mention a few high--level design guidelines
About how to structure your application

Then will cover what MPI can do

Then move onto the shared memory morass
Sorry, but that is very complicated

Parallel Programming – p. 15/??

Designing for Distribution (1)

A good rule of thumb is the following:
• Design for SIMD if it makes sense
• Design for lock--free SPMD if possible
• Design as independent processes otherwise

For correctness – order of increasing difficulty
Not about performance – that is different
Not about shared versus distributed memory

• Performance may be the converse
There Ain’t No Such Thing As A Free Lunch

Parallel Programming – p. 16/??

Designing for Distribution (2)

• Next stage is to design the data distribution
SIMD is usually easy – just chop into sections

• Then work out need for communication
Which threads need which data and when
Do a back of the envelope efficiency estimate

• If too slow, need to redesign distribution
Often the stage where SIMD models rejected

Parallel Programming – p. 17/??

Designing for Distribution (3)

• Don’t skimp on this design process
Data distribution is the key to success

• You may need to use new data structures
And, of course, different algorithms

• Above all, KISS – Keep It Simple and Stupid
Not doing that is the main failure of ScaLAPACK
Most people find it very hard to use and debug

Parallel Programming – p. 18/??

MPI

This was a genuinely open specification process
Mainly during the second half of the 1990s

http: / /www.mpi--forum.org/docs/docs.html

MPI--1 is basic facilities – all most people use
Most people use only a small fraction of it!

MPI--2 is extensions (other facilities)
Also includes the MPI 1.2 update

MPI--3 is currently being worked on
Non--blocking collectives and Fortran 90 support

Parallel Programming – p. 19/??

MPI-1 (1)

• Bindings for Fortran and C
Trivial to use for arrays of basic types
Tricky for Fortran 90 and C++ derived types

• Point--to--point and collective transfers
Latter are where all processes interoperate

Can define process subsets for communication

• Blocking and non--blocking transfers
Not always clear which are more efficient
Issues are beyond scope of this course

Parallel Programming – p. 20/??

MPI-1 (2)

Two open source versions – MPICH and OpenMPI

Most vendors have own, inc. Intel and Microsoft

Wide range of tuning and debugging tools
Mostly commercial, but not all
Or can use built--in profiling interface

Easy to use and can help with debugging

• Not ideal, but consensus is pretty good
Some higher--level interfaces built on top of it

Parallel Programming – p. 21/??

I/O in MPI

Applies to all distributed memory interfaces

No problem with separate files for each process
Or if they all read the same file at once
• Provided that the file server is adequate!

Problems occur with stdin, stdout and stderr
Immense variation in ways that is implemented

• Best to do their I /O only from primary process
Use MPI calls to transfer data to and from that

Parallel Programming – p. 22/??

Some Sordid Details

There may be a separate thread for I /O
Or the master thread may handle stdout
Or each thread may write directly, and lock
• All can cause severe scheduling problems

stdin may be copied or shared
stdout and stderr may interleave badly
• Causes programs to fail when changing systems

Parallel Programming – p. 23/??

MPI-2 (1)

• Not all implementations support all of this
Use only the extensions you actually need

• Miscellaneous extensions (gaps in MPI--1)
Some of these are useful, but rarely essential

• One--sided communications
Some people find these much easier, but I don’t
Explaining the issues is beyond this course

• C++ bindings – now being deprecated
But using the C bindings in C++ works, too

Parallel Programming – p. 24/??

MPI-2 (2)

These extensions are less likely to be available

• Dynamic process handling – to supersede PVM
Few, if any, people use this, and I don’t advise it

• Parallel I /O – direct and sequential
Few people here do I /O intensive HPC

Parallel Programming – p. 25/??

PVM – Parallel Virtual Machine

This was a predecessor of MPI

Based around a cycle stealing design
But with inter--processor communication, too
CPUs could leave and join the processor pool

• It’s effectively dead – thank heavens!
A pain to use, with unrealistic assumptions
A positive nightmare to administer and debug

MPI--2 includes all of PVM’s facilities

Parallel Programming – p. 26/??

Shared-Memory Terminology

Atomic means an action happens or doesn’t
It will never overlap with another atomic action

Locked means software makes it look atomic
Usually a lot less efficient, and can deadlock

A data race is when two non--atomic actions overlap
The effect is completely undefined – often chaos

Synchronisation is coding to prevent data races

Parallel Programming – p. 27/??

Shared Memory (1)

All threads have access to all memory
• Unfortunately, that isn’t exactly right ...
There are three general classes of shared memory

• Fully shared within single process
As in POSIX threads and OpenMP

• Shared memory segments, POSIX mmap etc.
Shared between processes on same system

• Virtual shared memory (rarely called that)
Cray SHMEM, PGAS, even BSP etc. – see later

Parallel Programming – p. 28/??

Shared Memory (2)

Shared memory has memory model problems
Will return to that in more detail later

If two threads/processes access same location:
• Either all accesses must be reads
• Or both threads must be synchronised
• Or all accesses must be atomic or locked

Details depend on the interface you are using
• Critical to read specification carefully

Parallel Programming – p. 29/??

Shared Memory (3)

Updates may not transfer until you synchronise
But they may, which is deceptive

Memory will synchronise itself automatically
• Now, later, sometime, mañana, faoi dheireadh

So incorrect programs often work – usually
But may fail, occasionally and unpredictably

Makes it utterly evil investigating data races
• Any diagnostics will often cause them to vanish

Parallel Programming – p. 30/??

Fully Shared Memory

POSIX/Microsoft threads, Java and OpenMP
No other interface is used much at present

Plus some computer science research, of course
There are also a few specialist ones

Most SMP libraries implemented using OpenMP
See later about the consequences of this

OpenMP is implemented using POSIX threads
And Microsoft threads when relevant, I assume

Parallel Programming – p. 31/??

Shared Memory I/O

• POSIX is seriously self--inconsistent
I /O is thread--safe (2.9.1) but not atomic (2.9.7)
Can you guess what that means? I can’t

Don’t even think of relying on SIGPIPE

Most other interfaces are built on POSIX
Some interfaces may implement I /O like MPI

Warnings on that may apply here, too

• Do all your I /O from the initial thread

Parallel Programming – p. 32/??

OpenMP (1)

A language extension, not just a library
Designed by a closed commercial consortium

‘‘Open’’ just means no fee to use specification
Dating from about 1997, still active

http: / /www.openmp.org

Specifications for Fortran, C and C++
Most compilers have some OpenMP support

• This is the default to use for SMP HPC
Unfortunately the specification is ghastly

Parallel Programming – p. 33/??

OpenMP (2)

• The compiler handles the synchronisation
Covers up problems in underlying implementation
E.g. ambiguities in the threading memory model

• Mainly directives in the form of comments
They indicate what can be run in parallel, and how
Also a library of utility functions

OpenMP permits (not requires) autoparallelisation
I.e. when the compiler inserts the directives
Available in many Fortran compilers, rarely in C

Parallel Programming – p. 34/??

OpenMP (3)

• Easiest way of parallelising a serial program
Can just modify the areas that take the most time

• Can usually mix SMP libraries and OpenMP
Start with calls to parallel library functions
And set compiler options for autoparallelisation

• Then use SIMD or SPMD directives
Finally, worry about more advanced parallelism

Too good to be true? I am afraid so

Parallel Programming – p. 35/??

OpenMP (4)

• Inserting directives trickier than it seems
Make even a minor mistake, and chaos ensues

• That is why I advise ‘pure’ SPMD mode
No synchronization, locking or atomic
Will get the best diagnostics and other help

• Debugging and tuning can be nightmares
It is MUCH easier to avoid them in design

Too complicated to go into details here

Parallel Programming – p. 36/??

OpenMP Debugging (1)

• Aliasing is when two variables overlap
And the compiler hasn’t been told that
Bugs often show up only when run in parallel

• Must declare variables as shared or not
And obviously must declare that correctly!
Note that shared objects need synchronisation

• Failure is often unpredictably incorrect behaviour

• Serial debuggers will usually get confused

Parallel Programming – p. 37/??

OpenMP Debugging (2)

• Variables can change value ‘for no reason’
Failures are critically time--dependent

• Many parallel debuggers get confused
Especially if you have an aliasing bug

• A debugger changes a program’s behaviour
Same applies to diagnostic code or output
Problems can change, disappear and appear

• Try to avoid ever needing a debugger

Parallel Programming – p. 38/??

OpenMP Tuning (1)

• Unbelievably, tuning is much worse

• Most compilers will help with parallel efficiency
I.e. proportion of time in parallel (Amdahl’s Law)
Most users know that from their initial design!

• Below that, hardware performance counters
Not easy to use and not available under Linux

• The debugging remarks also apply to profiling

Parallel Programming – p. 39/??

OpenMP Tuning (2)

• Can also lose a factor of 2+ in overheads
Manually analyse the assembler for efficiency

• Worst problems are scheduling glitches
You have NO tools for those!

Most people who try tuning OpenMP retire hurt
[I have succeeded, but not often]

• Same applies to POSIX threads, incidentally
and Microsoft and Java ones ...

Parallel Programming – p. 40/??

C++ Threads (1)

• Forthcoming C++ standard will define threading
The design is good, but compilers don’t support it yet

• Ordinary memory accesses must not conflict
Roughly, you must write--once or read many

• Atomic memory accesses impose synchronisation
Default is sequentially consistent – so not scalable
Beyond that is definitely for experts only

Standard Template Library (STL) is still serial
It currently has only low--level facilities

Parallel Programming – p. 41/??

C++ Threads (2)

Inherited C facilities are full of gotchas
• Often not behave as you expect or simply not work
Includes all I /O – so use from only one thread

Some bad ideas – e.g. cross--thread exceptions
Issues too complicated for this course

• Using it will be no easier than using OpenMP

The C standard is copying it – if anyone cares!

• I don’t really recommend it for most people

Parallel Programming – p. 42/??

POSIX/Microsoft/Java Threads

• Using threads like processes usually works
I.e. minimal, explicit thread communication
Precisely how most threaded applications work

• Beyond that, is task for real experts only
Morass of conflicting, misleading specifications
With more gotchas than you believe possible

Mention some of the issues, usually in passing
Details are too complicated for this course
• Please ask for help if you need it here

Parallel Programming – p. 43/??

Java Threads

The first version was a failure, and was redesigned
Reports of the merits of the second one are mixed

http: / / java.sun.com/docs/books/tutorial /...
... /essential /concurrency

Essential to read sections Thread Interference
and Memory Consistency Errors

Also applies to POSIX and Microsoft, of course
• Users of those should read those sections, too

Parallel Programming – p. 44/??

POSIX Threads

C90 and C99 are entirely serial languages
Legal C optimisations break POSIX threads

Neither C nor POSIX defines a memory model
Reasons why one is essential are covered later

No way of synchronising non--memory effects
Not just I /O, but signals, process state etc.
Even simple ones like clock() values and locales

http: / /www.opengroup.org/onlinepubs/...
... /009695399/toc.htm

Parallel Programming – p. 45/??

Microsoft Threads

I failed to find a suitable Web reference
Finding the API was easy enough

But I failed to find a proper specification
Or even a decent tutorial, like Java’s

Searching threads "memory model"
From *.microsoft.com had 167 hits, but ...

I have reason to think it is currently in flux
Yes, I do mean that it is about to change

Parallel Programming – p. 46/??

Others

If you are really interested, try:

http: / /en.wikipedia.org/wiki /Concurrent---computing

The following look potentially useful for scientists:

Both have been used for production code

Cilk – possibly useful for irregular problems
Based on C, and needs disciplined coding

Extended language now supported by Intel compilers

GNU Ada – a largely checked language
Reported to be safest open source compiler

Parallel Programming – p. 47/??

GPUs

Extending GPUs to use for HPC
Will describe current leader (NVIDIA Tesla)

Hundreds of cores, usable in SPMD fashion
Cores are grouped into SIMD sections
Can be expensive to synchronise and share data

Can be 50--100 times as fast as CPUs
• Only for some applications, after tuning

And that is only for single precision code
NVIDIA Fermi should be better in this respect

Parallel Programming – p. 48/??

NVIDIA GPU Design

memory
main
and
CPUs

PCIe

SIMD

unit

Cores

Parallel Programming – p. 49/??

CUDA and OpenCL

Based on extended C99/C++ languages
Some Fortran prototypes are available

Programming is reported to be fairly easy
Rules for sharing memory are trickiest part

• Tuning is where the problems arise
Can be anywhere from easy and fiendish
Critically dependent on details of application

• Don’t forget CPU⇔GPU transfer time

Parallel Programming – p. 50/??

Precision Issues

Graphics is numerically very undemanding
Double precision is very much slower
• But most scientific codes critically need it!

Watch out!

There are some techniques to help with this
• Dating from the 1950s to 1970s

Look for books on numerical programming of that date
Or ask one of the people who was active in that area

Parallel Programming – p. 51/??

Shared Memory Segments (1)

A way of sharing memory between processes
Almost always on a single SMP system

POSIX mmap, ‘SysV shmem’ (POSIX shmat) etc.
Surprising, NOT most variants of Cray SHMEM

• Best regarded as communication mechanisms
Several are actually memory--mapped I /O

Parallel Programming – p. 52/??

Shared Memory Segments (2)

Synchronisation may need to be in both processes
Or just in sender or just in receiver
POSIX §4.10 is seriously ambiguous – do both

Once transferred, can use just as ordinary memory
• Don’t update if in use by another process
It is your responsibility to obey constraints

Often used to implement other interfaces
Including message--passing ones, like MPI!

Parallel Programming – p. 53/??

Virtual Shared Memory

This is SPMD with separate processes
Possibly even running on different systems

You program it a bit like true shared memory
• But synchronisation is mandatory
Getting that wrong causes almost all bugs

But some systems may transfer automatically
• You can’t rely on transfers being queued
Except, with the right options, for BSP

Parallel Programming – p. 54/??

Cray SHMEM and Variants

• This is actually one--sided communication
I.e. one process calls put or get
All threads must call barrier to synchronise

• May assume same local and remote addresses
Or may need to call a mapping function

Use them much like shared memory segments
• Be sure to check correct documentation
A zillion variants, even just on Cray systems

Parallel Programming – p. 55/??

BSP (1)

Stands for Bulk Synchronous Parallel
http: / /www.bsp--worldwide.org/

• Similar, but much simpler and cleaner
Designed by Hoare’s group at Oxford

• Series of computation steps and barriers
All communication is done at the barriers
All threads are involved (i.e. no subsets)

• Failures like deadlock cannot occur
Considerably simplifies debugging and tuning

Parallel Programming – p. 56/??

BSP (2)

It is used much like Cray SHMEM
I.e. it uses put, get, map---address calls
The data are queued for transfer

• Advantages derive from its restrictions
Flexibility has its cost (TANSTAAFL)

Only a few people have used it at Cambridge
I haven’t, but it is so simple I know I could!

• Consider using its design, at least
Please tell me of any experiences with it

Parallel Programming – p. 57/??

PGAS (1)

May stand for Partitioned Global Address Space
Or Parallel Global Array Storage, or ...
[Don’t confuse with Parallel Genetic Algorithms]

• Shared arrays are spread across threads
Each block is owned by exactly one thread
Typically, scalars are owned by thread zero

• All threads can access all memory
The compiler handles the data transfer
All accesses must be synchronised

Parallel Programming – p. 58/??

PGAS (2)

• Usually provided using language extensions
Claimed by believers to be much easier to use

Very trendy at present – the current bandwagon
Mostly used to publish research papers on it

• Little used outside ASCI

ASCI = Accelerated SuperComputer Initiative
USA government’s ‘Son of Star Wars’ project

Some people in Cambridge share codes with ASCI

Parallel Programming – p. 59/??

HPF

HPF stands for High Performance Fortran
First attempt at a standard for parallel Fortran

http: / /hpff.rice.edu/

Originated about 1992, never really took off
Superseded by OpenMP by about 2000

• You may still some across code written in it
• Some compilers still have HPF options
Of course, they don’t always actually work ...

• It’s dead, a zombie, a late parrot – don’t use it

Parallel Programming – p. 60/??

Fortran Coarrays (1)

Being driven by Cray/ASCI /DoD
Some of it available on Cray systems since 1998

• In forthcoming Fortran 2008 standard
I am not a great fan of it, but was closely involved

ftp: / / ftp.nag.co.uk/sc22wg5/...
... /N1801--N1850/N1824.pdf

http: / /www.co--array.org/

Starting to appear in compilers

Parallel Programming – p. 61/??

Fortran Coarrays (2)

Cray and Intel have released, IBM will soon
Most other compilers will follow in due course

g95 supports some of the proposal
Only an intermittently active project, though

The Rice U. open--source project is a bit dubious
http: / /www.hipersoft.rice.edu/caf/

gfortran is currently adding syntax checking
Starting to work on a simple MPI implementation

Parallel Programming – p. 62/??

Fortran Coarrays (3)

Threads are called images
Code looks like the following:

real, dimension(1000)[*] :: x,y
x(:) = y(:)[q]

The square brackets index the thread
Indicate you are copying across threads
On the owning image, you can omit them:

x(:) = y[9](:)+y(:)

Parallel Programming – p. 63/??

UPC (1)

Unified Parallel C – a C99 extension
A lot of activity, mainly in USA CS depts
Started in 1999 – open--source compiler since 2003

Lots of predictions of future successes
Little evidence of actual use, even in ASCI

Specification even more ambiguous than C99
However, it does define its memory model

http: / /upc.gwu.edu/ and http: / /upc.lbl.gov/

Parallel Programming – p. 64/??

UPC (2)

Lots of scope for making obscure errors
The very thought of debugging it makes me blench

Syntax is just like C99 arrays – e.g. a[n][k]
Semantics and constraints are not like arrays

The ‘[n]’ indexes the thread for shared objects
Uses of a[n][k] undefined if not on thread ‘n’
Must call library functions to copy between threads

• However, I do NOT recommend using it
Often recommended on basis of no experience

Parallel Programming – p. 65/??

Language Support

Fortran does very well, for a serial language
Why OpenMP Fortran is the leader in this area

C was mentioned earlier, under POSIX

C++ is currently defining its memory model

Java was described earlier

C# is probably following Java

Parallel Programming – p. 66/??

Memory Models (1)

Shared memory seems simple, but isn’t
‘Obvious orderings’ often fail to hold
Parallel time is very like relativistic time

Too complicated (and evil) to cover in this course
Suitable key phrases to look up include:

Data Races / Race Conditions
Sequential Consistency
Strong and Weak Memory Models
Dekker’s Algorithm

Parallel Programming – p. 67/??

Main Consistency Problem

Thread 1

A = 1

print B

Thread 2

B = 1

print A

Now did A get set first or did B ?

− i.e. B did00 − i.e. A did

Intel x86 allows that − yes, really

So do Sparc and POWER
Parallel Programming – p. 68/??

Thread 3

X = A

Y = B

print X, Y

Thread 4

Y = B

X = A

print X, Y

Now, did

get set first

or did B ?

1 0 0 1 − i.e.− i.e. Adid B did

Thread 1

A = 1

Thread 2

B = 1

A

Another Consistency Problem

Parallel Programming – p. 69/??

How That Happens

Thread 4 Thread 1 Thread 3Thread 2Time

A = 0
B = 0

X = Y =

Get A Get B

< P > A = 1 < R >B = 1

Y = X =< Q >

< P >

< S >

< R >

< S >< Q >

means a temporary location<x>

Get AGet B

Parallel Programming – p. 70/??

Memory Models (2)

• Easiest to use language that prevents problems
No current one does that automatically and safely
Some can help, if you code in a disciplined way
Reasons for OpenMP+Fortran and SIMD design

• Next easiest solution is explicit synchronisation
Don’t assume data transfer is automatic
This is model used by Cray SHMEM and BSP

• Beyond that, KISS – Keep It Simple and Stupid
Check you don’t assume more than is specified
Even Hoare regards this as tricky and deceptive

Parallel Programming – p. 71/??

For Masochists Only

http: / /www.cl.cam.ac.uk/~pes20/...
... /weakmemory/ index.html

Intel(R) 64 and IA--32 Architectures Software
Developer’s Manual, Volume 3A: System
Programming Guide, Part 1, 8.2 Memory Ordering

http: / /developer.intel.com/products/...
... /processor/manuals/ index.htm

Follow the guidelines here, and can ignore them
• Start to be clever and you had better study them

Parallel Programming – p. 72/??

Valid Memory Accesses

• Virtual shared memory is the easy one
All you need to do is to synchronise correctly
Trivial in theory, not so easy in practice

• True shared and segments are tricky
You don’t always need to synchronise
But when do you and when don’t you?

In theory, can synchronise like virtual
• That is how I recommend most people to do it
OpenMP without locks does it automatically

Parallel Programming – p. 73/??

Atomicity (1)

Thread 1: <type> A; A = <value1>; A = <value2>;

Thread 2: <type> B; B = A;

Will B get either <value1> or<value2>?
• Don’t bet on it – it’s not that simple

Probably OK, IF <type> is scalar and aligned
But depends on compiler and hardware
Structures (e.g. complex) are not scalar

• Best to use explicitly atomic operations
These are language and compiler dependent

Parallel Programming – p. 74/??

Atomicity (2)

Killer is heterogeneous accesses of any form

• Don’t mix explicitly atomic and any other

• Don’t mix RDMA transfers and CPU access

• Don’t even mix scalar and vector accesses
SSE probably works, now, but might not

• Don’t trust atomic to synchronise

Parallel Programming – p. 75/??

Cache Line Sharing

int A[N];
Thread i: A[i] = <value---i>;

• That can be Bad News in critical code
Leads to cache thrashing and dire performance

Each thread’s data should be well separated
Cache lines are 32–256 bytes long

• Don’t bother for occasional accesses
The code works – it just runs very slowly

Parallel Programming – p. 76/??

Kernel Scheduling

Following slides are rather esoteric
Why low--level parallel tuning is not easy

They cover points that are normally ignored
But are a common cause of inefficiency

• Try to avoid them, not to solve them
Some hints given of how to do that

Parallel Programming – p. 77/??

Kernel Scheduler Problems

• In both shared memory and message passing
Both on SMP systems and separate CPUs

Investigation can be simple to impossible
MPI on separate CPUs can be simple
Shared memory and SMP systems are nasty
Often need kernel tools (e.g. Solaris dtrace)

Very often tricky for programmer to fix
• May need to tweak system configuration

Parallel Programming – p. 78/??

Gang Scheduling (1)

Almost all HPC models assume gang scheduling
Details are system--dependent and complicated
• Principles are generic and very important

• Ideal is that each thread ‘owns’ a core
I.e. that the core is always available, immediately
Even a slight delay can have major knock--on effects

Most system tuning is ensuring threads ≤ cores
• Don’t make that impossible when programming

Parallel Programming – p. 79/??

Gang Scheduling (2)

• Avoid running other daemons or interaction
Effect can be to reduce effective number of CPUs

• Remember there may be extra controlling thread
Describing details is way beyond this course

• Don’t want threads to wander between cores
Their active data has to be copied between caches
Can be caused by too few CPUs for threads

Parallel Programming – p. 80/??

Optimal all−to−all

A B B FEDC C D E AF

A B FEDD C E F BC

A B FEDE C F A CD B

A B FEDF C A B DE C

A B FEDA C B C EF D

CPU A CPU B CPU C CPU D CPU FCPU E

A

Parallel Programming – p. 81/??

Near−optimal all−to−all

A B B EDC C D E F

B FEDA C B C ED

Busy

Busy

Busy

Busy

Busy

Busy

A B DD C E FC F A

C FA B ED

A B FE FED A CB

FE B

A F FEDC A B DC

Only 17% slower + 1 thread swap / core

CPU A CPU B CPU FCPU ECPU DCPU C

A

Parallel Programming – p. 82/??

A B B EDC C D E F

A B EDD C E FC A

A B EDE C F AD B

A B EDF C A BE C

A B EDA C B CF D

F A

F B

F C

F D

F E

Busy

Busy

Busy

Busy

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

?

?

?

?

This is 100% slower (a factor of two)

Near−pessimal all−to−all

Busy

Idle

?

Parallel Programming – p. 83/??

A B B EDC C D E F

B FEDA C B C ED

Busy

Busy

Busy

Busy

Busy

Busy

This has 5 thread swaps / core

CPU A CPU B CPU FCPU ECPU DCPU C

F A A B DD C E FC

FE BA C FA B ED

FED A CB A B FE

FEDC A B DC A F

Near−pessimal all−to−all

Parallel Programming – p. 84/??

Scheduler Glitches (1)

Threads being delayed can be far worse
It may drop the library into ‘slow’ mode
This uses sleeping rather than spinning

Most kernel schedulers have a 10 mS cycle
Will often change thread state once per cycle
This can degrade to a cycle of scheduler delays

• Ask for help if you have trouble here
Solution is to avoid starting the cycle

Parallel Programming – p. 85/??

Send

Wait Wait Wait

Sleep Sleep

Send

Sleep

Wait

Sleep

Wait

SleepWake

10mS

Wake

10mS

Wake

10mS

Wake

10mS

RunRunRun

Run Run
Run

Scheduler Glitches (2)

Parallel Programming – p. 86/??

Scheduler Glitches (3)

• Most I /O calls trigger long sleeps
And quite a few other ‘waiting’ system calls

• Don’t include them in performance--critical code
One thread/process can hold up others

• Other solutions involve system configuration
Search terms include spin loops, nanosleep
Too complicated for course – ask offline

Parallel Programming – p. 87/??

	Summary
	Beyond the Course
	Contents
	SIMD -- The Easy Case
	MIMD
	SPMD (1)
	SPMD (2)
	Multiple Programs
	SMP
	NUMA
	Distributed Memory (1)
	Distributed Memory (2)
	Message Passing
	Take a Breather
	Designing for Distribution (1)
	Designing for Distribution (2)
	Designing for Distribution (3)
	MPI
	MPI-1 (1)
	MPI-1 (2)
	I/O in MPI
	Some Sordid Details
	MPI-2 (1)
	MPI-2 (2)
	PVM -- Parallel Virtual Machine
	Shared-Memory Terminology
	Shared Memory (1)
	Shared Memory (2)
	Shared Memory (3)
	Fully Shared Memory
	Shared Memory I/O
	OpenMP (1)
	OpenMP (2)
	OpenMP (3)
	OpenMP (4)
	OpenMP Debugging (1)
	OpenMP Debugging (2)
	OpenMP Tuning (1)
	OpenMP Tuning (2)
	C++ Threads (1)
	C++ Threads (2)
	POSIX/Microsoft/Java Threads
	Java Threads
	POSIX Threads
	Microsoft Threads
	Others
	GPUs
	CUDA and OpenCL
	Precision Issues
	Shared Memory Segments (1)
	Shared Memory Segments (2)
	Virtual Shared Memory
	Cray SHMEM and Variants
	BSP (1)
	BSP (2)
	PGAS (1)
	PGAS (2)
	HPF
	Fortran Coarrays (1)
	Fortran Coarrays (2)
	Fortran Coarrays (3)
	UPC (1)
	UPC (2)
	Language Support
	Memory Models (1)
	Memory Models (2)
	For Masochists Only
	Valid Memory Accesses
	Atomicity (1)
	Atomicity (2)
	Cache Line Sharing
	Kernel Scheduling
	Kernel Scheduler Problems
	Gang Scheduling (1)
	Gang Scheduling (2)
	Scheduler Glitches (1)
	Scheduler Glitches (3)

