
1

Python: Introduction
for Absolute Beginners

Bob Dowling
University Computing Service

Scientific computing support email address:
scientific-computing@ucs.cam.ac.uk

These course notes:
www-uxsup.csx.cam.ac.uk/courses/PythonAB/

This is the UCS three afternoon course on Python for people who have no experience
of programming at all. We warn all those people who do have some programming
experience and who are here just to add the Python notch to their bed post that they
will be excruciatingly bored in this course. Those people who do already know how to
program in another language and want to learn Python are better off attending the
UCS “Python: Introduction for Programmers” one day course. For details of this
course, see http://training.csx.cam.ac.uk/course/python4progs

Note that the UCS Python courses cover Python 2.4 to 2.6, which are the most
common versions currently in use – it does NOT cover the recently released Python
3.0 since that version of Python is so new. In some places Python 3.0 is significantly
different to Python 2.x, and this course will be updated to cover it as it becomes more
widely used.

The official UCS e-mail address for all scientific computing support queries, including
any questions about this course, is: scientific-computing@ucs.cam.ac.uk

2

Course outline — 1

Who uses Python?
What is Python?
Launching Python

Types of value
Numbers
Text
Truth and Falsehood
Python values

Introduction

Using Python like
a calculator

So what will this course cover?
We will start with a brief introduction to Python, looking briefly at what it is used for and
how we launch it on the systems being used for this course.
Once we have it running we will start by using it as a glorified calculator to get us used
to its features. We will examine how it handles numbers, text and the concept of a
statement being true or false.

3

Variables
if…then…else…
while… loops
Comments
Lists
for… loops
Functions
Tuples
Modules

Course outline — 2

Using Python like
a programming
language

We will do
lots with lists.

But Python is there for us to use as a programming language so, after spending a
while using it as a manually operated calculator, we will start to use it as a fully-fledged
programming language.
As part ofd this we will look at how Python stores values and assigns names to these
stored values. We will look at the three fundamental constructs that will allow us to
build programs that actually do something. (“if…then…else…”, “while… loops”, and
“for… loops”)
We will also spend a lot of time looking at how Python handles lists. There are two
reasons for this. First, Python uses lists a lot so we need to understand them. Second,
Python lists are the first example of a computer data structure that doesn't have any
analogue in the usual arithmetics.
Then we will look at writing our own functions that use what we have learnt. Functions
permit us to structure our code in a more maintainable fashion. We will look at how
Python groups related functions together and what groups of functions is provides
ready-made. These groups are called “modules” in Pythonic language.

4

Course outline — 3

Built-in modules
The “sys” module
Reading input
Files

Interacting with
the outside world

Storing data
in programs

Dictionaries

Once we know the rudiments of programming in Python we will look at the support
functions offered by the base Python system. These will let us access the system
outside of Python. The main example of this will be accessing the file system.
Finally we will look at one last, very powerful mechanism for storing data, the
“dictionary”.

I want to start by convincing you that learning Python is worthwhile. Python is used for
every scale of operation. Here is a spectrum of examples running from the largest to
the smallest.
The Massively Multiplayer Online Role-Playing Game (MMORPG) “Eve Online”
supports over 300,000 users with a Python back end.
http://wiki.python.org/moin/PyCon2006/Talks#line-196
Two very common frameworks for web applications are Django (general purpose) and
Plone (content management). Both are implemented in Python.
www.djangoproject.com plone.org
On the desktop itself there are frameworks to build graphical applications in Python.
The two standard Unix desktop environments are called GNOME and Qt. Both have
Python support. There is similar support under Windows and MacOS.
www.pygtk.org www.pyside.org www.wxpython.org
There are plenty of command line programs written in Python. Some Unixes
(e.g. OpenSUSE) have a helper program they call when the user asks for a command
the shell doesn't know. That helper program is written in Python.
Within programs there are support libraries for almost every purpose including a very
powerful scientific python library called “SciPy” (“Sigh-Pie”) and an underlying
numerical library called “NumPy”.
www.scipy.org
Python is also used to control instruments (a simple robot is featured in the slide) and
is also used in embedded systems. The card shown is ““…IEEE802.15.4 based, auto-
forming, multi-hop, instant-on, mesh network stack combined with an embedded
Python interpreter for running application code.”
synapse-wireless.com

5

What is Python used for?

Network services

Web applications

GUI applications

CLI applications

Instrument control

Embedded systems

/usr/bin/command-not-found

Scientific libraries

6

What is Python?

Compiled Interpreted

Fortran,
C, C++

Java,
.NET

Python Perl Shell

Languages split into two broad camps according to how they are used, though it is
better regarded as a spectrum rather than a clean split.
Compiled languages go through a “compilation” stage where the text written by the
programmer is converted into machine code. This machine code is then processed
directly by the CPU at a later stage when the user wants to run the program. This is
called, unsurprisingly, “run time”. Fortran, C and C++ are examples of languages that
are treated in this way.
Interpreted languages are stored as the text written by the programmer and this is
read by another program, called the interpreter, typically one line t a time. The line is
read and parsed by the interpreter which then executes any instructions required itself.
Then it moves on to the next line. Note that the interpreter is typically a compiled
program itself.
There are some languages which occupy the middle ground. Java, for example, is
converted into a pseudo-machine-code for a CPU that doesn’t actually exist. At run
time the Java environment emulates this CPU in a program which interprets the
supposed machine code in the same way that a standard interpreter interprets the
plain text of its program. In the way Java is treated it is closer to a compiled language
than a classic interpreted language so it is treated as a compiled language in this
course.
Python can create some intermediate files to make subsequent interpretation simpler.
However, there is no formal “compilation” phase the user goes through to create these
files and they get automatically handled by the Python system. So in terms of how we
use it, Python is a classic interpreted language. Any clever tricks it pulls behind the
curtains will be ignored for the purposes of this course.

7

What is Python?

Source of program?

Typed “live” Read from a file

“Interactive” “Batch” mode

So, if an interpreted language takes text programs and runs them directly, where does
it get its text from? Interpreted languages typically support getting their text either
directly from the user typing at the keyboard or from a text file of commands, often
called a “script”.
If the interpreter (Python in our case) gets its input from the user then we say it is
running “interactively”. If it gets its input from a file we say it is running in “batch
mode”. We tend to use interactive mode for simple use and batch for anything
complex.

8

Launching Python
interactively ― 1
Applications → Unix Shell → GNOME Terminal

To launch a terminal window to type commands into launch the GNOME Terminal
application from the menu system:
Applications → Unix Shell → GNOME Terminal

In the Unix command line interpreter we issue the command to launch the Python
interpreter. That command is the single word, “python”.
In these notes we show the Unix prompt, the hint from the Unix system that it is ready
to receive commands, as a single dollar character ($). On PWF Linux the prompt is
actually that character preceded by some other information.
Our other convention in these notes is to indicate with the use of bold face the text that
you have to type while regular type face is used for the computer’s output.

9

Launching Python
interactively ― 2

$ python

Unix prompt

Unix command Bold face
means you
type it.

Python 2.6 …
[GCC 4.3.2 …
Type "help", …

Introductory blurb

>>> Python prompt

At the Unix command line interpreter we issue the command to launch the Python
interpreter. That command is the single word, “python”.
In these notes we show the Unix prompt, the hint from the Unix system that it is ready
to receive commands, as a single dollar character ($). On PWF Linux the prompt is
actually that character preceded by some other information.
Our other convention in these notes is to indicate with the use of bold face the text that
you have to type while regular type face is used for the computer’s output.
The interactive Python interpreter starts by printing three lines of introductory blurb
which will not be of interest to us. For completeness what they mean is this:
1. The version of Python this is.
2. The version of the C compiler the interpreter was compiled with.
3. A few hints as to useful commands to run.
After this preamble though, it prints a Python prompt. This consists of three “greater
than” characters (>>>) and is the indication that the Python interpreter is ready for you
to type some Python commands. You cannot type Unix commands at the prompt.
(Well, you can type them but the interpreter won’t understand them.)

10

Using Python interactively

>>> print 'Hello, world!'

Hello, world!

>>>

Python function

Function result

Python prompt

()

Brackets

Function argument

So let’s issue our first Python command. There’s a tradition in computing that the first
program developed in any language should output the phrase “Hello, world!” and we
see no reason to deviate from the norm here.
The Python command to output some text is “print”. This command needs to be
followed by the text to be output. The information that is passed to the function like this
is called its “arguments”. In our case there is only one argument. Arguments are
passed in brackets to group them together.
(Actually, in Python the print function is a special case for historical reasons, and
doesn't seed the brackets. However, this special exemption is scheduled for removal
in the next version of Python so we encourage you to get in the habit of using them
from the start.)
The text, “Hello, world!” is surrounded by single quotes (') to indicate that it should be
considered as text by Python and not some other commands or Python keywords.
The command is executed and the text “Hello, world!” is produced. The print
command always starts a new line after outputting its text. Note that the quotes were
used to indicate to Python that their contents were text but they are not part of the text
itself so are not printed out as part of the print command's output.

Once the command is complete the Python interpreter is ready for another command
so prompts for it with the same triple chevron (“greater than” sign) marker, “>>>”.

Note that everything in Python is case-sensitive: you have to give the print command
all in lower-case; “PRINT”, “pRiNt”, etc. won’t work.

11

Using Python
interactively

>>> print(3)

3

>>> 5

5

Instruct Python to print a 3

Python prints a 3

Give Python a literal 5

Python evaluates and displays a 5

We will continue in our use of this interactive python session.
We issue a trivial command:
>>> print(3)
and Python faithfully prints the number
3
to the terminal.
If, however, we just type a bare number:
>>> 5
then Python evaluates whatever it has been given and also outputs the result of that
evaluation:
5
Then Python prompts for more input.
There is a subtle difference in the two behaviours. In the first case we explicitly told
Python to print a value. In the second we gave it a value and it responds, essentially
saying “yup, that's a 5”.

12

Using Python
interactively

>>> 2 + 3

5

Give Python an equivalent to 5

Python evaluates and displays a 5

>>> 5

5

We can take this further. We will meet numbers shortly but note for now that the
“evaluation” need not always be trivial. We can use Python to evaluate expressions.

13

Using Python
interactively

>>> print('Hello, world!')

Hello, world!

>>>

'Hello, world!'

'Hello, world!'

No quotes

Quotes

The difference is more explicit if we use text rather than numbers.
In the first case we use the quotes to mark their content as text. When we ask Python
to print some text it prints just the text itself without any syntactic markers. So the print
example has no quotes in its output.
In the second case we hand this text object to Python and it says “yup, this ia a text
object containing this sequence of characters. The way it indicates that it is a text
object is by enclosing it in quotes. It uses exactly the same marker as we did.

14

Quitting Python
interactively

>>>

$

Python prompt

Unix prompt

[Ctrl]+[D] Unix “end of input”

Now that we know how to get into Python we need to know how to get out of it again.
In common with many Unix commands that read input from the keyboard, the program
can be quit by indicating “end of input”. This is done with a “[Ctrl]+[D]”. To get
this hold down the control key (typically marked “Ctrl”) and tap the “D” key once.
Then release the control key.
Be careful to only press the “D” key only once. The [Ctrl]+[D] key combination,
meaning “end of input” or “end of file”, also means this to the underlying Unix
command interpreter. If you press [Ctrl]+[D] twice, the first kills off Python
returning control to the Unix command line and the second kills that off. If the entire
terminal window disappears then this is what you have done wrong. Start up another
window, restart Python and try again.
If you are running Python interactively on a non-Unix platform you may need a
different key combination. If you type “exit” at the Python prompt it will tell you what
you need to do on the current platform. On PWF Linux you get this:
>>> exit
Use exit() or Ctrl-D (i.e. EOF) to exit
>>>
If you do not feel comfortable using [Ctrl]+[D] then you can type run the Python
command exit() instead.

15

Exercise

1. Launch a terminal window.
2. Launch Python.
3. Print out “Hello, world!”
4. Run these Python expressions (one per line):

(a) 42
(b) 26+18
(c) 26<18
(d) 26>18

5. Exit Python (but not the terminal window).

2 minutes

Here's a quick exercise. It shouldn't take you too long, but if you get stuck do get the
demonstrator's attention and ask.
The answers to 4(a) and 4(b) should come as no surprise. The answers to 4(c) and
4(d) will be new but we will cover them later in this course.
If you accidentally quit your terminal window as well as your Python session then you
need more practice with Control characters. Launch another terminal window, launch
Python in it and have another go at exiting cleanly.

If you rush through this exercise and are left with 2 minutes 30 seconds of thumb-
twiddling time here are some more exercises:

A. Try to predict what each of these interactive Python commands will result in.
Then try them for real. Were you right?

>>> 99 - 100
>>> 123456789 + 987654322
>>> 99 > 100

B. The first of these commands works. The second gives an error. Why do you
think it fails? (We will address this when we cover text properly later.)

>>> print('Dowling')
>>> print('O'Connor')

16

Writing Python scripts

Applications → Word and Text Processing → gedit

Now we have seen Python interactively (though in a very limited capacity) we should
look at it being used in batch mode: on files of Python commands. To read and write
these files we will use a simple editor in this course called “gedit”. If you already
know a different Unix plain text editor you are welcome to use it, but the course notes
and the lecturer will use gedit. A hand out is provided with a quick guide on how to
use it.

To launch gedit on PWF Linux select

Applications → Word and Text Processing → gedit
from the menus.

Please be careful. The gedit application edits plain text files. Some of these (and
most for our purposes) will be Python scripts, but it has nothing to do with Python
itself. It is just a text editor.

17

Launching Python
scripts
Read / edit the script Run the script

gedit Terminal

So, once we have a script (as we can see in gedit) we need to run it. We do this in the
terminal window by running the python command just as we did interactively but this
time we add the name of the script file we want it to run.
$ python hello.py
Hello, world!
$
Please keep the text editor and the terminal window separate in your mind.

18

Launching Python
scripts

$ python hello.py

Hello, world!

$

Unix prompt

No three
lines of
blurb

Straight back
to the Unix
prompt

Note that Python runs the command inside the file just as if it had been typed
interactively. The only difference is that this time Python does not print the three lines
of introductory blurb and exits automatically once the script is complete. We go
straight back to the Unix prompt; we do not need to quit from Python ourselves.

19

Launching Python
scripts
print(3)
5

three.py

$ python three.py

3

$

No “5” !

We will use this representation of file contents rather than screenshots in future slides.
There is another difference between interactive and batch mode which we can see
with the script three.py.
>>> python three.py
3
Not only does batch mode drop the introductory blurb but it also drops the output of
values. Unless there is an explicit output command, Python in batch mode is silent.

20

Interactive vs. Scripting

Source of program?

Typed “live” Read from a file

“Interactive” “Batch” mode

Introductory blurb No blurb

Evaluations printed Only explicit output

Those are the only two differences between interactive and batch mode Python.
Apart from that, it's just a case of what's more convenient.

21

Progress

What Python is

Who uses Python

How to run Python interactively

How to run a Python script

22

Exercise

1. Launch a terminal window.
2. Run hello.py as a script.
3. Edit hello.py.

Change “Hello” to “Goodbye”.
4. Run it again.

2 minutes

Here's an exercise to make sure you can run scripts and also edit them.

23

Types of values

Numbers Whole numbers

Decimal numbers

Text

“Boolean” True

False

We are going to start by using Python as a glorified calculator. To do that we need to
know a bit about the sorts of things we will be calculating with. We need to know a
little about how Python handles its various values.
In computing values get divided up into “types”. So The number 3 is not the same as
the letter “3”. These have different types.
We will start by looking at just a few types. These will be plenty to get us a long way.
We will look at numbers, both whole numbers and decimal numbers, we will look at
text and we will look at so-called “boolean” values. These are what the Python system
uses to record “true” and “false”. We will see them in detail shortly.

24

Integers

{ …-2, -1, 0,
1, 2, 3, … }

ZZ

We will start with the integers, i.e. the “whole numbers” (0, the positive whole numbers
and the negative whole numbers) = {…, -3, -2, -1, 0, 1, 2, 3, …}.
The letter ℤ (with the double diagonal stroke) is the mathematical symbol for the
whole numbers, known mathematically as the “integers”.

25

>>> 4+2

6

>>> 3

8

Addition behaves as
you might expect it to.

+ 5

Spaces around
the “+” are ignored.

If we type “4+2” at the Python prompt it is evaluated and returned as “6”. There’s no
great surprise there. It should be noted that Python doesn’t care about spaces or the
lack of them around the plus sign, or before or after the integers for that matter.

26

>>> 4-2

2

>>> 3

-2

Subtraction also behaves
as you might expect it to.

- 5

Subtraction also behaves in a similar fashion with negative numbers represented with
a leading minus sign.

27

>>> 4*2

8

>>> 3

15

* 5

Multiplication uses a
“*” instead of a “×”.

We see our first deviation from “obvious” with multiplication. The plus and minus signs
appear on the standard keyboard so can be used by programming languages. The
times sign, “×”, does not appear on the keyboard so traditionally in computing the
asterisk, “*”, is used instead. (Actually Linux systems with UK keyboards can get “×”
as []+[AltGr]+[,].) ⇧

28

>>> 4

2

/2
Division uses a
“/” instead of a “÷”.

>>> 5

1

/ 3

>>> -5

-2

/ 3

Division rounds down.

Strictly down.

Similarly, division uses the forward slash character, “/”, rather than “÷”.

Division is the first place where Python’s integer arithmetic differs from conventional
maths. We are working in integers and Python remains within integers for the results
too so if the division would give a fractional answer Python rounds down to give an
integer value. So the expression “5/3” gives “1” rather than “1 2/3”. Note that the
“round down” rules is applied absolutely. As a result “-5/3” is evaluated to be “-2”
which is the integer below “-1 2/3”. So (-5)/3 does not evaluate to the same as -(5/3).
This sort of integer division is also known as “floor division”.
(Again, “÷” is []+[AltGr]+[.] on a Linux system with a UK keyboard, if you are ⇧
interested.)

29

>>> 4

16

**2
Raising to powers uses
“4**2” instead of “42”.

>>> 5 ** 3
Spaces around the “**”
allowed, but not within it.

125

The next mathematical operator we will describe for integers is raising to powers (this
is known as “exponentiation”). In classical arithmetic notation this is represented by
the use of superscripts, so “4 to the power of 2” is written “42”. However, this cannot
be represented on a standard keyboard so instead a different notation is used. We
write 42 as “4**2”. You are permitted spaces around the “**” but not inside it, i.e. you
cannot separate the two asterisks with spaces.
Some programming languages use “^” for this operator rather than “**”. Python,
however, uses “**” for this, and uses “^” for something completely different that will
not encounter in this introductory course.

30

>>> 4

0

%2

Remainder uses a “%”.

4 = 2×2 + 0

>>> 5 % 3

2 5 = 1×3 + 2

>>> -5 % 3

1 -5 = -2×3 + 1

Always zero or positive

There is one integer operator used in computing which does not have a classical
equivalent symbol. The percent character is used to to determine remainders. “5%3”
gives the answer “2” because 5 leaves a remainder of 2 when divided by 3. The
remainder is always zero or positive, even when the number in front of the percent
character is negative.
We won't be using this operator in the course; it is included merely for completeness.

31

>>> 2 * 2

4

>>> 4 * 4

16

>>> 16 * 16

256

>>> 256 * 256

65536

How far can
integers go?

So far, so good…

Python’s integer arithmetic is very powerful and there is no limit (except the system’s
memory capacity) to the size of integer that can be handled. We can see this if we
start with 2, square it, get and answer and square that, and so on. Everything seems
normal up to 65,536.

32

>>> 65536 * 65536

4294967296L Long integer

>>> 4294967296 * 4294967296

18446744073709551616L

>>> 18446744073709551616 *

340282366920938463463374607431768211456L

18446744073709551616

No limit to size of
Python's integers!

If we square that Python gives us an answer, but the number is followed by the letter
“L”. This indicates that Python has moved from standard integers to “long” integers
which have to be processed differently behind the scenes but which are just standard
integers for our purposes. Just don’t be startled by the appearance of the trailing “L”.

We can keep squaring, limited only by the base operating system’s memory. Python
itself has no limit to the size of integer it can handle.
Note: If you are using a system with a 64-bit CPU and operating system then the
number just over four billion also comes without an “L” and it kicks in one squaring
later.

33

18446744073709551616

4294967296

65536

256

16

4

2

3402823669209384634…
63374607431768211456

int
INTEGER*4

long
INTEGER*8

long long
INTEGER*16

Out of the reach
of C or Fortran!

It is worth mentioning that Python is quite exceptional in this regard. C and Fortran
have strict limits on the size of integer they will handle. C++ and Java have the same
limits as C but do also have the equivalent of Python’s “long integers” as well.
However, in C++ and Java you must take explicit action to invoke so-called “big
integers”; they are not engaged automatically or transparently as they are in Python.
Recent versions of C have a “long long” integer type which you can use to get
values as large as 18,446,744,073,709,551,615. Square it one more time and Python
can still beat them.

34

Progress

Whole numbers

No support for fractions

Unlimited range of values

Mathematical operations

a+b a-b a×b a÷b ab a mod b

a+b a-b a*b a/b a**b a%b

…-2, -1, 0, 1, 2…

1/2 0

Maths:
Python:

35

Exercise

In Python, calculate:

2 minutes

1. 12+4 2. 12+5
3. 12−4 4. 12−5
5. 12×4 6. 12×5
7. 12÷4 7. 12÷5
9. 124 10. 125

Which of these answers is “wrong”?

Here are some simple integer sums to do in Python. By “wrong” I mean that the
integer answer from Python does not equal the mathematical non-integer answer.

36

Floating point numbers

1.0
1.25
1.5

1
1 ¼
1 ½

And that wraps it up for integers.
Next we would like to move on to real numbers, i.e. the whole numbers and all the
values in between, so that we can cope with divisions that give fractional answers and
other more complex mathematical operations that need more than the integers.
Python implements a scheme to represent real numbers called “floating point
numbers”. Some non-integer numbers can be represented exactly in this scheme. Two
examples are 1¼ and 1½. Most numbers can't be.
Incidentally, there is an alternative approximation called “fixed point numbers” but
most programming languages, including Python, don’t implement that so we won’t
bother with it.

37

But… IR1.31 1 3

1.33
1.333
1.3333 ?

But what about an equally “simple” fraction, 4/3? In normal mathematical
representation we express this approximately as a decimal expansion to a certain
number of places. This is the approach computers take, typically specifying the
number of decimal places they will work to in advance.
(is the mathematical symbol for the real numbers.)ℝ

If you are going to be doing numerically intensive work you should have a look at the
article “The Perils of Floating Point” by Bruce M. Bush, available on-line at:

http://www.lahey.com/float.htm
This article will tell you more about the downright weird behaviour of floating point
numbers and the kinds of problems this can cause in your programs. Note, however,
that all the examples in this article are in Fortran, but everything the article discusses
is as relevant to Python as it is to Fortran.

38

>>> 1.0

1.0

>>> 0.5

0.5

>>> 0.25

0.25

>>> 0.1

0.1

1 is OK

½ is OK

¼ is OK

Powers
of two.

1/10 is not!

Why?

We represent floating point numbers by including a decimal point in the notation. “1.0”
is the floating point number “one point zero” and is quite different from the integer “1”.
(We can specify this to Python as “1.” instead of “1.0” if we wish.)
The floating point system can cope with moderate integer values like 1·0, 2·0 and so
on, but has a harder time with simple fractions.

39

>>> 0.1

0.1

1/10 is stored
inaccurately.

Floating point numbers are…

…printed in decimal

…stored in binary
17 significant figures

>>> 0.1 + 0.1 + 0.1

0.30000000000000004

Even with simple numbers like this, though, there is a catch. We use “base ten”
numbers but computers work internally in base two. So fractions that are powers of
two (half, quarter, eighth, etc.) can all be handled exactly correctly. Fractions that
aren’t, like a tenth for example, are approximated internally. We see a tenth (0·1) as
simpler than a third (0·333333333…) only because we write in base ten. In base two a
tenth is the infinitely repeating fraction 0·00011001100110011… Since the computer
can only store a finite number of digits, numbers such as a tenth can only be stored
approximately. So whereas in base ten, we can exactly represent fractions such as a
half, a fifth, a tenth and so on, with computers it’s only fractions like a half, a quarter,
an eighth, etc. that have the privileged status of being represented exactly.
In practice we get sixteen significant figures of accuracy in our floating point numbers.
We’re going to ignore this issue in this introductory course and will pretend that
numbers are stored internally the same way we see them as a user.
Note for completeness: The number of significant figures of accuracy to which Python
stores floating point numbers depends on the precision of the double type of the
underlying C compiler that was used to compile the Python interpreter. (If you have no
idea what that statement meant, don’t worry about it; you don’t really need to know this
level of detail about Python.) What this does mean is that on most modern PCs you
will get at least 17 significant figures of accuracy, but the exact precision may vary.
Python does not provide any way for the user to find out the exact range and precision
of floating point values on their machine.

40

If you are relying on the
17th decimal place you
are doing it wrong!

!
>>> 0.1 + 0.1 + 0.1

0.30000000000000004

This many significant figures isn't so terrible. If you are relying on the seventeenth then
you are sunk anyway.

41

>>> 5.0 + 2.0

7.0

>>> 5.0 − 2.0

3.0

>>> 5.0 * 2.0

10.0

>>> 5.0 / 2.0

2.5

>>> 5.0 ** 2.0

25.0

>>> 5.0 % 2.0

1.0

Same basic operations

Gets it right!

Let’s stick with simple floating point numbers for the time being. It won’t take long to
get in trouble again. The basic operations behave well enough and use exactly the
same symbols as are used for whole numbers.
Note that this time the division of 5·0 by 2·0 gives the right answer, 2·5. There is no
truncation to whole numbers.

42

>>> 4.0 * 4.0

16.0

>>> 16.0 * 16.0

256.0

>>> 256.0 * 256.0

65536.0

How far can
floating point
numbers go?

So far, so good…

>>> 65536.0 * 65536.0

4294967296.0

If we repeat the successive squaring trick that we applied to the integers everything
seems fine up to just over 4 billion.

43

>>> 4294967296.0 ** 2

1.8446744073709552e+19

17 significant figures ×1019

1.8446744073709552×1019 =
18,446,744,073,709,552,000Approximate answer

4294967296 × 4294967296 =
18,446,744,073,709,551,616Exact answer

384Difference

If we square it again we get an unexpected result. The answer is printed as
1.8446744073709552e+19
This means 1·8446744073709552×1019.
First note the notation used. Python uses the notation e+19 to mean ×1019 at the end
of a number. This representation is known as “exponential” or “scientific” form. We’ve
been dumped into it because we have reached the limits of accuracy that 17
significant figures can offer.
Second, note that this is not the right answer. There is an error in the value, albeit
small relative to the size of the number.
Positive floating point numbers can be thought of as a number between 1 and 10
multiplied by a power of 10 where the number between 1 and 10 is stored to 17
significant figures of precision. So if you are doing mathematics with values that ought
to be integers you should stick to the integers, not the floating point numbers.

44

>>> 4294967296.0 * 4294967296.0
1.8446744073709552e+19

>>> 1.8446744073709552e+19 *
1.8446744073709552e+19

3.4028236692093846e+38

>>> 3.4028236692093846e+38 *
3.4028236692093846e+38

1.157920892373162e+77

>>> 1.157920892373162e+77 *
1.157920892373162e+77

1.3407807929942597e+154

Now that we’re in exponential notation can we continue the squaring further? At first
glance, yes we can.

45

>>> 1.3407807929942597e+154 *
1.3407807929942597e+154

“Overflow errors”

inf Floating point infinity

But no. Even in this form, floating point arithmetic has its limits. If we square beyond
approximately 10300 we get an “infinite” answer. Floating point systems have a special
code for “number too big to fit” which they casually describe as “infinity”. Python prints
this out as the three letters “inf”.

46

Floating point limits

1.2345678901234567 x 10N

17 significant figures

-325 < N < 308

4.94065645841e-324 < x < 8.98846567431e+307
Positive values:

So floating point numbers, while they can handle fractions (unlike integers) have limits.
They are limited in accuracy and range. On the typical PC we get seventeen
significant figures and scales between 10-324 and 10308.

47

Progress

Floating Point numbers

Limited accuracy

Limited range of sizes

Mathematical operations

(but typically
 good enough)

1.25

1.25×105

 1.25

 1.25e5

a+b a-b a×b a÷b ab

a+b a-b a*b a/b a**b

48

Exercise

In Python, calculate:

3 minutes

1. 12·0+4.0 2. 12·0-4·0
3. 12·0÷4.0 4. 12÷40·0
5. 25·00·5 6. 5·0-1·0

7. 1·0×1020 + 2·0×1010 8. 1·5×1020 + 1·0

Which of these answers is “wrong”?

In this case “wrong” means not precisely correct.

49

Strings

“The cat sat on the mat.”

“Lorem ipsum dolor sit amet, consectetuer adipiscing elit. D
onec at purus sed magna aliquet dignissim. In rutrum libero
 non turpis. Fusce tempor, nulla sit amet pellentesque feugi
at, nibh quam dapibus dui, sit amet ultrices enim odio nec i
psum. Etiam luctus purus vehicula erat. Duis tortor lorem, c
ommodo eu, sodales a, semper id, diam. Praesent ...”

Finally in this review of Python types we will look at text.
Python stores text as “strings of characters”, referred to as “strings”.
ps: See http://www.lipsum.com/ for the history of the “lorem ipsum” typesetting
test text.

50

>>> '

'Hello, world!'

'Hello, world!

The value of
the text object

Quotes: Hey,
this is text!

>>> How Python
represents the
text object.

Quotes

Simple text can be represented as that text surrounded by either single quotes or
double quotes. Here we use single quotes.
Again, because of the historical nature of keyboards, computing tends not to
distinguish opening and closing quotes. The same single quote character, ', is used
for the start of the string as for the end.
The quotes are not part of the text; they simply indicate that the lump of text should be
interpreted by Python as a text object.
If we type a string into interactive Python then it responds as usual with that value.
Note that Python uses the same single quotes notation to indicate that this is a text
object.

51

Why do we need quotes?

3

print

It’s a number

Is it a command?

Is it a string?

'print' It’s a string

?

print It’s a command

Up till now, we have seen no difference between a raw value and a printed value.
Integers and floating point number look the same either way. This is because Python
doesn’t need any syntactic assistance to recognise integers or floating point numbers.
It does need help with text, though. A string of characters like “print” might be either
the literal string to be evaluated and returned just like a number or a command to be
run.
With quotes it is a literal string.
Without quotes it is something that Python will process, such as a command.

52

>>> '

Hello, world!

'Hello, world!print

Python command

“This is text.”

The text.

>>>

print only
outputs the
value of
the text

)(

The print function outputs the raw text, without any surrounding quotes.

53

>>>

'Hello, world!'

Quotes: Hey,
this is text!

>>> Single quotes

" "Hello, world!

Double quotes

We can also use double quotes around the text. It makes no difference at all to the
text object created. Again because of limitations on traditional keyboards we use the
same double quote character at the end as the start of the string.
One of the effects of it making no difference is that if we input a string with double
quotes Python may well show it with single quotes. This is how Python represents
strings. It has no memory of what quotes were used to input it in the first place.

54

Single
quotes

Double
quotes

' 'Hello, world! " "Hello, world!

Both define the
same text object.

The only condition on using single or double quotes is that you must use the same at
either end of the string. You cannot start with one and end with the other.

55

>>>

Mixed quotes

'He said "Hello" to her.'print

He said "Hello" to her.

>>> "He said 'Hello' to her."print

He said 'Hello' to her.

The flexibility of using either single or double quotes to identify text to the Python
interpreter is that we have an easy way to create text objects that have quotes in
them. If you want a text object with double quotes in it then define it with single quotes
around it. If you want one with single quotes in it define it with double quotes around it.

56

Joining strings together

>>> 'He said' + 'something.'

'He saidsomething.'

>>> 'He said ' + 'something.'

'He said something.'

Python has various facilities for manipulating strings of characters. We will see two at
this point. Strings can be joined together with the “+” operator. Note that no spaces
are added as strings are joined.

57

Repeated text

>>> 'Bang! '

'Bang! Bang! Bang! '

* 3

>>> 'Bang! '

'Bang! Bang! Bang! '

*3

We can also repeat a string by “multiplying it by a number”.
Note that both "Bang! " * 3 and 3 * "Bang! " are valid.

58

Progress

Strings

Use quotes to identify

Use print to output just the value

(matching single or double)

String operations

59

Exercise

Predict what interactive Python will print when you
type the following expressions. Then check.

3 minutes

1. 'Hello, ' + "world!"
2. 'Hello!' * 3
3. "" * 10000000000
4. '4' + '2'

(That's two adjacent
 double quote signs.)

Feel free to write your predictions on the notes; it helps stop you cheating with
yourself. If you can't understand why you get any of the answers, ask.

60

Line breaks

Problem: Suppose we want to create a
string that spans several lines.

>>> print('Hello,
world!')

 ✘
>>> print('Hello,
SyntaxError:
string literal

EOL while scanning

“end of line”

So far we have looked at simple, short strings. Suppose we wanted some text that
was long enough to require line breaks, or a short piece of text where we wanted to
include some line breaks for formatting reasons.
We hit a problem. If we try to create a string the way we have been doing so far the
Python system throws an error when we hit the [↵] key.

61

\n

The line break character

Solution: Provide some other way to mark
“line break goes here”.

>>> print('Hello, world!')

Hello,
world!

\n new line

If we can't press [↵] to signal “line break goes here” we need some other way to do it.
Python uses a common convention (originating in the C programming language) that
the pair of characters “\n” represents the “new line character”.
The first character is called a “backslash”. Note that it is not the same as the forward
slash, “/”, which Python uses for arithmetic division.
On most modern operating systems line breaks are recorded in the data as an explicit
character or set of characters. They don't agree on what the characters should be, but
“\n” is what our platforms use.

62

The line break character

'Hello,

H ↵

72 101108108111 44 119108109101100 3310

e l l o , w o r l d !

world!'\n

A single character

Note that “\n” is just a way to represent the new line character. There are not two
characters there; there's only one.
Internally characters are represented as numbers, and the new line character has a
number just like each of the letters.

63

Special characters

\a

\n

\t

 ♪

 

 ⇥

\'

\"

\\

 '

 "

 \

“New line” is not the only special character like this.
The machines in our public classrooms have had their speakers disabled so you can't
heart the beep from “\a” (“alarm”). The sequence “\t” gives the tab character.
The backslash can also be used to introduce ordinary characters where they would
otherwise have special meaning. We can use it to introduce quote marks without
worrying about the quotes around the string, for example.
Also, we have to backslash the backslash character if we want it in a string.
For interested readers only:
There are more white space characters than new line and tab, by the way. Python
supports these less commonly needed sequences too:
\a bell/alarm print('beep\a beep\a')
\b Backspace print('abc\bdef')
\e [Esc]
\f Form feed print('abc\fdef')
\n New line/Line feed print('abc\ndef')
\r Carriage return print('abc\rdef')
\t Horizontal tab print('abc\tdef')

print('ab\tcdef\nabc\tdef\nabcd\tef')
\v Vertical tab print('abc\vdef')
Many of these hark back to the days of teletype printers.
Be careful with [Esc]. It can be used to send instructions to your terminal, rendering it
potentially unusable until reset.

64

\n

“Long” strings

>>> '''
world!

Hello,
''' Three single quote signs

'Hello, world!' An ordinary string

An embedded
new line character

>>>

But this is fiddly. We want to be able to just hit the [↵] key.
Python has some special support for “long strings” where line breaks are likely to be
required. If we start a literal string with three single quotes then we can just hit the [↵]
key the way we would like to. This strings can span as many lines as we want and
closes with a matching triplet of quotes.
Note that the string that is created with way is just another string. The triple quotes
procedure is just a trick to enter long strings more easily. It doesn't create a new type
of string.

65

What the string is vs.
how the string prints

'Hello,\nworld!' Hello,
world!

It's not just quotes vs. no quotes!

The new line character emphasizes the difference between the way Python represents
an object (e.g. a string with its quotes and special characters shown in strange ways)
and the way it prints that object (which interprets those special characters).

66

Single or double quotes

>>> """
world!

Hello,
""" Three single quote signs

'Hello,\nworld!' The same string

>>>

Note that for the long string trick we can use a triplet of either single or double quotes,
but they must match at the two ends.

67

'''Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Donec at purus sed magna aliquet
dignissim. In rutrum libero non turpis. Fusce
tempor, nulla sit amet pellentesque feugi at, nibh
quam dapibus dui, sit amet ultrices enim odio nec
ipsum. Etiam luctus purus vehicula erat. Duis
tortor lorem, commodo eu, sodales a, semper id,
diam.'''

Long strings

There is no limit to how long a long form literal string can be.

68

Progress

Entering arbitrarily long strings

Dealing with line breaks

Other “special” characters

Triple quotes

″″″…″″″

′′′…′′′

\n \t …

69

Exercise

Predict the results of the following instructions.
Then check.

print('Goodbye, world!')1.

print('Goodbye,\nworld!')2.

print('Goodbye,\tworld!')3.

2 minutes

70

Comparisons

Are two values the same?

Is one bigger than the other?

Is “bigger” even meaningful?

5+2 7

5+2 8

Now we have values we can start comparing them. We can ask if two values are the
same, obviously but we can also ask if one is bigger than the other. For numbers this
makes obvious sense but for other sorts of values it might make none at all.

71

Comparisons

>>> 5 > 4

>>> 5.0

True

False

A comparison operation

A comparison result

Only two values possible

4.0<

For numerical comparisons we can use the symbols provided on the keyboard. If we
type a comparison at the interactive Python prompt we are told whether or not the
comparison is correct. (We will return to “True” and “False” soon.)
Note that we can compare whole numbers and floating point numbers.

72

Equality comparison

>>> 5 == 4

False

n.b. double equals

Perhaps the most important comparison is to test for whether two values are equal.
The operator to do this is a double equals sign. The single equals sign is used for
something else and we will meet it shortly, but for comparisons two values we use a
double equals sign.

73

Useful comparisons

>>> (2**2)**2 == 2**(2**2)

True

>>> (3**3)**3 == 3**(3**3)

False

Comparing 4 and 5 interactively is hardly useful though, so here’s one you may have
to think about.

74

All numerical comparisons

x y==

x y!=

x y<

x y<=

x y>

x y>=

Python

x y=

x y≠

x y<

x y≤

x y>

x y≥

Mathematics

There are six numerical comparisons in total. The “strictly less than” and “strictly
greater than” comparisons simply use their symbols on the keyboard ([Shift]+[,] for [<]
and [Shift]+[.] for [>] on the keyboards you are most likely to use). The other
comparisons use double characters (which must not be split by spaces).

75

Comparing strings

Alphabetic order…

>>> 'cat' < 'mat'

True

>>> 'bad' < 'bud'

True

>>> 'cat' < 'cathode'

True

When we compare numbers there is an obvious “right” answer. When we compare
strings we use alphabetical order.

76

Comparing strings

>>> 'Cat' < 'cat'

True

>>> 'Fat' < 'cat'

True

ABCDEFGHIJKLMNOPQRSTUVWXYZ…
abcdefghijklmnopqrstuvwxyz

But what about mixed case words? Python orders all the upper case letters in front of
all the lower case letters.

77

Progress

Six comparisons:

Numbers:
numerical order

Strings:
alphabetical order

== != < <= > >=

= ≠ < ≤ > ≥

0 1 2 3-1-2-3

ABCDEFGHIJKLMNOPQRSTUVWXYZ…
abcdefghijklmnopqrstuvwxyz

78

Exercise

3 minutes

Predict whether Python will print True or False
when you type the following expressions.
Then check.

1. 100 < 100
2. 3*45 <= 34*5
3. 'One' < 'Zero'
4. 1 < 2.0
5. 0 < 1/10
6. 0.0 < 1.0/10.0

79

Truth and Falsehood

“Boolean” values

True Falseand

Same status as numbers, strings, etc.

5 + 4 9

5 > 4 True

Whole number

Boolean

We have seen interactive Python respond “True” and “False” to our comparison
enquiries. These are not just remarks from Python but true values. They are values of
a type called “Boolean” which can only take two values: True and False. This new type
has the same status in Python as integers, floating point numbers, strings etc.
Just as the “plus” operator takes two integers and gives an integer, the “greater than”
operator takes two integers and returns a Boolean.

80

Combining booleans

5 < 61 < 2>>>

True True

True

and

Both True

5 > 61 < 2>>>

True False

False

and

Not both True

Now that we have booleans as values we can manipulate them. Just as there are
operators that combine integers to create integers (1 + 1 gives 2, etc.) there are
operators that combine booleans to give booleans.
The first we will meet is “and”. This takes two booleans and if both of them are True
gives True as a result. If either or both of them is False then it gives False.

81

Combining booleans

5 < 61 < 2>>>

True True

True

or

Either True

5 > 61 < 2>>>

True False

True

or

Either True

Similar to “and” is “or”. This returns a True if either or both of the given values is
True.

82

Combining booleans

5 > 61 > 2>>>

False False

False

or

Neither True

The “or” operator only returns False when both its arguments are False.

83

Negating booleans

1 > 2>>>

False

not>>>

True

1 > 2

True → False
False → True

not>>>

True

False

There is one other boolean operator we need to know about. The “not” operator
inverts a boolean value. It turns True into False and vice versa.

84

Not equal to…

1 == 2>>>

False

1 != 2>>>

True

not 1 == 2>>>

True

Note that the “not” operator gives us two ways to test for whether two values are
unequal.

85

Progress

“Booleans” True False

Combination and or

Negation not

86

Exercise

3 minutes

Predict whether Python will print True or False
when you type the following expressions.
Then check.

1. 1 > 2 or 2 > 1
2. 1 > 2 or not 2 > 1
3. not True
4. 1 > 2 or True

Exercise

87

Ambiguity?

12 + 8 / 4

12 + (8/4) (12 + 8)/4

12 + 2 20/4

14 5

?

Before we finish with all this value juggling there is one last thing to address. More
complex expressions that involve more than one operator need to have some rules for
which operator is dealt with first.
For example there are two possible interpretations for “12+8/4”.

88

Standard interpretation

12 + 8 / 4

12 + (8/4) (12 + 8)/4

12 + 2 20/4

14 5

✓ ✗

Traditionally (or “as human beings”) we always interpret this according to the rules on
the left hand side of the slide, but for a computer we need to be explicit. We do the
division before we do the addition.

89

Division before addition

12 + 8 / 4 Initial expression

12 + 8 / 4 Do division first

12 + 2

12 + 2 Do addition second

14

Some people say that the division “binds more tightly” than addition. I prefer to say
that division goes first.

90

Precedence

Division before addition

An order of execution

“Order of precedence”

So, if division goes before addition, then we have an idea of an order that all the
operators get executed in. This is called the “order of precedence”.

91

Precedence

** % / * - +

First

Arithmetic

== != >= > <= < Comparison

not and or Logical

Last

In a nutshell this is it. Exponentiation goes first, followed by remainders, followed by
division etc.
Mostly this just does “what you expect”.

92

Parentheses

Avoid confusion!

18/3*3 “Check the precedence rules”

18/(3*3) “Ah, yes!”

However, if there is any chance of confusion you should use parentheses (round
brackets). Even if you’re not confused, if you think it would be easier for your reader to
understand your expression with brackets, use them.

93

Exercise

2 minutes

Predict what Python will print when
you type the following expressions.
Then check.

1. 12 / 3 * 4
2. 3 > 4 and 1 > 2 or 2 > 1

94

Exercise: √2 by “bisection”

Now we’ll do a more significant example.
This is the start of a build-up to a real Python program. Computer programs run mind-
numbingly tedious routines very quickly (so that we don't have to). Unfortunately, to
understand just what the computer is going to be doing, we need to understand the
mind-numbing bit too. Sorry. It won't last too long.
We are going to get a (poor) approximation to the square root of 2, that is the positive
number that when multiplied by itself gives 2. We will use a method called “bisection”
and we will do it manually. Later we will learn the Python to automate the process.
Bisection works by starting with two estimates for √2, one too small and one too large.
Each stage of the process starts by calculating the mid-point of the two estimates and
seeing if it is too big or too small itself by squaring it and comparing it against 2. If it is
too big then we switch our attention to the smaller interval running from the old “too
small” estimate to the mid-point which is our new “too large” estimate. If the mid-point
is too small then we switch attention to the interval running from the mid-point, which
becomes our new “too small” estimate and the original “too large” estimate.
So, each step of the process reduces the size of the interval from “too small” to “too
large” by a factor of 2. This converges very quickly but as we are doing it manually we
will only do five steps ourselves.
So this slide shows the initial stage. We mark with a red bar the interval between our
lower and upper estimates (1·0 and 2·0) and it’s corresponding range of squared
values (1·0 to 4·0). We start with this interval (that contains √2) having length 1·0.

95

Exercise: √2 by “bisection”

>>> (1.0+2.0)/2.0
1.5

>>> 1.5**2
2.25

We find the mid-point and calculate its square.

96

Exercise: √2 by “bisection”

>>> 2.25 > 2.0
True

Next we ask if the squared value is greater than 2·0 or less than it. It is greater than
2·0 so we reduce the upper bound to this mid-point. (Otherwise we would have raised
the lower bound.)
The interval containing √2 now has length 0·5.

Now we repeat the process.
We find the new mid-point and calculate its square.

97

Exercise: √2 by “bisection”

>>> (1.0+1.5)/2.0
1.25

>>> 1.25**2
1.5625

98

Exercise: √2 by “bisection”

>>> 1.5625 > 2.0
False

We ask if the mid-point squared is greater than 2·0. This time it isn’t so we raise the
lower bound to the mid-point.
The interval containing √2 now has length 0·25.

99

Exercise: √2 by “bisection”

>>> (1.25+1.5)/2.0
1.375

>>> 1.375**2
1.890625

We do a third iteration. We find the mid-point of this latest interval and calculate its
square.

100

Exercise: √2 by “bisection”

>>> 1.890625 > 2.0
False

We ask if that square is greater than 2·0.
It isn’t so again we raise the lower bound to the mid-point.
The interval containing √2 now has length 0·125. The uncertainty over the value of √2
is ⅛ of its original size.

101

Exercise: √2 by “bisection”

10 minutes

Three more iterations, please.

We have been using Python as a calculator to determine mid-points, squares and
whether numbers were bigger than 2·0. To check out your understanding of python we
would like you to do it manually three more times (to get an interval of size 0·015625).

102

So far …

…using Python
as a calculator.

So far we have used Python as a calculator. We needed to do that to get used to
some of its properties, but it’s capable of so much more.

(Picture © Christian "VisualBeo" Horvat, distributed under the Creative Commons
Attribution ShareAlike 3.0 licence.
http://commons.wikimedia.org/wiki/File:Calculator_casio.jpg)

103

Now …

…use Python
as a computer.

Now we are going to start using it as a real computer programming language. So we
need to get a little computer-y.

(Featured computer: a PDP-12
Picture by Bjarni Juliusson, who placed it in the public domain.
http://commons.wikimedia.org/wiki/File:PDP-12-Update-Uppsala.jpeg)

104

int

How Python stores values

42

Identification of
the value’s type

Identification of
the specific value

42

Lump of computer memory

We’ll get computer-y by looking briefly at how Python stores the values we’ve been
looking at in system memory.
Python stores a value as a record of what type the value is followed by the data
corresponding to the specific value. The computer can’t interpret that data without
knowing what type of value it is representing.

105

How Python stores values
42

4·2×101

'Forty two'

int 42

float 4.2 ×10
1

str F o r t y t w o

True bool ✓

Just for interest, not all programming languages do this. Other require the program to
remember what type a lump of system memory contains. Bugs ensue when the
programmer gets it wrong and interprets an integer as a floating point number or a
string, etc.

106

Variables Attaching a name to a value.

>>> 40 + 2

42

An expression

The expression’s value

>>> answer = 42 Attaching the name
answer to the value 42.

>>> answer The name given

42 The attached value returned

Now let’s get really computer-y. We are going to start attaching names to our values
so we can manipulate them within our programs.
We have seen that if we enter a value at the Python prompt Python responds with that
value. If we type in an expression (e.g. 40+2) then Python evaluates it and replies with
the expression’s value (42 in this case).
Now we will type in a radically different expression. We type in “answer = 42”
(n.b. single equals sign and no quotes around the word answer). Python gives no
response.
But now we can just type in the word “answer” (without any quotes) and Python
evaluates it to have the value 42 that featured in the previous expression.

107

Variables

>>> answer 42=

The name being attached

A single equals sign

The value being named

No quotes

Let’s look at that operation more closely.
1. We start with the name that is going to be attached to a value. Incidentally, if that
name was previously attached to a different value then it gets detached from that one
and re-attached to this new value.
2. We follow the name with a single equals sign. You may recall that when we met
the equality comparison operator (the double equals sign) we said we would meed the
single equals sign later. This is that moment.
3. Finally we put the value we want the name attached to.
The formal name for this operation is “assignment”. The name is assigned the
value 42.

108

Equals signs

==

=

Comparison:
“are these equal?”

Assignment:
“attach the name on the left to
the value on the right”

Just to emphasize:
one equals sign → assignment
two equals sign → comparison

109

>>> answer 42=

Order of activity

1. Right hand side is
evaluated.

2. Left hand side specifies
the attached name.

int 42answer

variables

We typed from left to right. The computer processes the instruction the other way
round, though.
1. The expression on the right hand side is evaluated to give the value that will
have a name attached to it.
2. Once the value is determined the left hand side is interpreted to get the name to
attach. (Later we will meet more complicated left hand sides that require a measure of
evaluation themselves.)

110

Example ― 1

>>> answer 42=

>>> answer

42

>>>

Simple value

In the example we saw the right hand side was a literal value. This is the easiest case
where the evaluation is simply “that’s the integer 42”.

111

Example ― 2

>>> answer 44 - 2=

>>> answer

42

>>>

Calculated value

The next level up in complexity is when there is an expression on the right hand side
that requires actual evaluation. The expression “44 - 2” is evaluated to a value
“integer 42” and after that

112

Example ― 3

>>> answer answer=

>>> answer

40

>>>

>>> answer 42=

>>> answer

42

 - 2

“Old” value

“New” value

Reattaching the
name to a
different value.

But we can go further. Because the right hand side is evaluated completely before the
left hand side (the name) is looked at, it can contain names itself, including the name
that is about to be assigned to!
So, suppose we attach the name “answer” to the value “integer 42”. We can then use
that name in the right hand side of a following expression.

113

Example ― 3 in detail
answer answer - 2= R.H.S. processed 1st

answer 42= - 2 Old value used in R.H.S.

answer 40= R.H.S. evaluated

L.H.S. processed 2nd

answer = 40

answer = 40

L.H.S. name attached
to value

The process of evaluating the right hand side before the left hand side is rigorously
enforced.
1. The expression “answer - 2” is evaluated. The name “answer” appears in it and
is evaluated to be its current value, “integer 42”. So the right hand side is partially
evaluated to be “42 - 2”. This evaluation is then completed to give a final value of
“integer 40”.
2. Then and only then is the left hand side looked at. This contains a name,
“answer”. That name is currently attached to a different value so it is detached from
that and re-attached to its new value. Where this value came from is not relevant.

114

Using named variables ― 1

>>> upper = 2.0

>>> lower = 1.0

Let’s put named values (“variables”) to work.
We’ll revisit the square root of two example we met previously. This time, instead of
copying and pasting (or retyping) we’ll attach names to the values.
We start, as before with initial upper and lower bounds. This time, however, we will
attach names to them.
>>> upper = 2.0
>>> lower = 1.0
>>>
The names we pick are “upper” and “lower”. It is always a good idea to pick
meaningful names. Avoid the algebraist’s approach of calling things “x” and “y”.

115

Using named variables ― 2

>>> middle = (upper
+ lower)/2.0

>>> middle

1.5

Next we calculate the mid-point. Again we attach a name to the value and use the two
existing names to calculate it.
>>> middle = (upper + lower)/2.0
>>> middle
1.5
>>>
N.B. The first instruction is all one line.

116

Using named variables ― 3

>>> middle**2 > 2.0

True

>>> upper = middle

We need to square the mid-point value and compare it with two to see if it is above
(True) or below (False) the square root of two.
>>> middle**2 > 2.0
True
Because it is above the exact value we reduce the upper bound to the mid-point.
Using names for values makes this easy. We simply issue instruction to attach the
name “upper” to the mid-point’s value which currently has the name “middle”
attached to it.
Recall that there is no problem with having more than one name attached to a value.
>>> upper
2.0
>>> lower
1.0
>>> middle
1.5
>>> upper = middle
>>> upper
1.5
>>> lower
1.0
>>> middle
1.5
What matters is that we changed the value upper was attached to rather than lower
because of the results of the comparison.

117

Using named variables ― 4

>>> middle = (upper
+ lower)/2.0

>>> middle**2 > 2.0

False

>>> lower = middle

>>> middle

1.25

Now it’s easy to repeat.
Recall that pressing the up-arrow [↑] on your keyboard will recall previous lines in
Python.
We simply repeat the calculation of middle from the current (updated) values of
upper and lower, compare its square to 2·0 and then, depending on whether
middle’s square is larger or smaller than 2·0 we change the value of upper or
lower.

This time middle’s square is smaller than 2·0 so we increase the value of lower.

118

Using named variables ― 5

>>> middle = (upper
+ lower)/2.0

>>> middle**2 > 2.0

False

>>> lower = middle

>>> middle

1.375

And again.

119

upper = 2.0
lower = 1.0

middle = (upper + lower)/2.0

middle**2 > 2.0
?

lower = middleupper = middle

FalseTrue

print(middle)

So we are really caught in a loop. We start with a couple of named values: upper and
lower which define the limits of the interval containing √2.

Then the loop starts.
We calculate the mid-point and attach the name “middle” to it.

Then we square middle and test to see if it is bigger than 2·0.

If it is (True) we lower the interval’s upper bound by changing the value upper is
attached to.
If it isn’t (False) then we raise the lower bound by changing the value lower is
attached to.
We keep track of our progress by printing the value of the mid-point. We could just as
well have printed this as soon as we calculated it, but it will be didactically useful later
on to have an explicit instruction here.

120

Homework: √3 by bisection

5 minutes

Three iterations, please.

Print middle at the end of each stage:

Start with
upper = 3.0
lower = 1.0

Test with
middle**2 > 3.0

print(middle)

Got that?
Let’s put it to the test. Can you calculate an approximation to the square root of three
(√3) by running three iterations of this loop testing middle**2 against 3·0. Start with
lower set to 1·0 and upper set to 3·0.

>>> upper = 3.0
>>> lower = 1.0

>>> middle = (upper+lower)/2.0
>>> middle
2.0
>>> middle**2 > 3.0
True
>>> upper = middle

>>> middle = (upper+lower)/2.0
>>> middle
1.5
>>> middle**2 > 3.0
False
>>> lower = middle
>>> …

121

Still not a
computer
program!

We’ve still not delivered on our promise to write a compute program yet. We have
variables which make our task easier but we’re still not fully automated.
We will now inspect the actions we have been taking manually starting with the test we
do to see if the mid-point of the interval is too high or too low and what we do as a
result of that test.

122

if … then … else …upper = 2.0
lower = 1.0

middle = (upper + lower)/2.0

middle**2 > 2.0
?

lower = middleupper = middle

FalseTrue

print(middle)

We square middle and test it for being larger than 2.0 (the number whose root we
want).
If that test returns True (i.e. it is larger) then change the upper bound (in variable
upper) to have the same value as the mid-point (in variable middle), and otherwise
(if it returns False) to change the lower bound (in variable lower) to match the mid-
point (variable middle).

123

if … then … else …
middle**2 > 2.0

lower = middle

upper = middlethen

if

else

In computing we call this the if…then…else… construct.

We run a test (middle**2 > 2.0) and if it returns True then we do something
(upper = middle) and otherwise (“else”) we do a different something
(lower = middle).

124

if

else

middle**2 > 2.0

lower = middle

upper = middle

:keyword

condition

colon

“True” action

“False” action

keyword

indentation

indentation

: colon

So now let’s meet our first piece of serious Python syntax.
We take the Python for the test (“middle**2 > 2.0”) and precede it with the Python
keyword “if”. Then we follow it with a colon, “:”. The word “if” and the colon indicate
that an if…then…else… structure is about to start.
After this comes the set of instructions that are to be obeyed if the test returns True,
the “then-block”. There is no explicit keyword for “then”; whatever follows the if line is
the then-block. All the lines that belong in the then-block are indented. They are set in
by a number of spaces (we use four). There can be multiple lines; so long as they are
all indented they all belong in the then-block.
At the end of the then-block comes the keyword “else” followed by another colon.
This line is not indented, but instead lines up with the if. It does not belong in the
then-block, but rather marks the transition from the then-block to the “else-block”, the
set of lines to be run if the test returns False.

Then comes the else-block itself. This is indented again, and must be indented by the
same number of spaces as the then-block. Again, every indented line counts as part
of the else-block and the first unindented line (lining up with if and else) marks the
end of the whole if…then…else… construct and is obeyed regardless of the test’s
result.
It’s worth noting that the colon at the end of a line is always followed by an indented
block. We’ll see that pattern again (and again…).

125

Example script:
lower = 1.0
upper = 2.0
middle = (lower+upper)/2.0

if middle**2 > 2.0 :

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

else :

print(lower)
print(upper)

middle1.py

So what does that look like in practice?
The script middle1.py contains a Python script that does the first iteration of our
square root bisection system.
We will step through it one block at a time and then run it to see how it behaves.

126

Example script: before
lower = 1.0
upper = 2.0
middle = (lower+upper)/2.0

if middle**2 > 2.0 :

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

Set-up prior
to the test.

else :

print(lower)
print(upper)

The script starts with a straight-forward unindented block. These are just lines of
Python that get executed. These lines set things up for the test that follows.
The first two lines are the initial bounds of the interval containing the square root of
two:

lower = 1.0
upper = 2.0

The third line is the first of the steps we will eventually repeat, the creation of a mid-
point:

middle = (lower+upper)/2.0
After this block we are ready to move on to the if…then…else… section.

127

Example script: if…
lower = 1.0
upper = 2.0
middle = (lower+upper)/2.0

if middle**2 > 2.0 :

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

colon

condition

keyword: “if”

else :

print(lower)
print(upper)

The next line starts with the if keyword, followed by the test, and ending with the colon:
if middle**2 > 2.0 :

This starts the if…then…else… construct.
The test we want to ask is whether the mid-point's value is larger than the square root
of two?
Because we don't know the square root of two (yet) we set the equivalent test:

Is the square of the mid-point's value greater than two?
That’s the Python “middle**2 > 2.0”.

128

Example script: then…
lower = 1.0
upper = 2.0
middle = (lower+upper)/2.0

if middle**2 > 2.0 :

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

Four spaces’
indentation

The “True”
instructions

else :

print(lower)
print(upper)

Immediately after the if line comes the then-block. Note that this can include more
than one line. In this case we have two lines:

 print('Moving upper')
 upper = middle

Each is indented by the same amount: four spaces. Actually, you can use any amount
of indentation so long as you are consistent, but four spaces is most common in the
Python world and we would encourage you to stick to that. It is required that you use
the same number of spaces everywhere.

129

Example script: else…
lower = 1.0
upper = 2.0
middle = (lower+upper)/2.0

if middle**2 > 2.0 :

print('Moving upper')
upper = middle

else

print('Moving lower')
lower = middle

keyword: “else”

colon

Four spaces’
indentation

The “False”
instructions

:

print(lower)
print(upper)

Next comes the line
else:

This is unindented so it marks the end of the then-block and the start of the else-block.
Again notice that a line that ends with a colon is followed by an indented block:

 print('Moving lower')
 lower = middle

The else-block consists of two lines, each indented by the same amount as the then-
block (by four spaces in our examples).

130

Example script: after
lower = 1.0
upper = 2.0
middle = (lower+upper)/2.0

if middle**2 > 2.0 :

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle Not indented

Run regardless
of the test result.

else :

print(lower)
print(upper)

Finally there are some unindented lines at the end of the script. Because they are
unindented they do not count as part of the else-block and are run regardless of the
result of the text. The if…then…else… construct is over before they start.

131

Example script: running it
lower = 1.0
upper = 2.0
middle = (lower+upper)/2.0

if middle**2 > 2.0 :

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

else :

print(lower)
print(upper)

$ python middle1.py

Moving upper
1.0
1.5

Unix prompt

$

We can run this script. It automates for us the first iteration of the process we were
doing manually before.

132

Progress

Run a test

Do something
if it succeeds.

Do something
else if it fails.

Colon…Indentation

if test :
something

else :
something else

test

something
something

else

True False

So that was the if…then…else… construct.
Note that what lies between the “if” and the “:” is evaluated to a simple Boolean
value (True or False). It can be anything that evaluates like that. It can be a test (the
most common case), but it can also be anything else that can be evaluated to a
Boolean (including the literal values True and False and any boolean combination of
them).

133

Exercise

Four short Python scripts:

ifthenelse1.py

ifthenelse2.py

ifthenelse3.py

ifthenelse4.py

1. Read the file.

2. Predict what it will do.

3. Run it.

5 minutes

Recall that Python orders strings alphabetically and that the “%” operator returns the
remainder, so “3%2” is 1 because 2 divides into 3 with a remainder of 1.

134

upper = 2.0
lower = 1.0

middle = (upper + lower)/2.0

middle**2 > 2.0
?

lower = middleupper = middle

FalseTrue

print(middle)

looping

So far we have scripted a single iteration. However, as the name “iteration” suggests
we want to iterate it: run it time after time. Our if…then…else… construct sits in the
middle of another construct that runs it repeatedly. That’s what we want to do next.

135

Repeating ourselves

Run the script

Read the results

Edit the script
Not the way to do it!

Now we could take our script, middle1.py, and run it, edit it to put back the results
and run it again. This would be silly.

136

Repeating ourselves

Looping for ever?

Keep going while…

…then stop.

while condition :
action

1

action
2

afterwards

What we want is some Python syntax that lets us run a block of commands
repeatedly. We probably don’t want to run for ever, though. Python’s way to deal with
this is to run some commands while some test returns True.

The command it uses for this is called, naturally enough, “while” and we will use it in
a style similar to if….

137

while vs. until

Repeat until…

number == 0 number != 0

Repeat while…

upper - lower < target upper - lower >= target

condition not condition

Be careful. It's very easy to think “loop until”. Python thinks in terms of “loop while”.
Here are some examples of “repeat until…” tests converted into the equivalent “repeat
while…” tests. They are essentially opposites. Note that while the opposite of “is
equal” (==) is obviously “is not equal” (!=) the opposite of “is less than…” (<) is “is
greater than or equal to…” (>=). Don’t forget the “or equal to” bit.

Generally, any Python test can be preceded by the logical negation operator “not”.

138

Example script

number = 1
limit = 1000

while :number < limit

print('Finished!')

doubler1.py

print(number)
number = number * 2

Let’s examine this loop construct in isolation first before returning to our bisection
example.
There is a script prepared for you which takes a number, starting at 1, and doubles it
repeatedly until it goes over 1,000. We'll take it bit by bit.

139

Example script: before

number = 1
limit = 1000

while :number < limit

print('Finished!')

doubler1.py

Set-up prior
to the loop.

print(number)
number = number * 2

We start with the preamble. This has nothing to do with the looping. This is just set-up.

140

Example script: while…

number = 1
limit = 1000

while :number < limit

print('Finished!')

doubler1.py

keyword: “while”

condition

colon

print(number)
number = number * 2

Now we start the looping.
The introductory keyword is “while”. This kicks off the whole construct.

The test is that number is less than the limit. Recall that this test must be True for the
looping to continue. Because we are increasing number each time the loop repeats
(we’re doubling it) and leaving limit unchanged eventually this test will return
False.

The line ends with a colon, just like “if” and “else”.

Recall that while we might think about when the looping should stop (“until…”), Python
thinks about when it should keep going (“while…”).

141

Example script: loop body

number = 1
limit = 1000

while :number < limit

print(number)
number = number * 2

print('Finished!')

doubler1.py

Four spaces’
indentation

loop body

The while line is followed by the body of the loop.

This is the section that is going to be repeated while the test continues to return True.
Each line of the loop-block is indented by the standard amount (four spaces for us).
Note that, again, indentation follows a colon.

142

Example script: after

number = 1
limit = 1000

while :number < limit

print(number)
number = number * 2

print('Finished!')

doubler1.py

Not indented

Run after
the looping
is finished.

After the loop block there is an unindented line. This line will not be run until the
looping is finished.

143

Example script: running it

number = 1
limit = 1000

while :number < limit

print(number)
number = number * 2

print('Finished!')

> python doubler1.py

1
2
4
8
16
32
64
128
256
512
Finished!

So let's run it.

144

Progress

Run a test

Do something
if it succeeds.

Go back to the test.

Finish if
it fails.

while test :
something

test

something

True False

145

Exercise
Four short Python scripts:

while1.py

while2.py

while3.py

while4.py

1. Read the file.

2. Predict what it will do.

3. Run it.

n.b. [Ctrl]+[C] will kill
a script that won’t
stop on its own.

5 minutes

Don't worry too much if your mental arithmetic isn't up to while4.py.

146

upper = 2.0
lower = 1.0

middle = (upper + lower)/2.0

middle**2 > 2.0
?

lower = middleupper = middle

FalseTrue

print(middle)

while…

if…
then…
else…

Now let’s return to our bisection example. We are going to put the if…then…else…
construct (which narrows our interval) inside a while… construct which will keep
repeating that narrowing until we have our answer.

147

Combining while… and if…

if…then…else… inside while…

Each if…then…else… improves the approximation

How many if…then…else… repeats should we do?

What’s the while… test?

We will take the logic of building our while… loop very slowly this first time.
The if…then…else… improves the interval by a factor of two (i.e. it narrows the
interval to a half of its previous size). How many of these iterations do we need to do?
In other words, what’s the test that needs to go after the while keyword?

148

Writing the while… test

Each if…then…else… improves the approximation

How much do we want it improved?

How small do we want the interval?

upper - lower

So, ignoring the Python for a moment, we need to decide how much we want the
approximation improved. The quality of the approximation is given by the width of the
interval. The width of the interval is simply the upper bound minus the lower bound. In
Python the size of the interval is just upper - lower.

149

Writing the while… test

What is the interval? upper - lower

Keep going while the interval is too big:

while upper - lower > 1.0e-15 :

How small do we want the interval? 1.0e-15

Our interval’s size is given by upper - lower.

We will make up a target quality. We’ll use 10-15 for this example. It can be any very
small number. Recall that in Python this is written as 1.0e-15.

So the test that the interval is too big (and that we must continue reducing it) is that
upper - lower > 1.0e-15

This means that the full while line is
while upper - lower > 1.0e-15 :

and this is the line that we will use.

150

lower = 1.0
upper = 2.0

while upper - lower > 1.0e-15

print(middle)

:

middle = (upper+lower)/2.0

?

approximation
is too coarse

Single indentation

if…then…else…

No indentation

So let’s start building our script.
We start with the outer while loop.

We set up the initial values of the lower and upper bounds prior to any refinement.
The next line is the while… line as described before.

Then we start the indented block to be repeated while the approximation is too coarse.
This starts with the creation of the mid-point and will continue with the if…then…
else… section.

Finally we announce that we are done by printing the eventual mid-point value. This is
entirely unindented so is only run after the while… loop is finished.

All we need to do now is insert the if…then…else… block.

151

lower = 1.0
upper = 2.0

while upper - lower > 1.0e-15

print(middle)

:

middle = (upper+lower)/2.0

if middle**2 > 2.0:
 print('Moving upper')
 upper = middle
else:
 print('Moving lower')
 lower = middle

Double indentation

Double indentation

And it’s actually trivial. We simply insert it. However, it comes one level indented in its
entirety by the while… loop. So all we have done is to take the if…then…else… we
already have and move it over one more level of indentation.
The if… and else lines are indented once by the while… loop they are in. The then-
block and the else-block are doubly indented (so by eight spaces) because they are
indented once for the while… and once for the if…then…else….

152

Running the script
> python root2.pylower = 1.0

upper = 2.0

while upper - lower > 1.0e-15

print(middle)

:

middle = (upper+lower)/2.0

if middle**2 > 2.0

else

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

:

:

Moving upper
Moving lower
Moving lower
Moving upper
…
Moving upper
Moving upper
Moving lower
Moving lower
1.41421356237

And look! It works.

153

Indentation
c.f.

§5(b)(ii)

“legalese”

Other languages…

{…}

IF…END IF

if…fi, do…done

Let’s return to the issue of this nested indentation. The best way to think of it is as an
analogue of “legalese” where regulations have paragraphs, sub-paragraphs, sub-sub-
paragraphs and so on, each of which is more indented that the level before.
But its use of indentation is Python’s most controversial features. All languages need
some mechanism within the language to mark the start and end of these nested
blocks of code. C and derived languages use left and right curly brackets (“braces”).
Fortran uses expressions like IF and END IF. The shell (the language you type at the
Unix prompt) has if statements that end with “fi” (“if” backwards). Its analogue of
the while loop uses “do” and “done” to mark the start and end of the loop-block. It
would have used “od” but that was already taken by the Unix “octal dump” command.
What is interesting is that when programmers work in these languages they typically
added multiple levels of indentation to make them easier to read. Python just takes
this one step further and makes the indentation syntactically significant.

154

lower = 1.0
upper = 2.0

while upper - lower > 1.0e-15

print(middle)

:

middle = (upper+lower)/2.0

Indentation: level 1

Colon starts
the block

Indentation
marks the
extent of
the block.

Unindented line
End of block

if middle**2 > 2.0

else

:

:

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

So let’s look closely at the indentation in the script. The while line ends with a colon
and is followed by an indented block. The indentation marks the extent of the block.
The first line that’s not indented is the first line beyond the end of the block.

155

lower = 1.0
upper = 2.0

while upper - lower > 1.0e-15

print(middle)

:

middle = (upper+lower)/2.0

if middle**2 > 2.0

Indentation: level 2

else

print('Moving upper')
upper = middle

print('Moving lower')
lower = middle

Colon…indentation

Colon…indentation

“else” unindented

:

:

Within that indented block we have two more lines that end with a colon and introduce
blocks indented with respect to those lines (i.e. already indented one level).

156

Arbitrary nesting

if… inside while…

while… inside if…

if… inside if…

while… inside while…

Not just two levels deep

As deep as you want

Any combination

We have used the example of an if…then…else… construct inside a while… loop with
nested indentation. We can do it with any Python construct that uses indentation,
nested arbitrarily and arbitrarily deep.

157

e.g. if… inside if…
number = 20

if number % 2 == 0:
 if number % 3 == 0:
 print('Number divisible by six')
 else:
 print('Number divisible by two but not three')
else:
 if number % 3 == 0:
 print('Number divisible by three but not two')
 else:
 print('Number indivisible by two or three')

For example, we can nest one if…then…else… inside another.

158

Progress

Nested constructs

Levels of indentation

Indented blocks

colon…indentation

159

Exercise
Write a script from scratch: collatz.py

1. Start with number set to 7.

2. Repeat until number is 1.

3. Each loop:

3a. If number is even, change it to number/2.

3b. If number is odd, change it to 3*number+1.

3c. Print number.
15 minutes

This is an extended exercise. You may need to take the full fifteen minutes to write it.
We are going to implement a script that investigates a bizarre mathematical
phenomenon: Take any positive number. Apply the iteration shown in the slide. The
“Collatz Conjecture” says that you will always end up looping through the three
numbers 4→2→1→4→….
Starting with 7 you should see this series of numbers:
22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1.
Once you’ve got it working, try starting with 47 for a longer list of numbers, going much
higher.
Hints:
1. The test to see if a number is even is to see whether or not its remainder is zero
when divided by two:

number % 2 == 0
2. Changing number to number/2 is

number = number/2
3. Changing number to 3*number+1 is

number = 3*number + 1
You just need to add the while… and if…then…else… syntax.

160

Comments
Reading Python syntax

“What does the code do?”

“Why does the code do that?”

middle = (upper + lower)/2.0

Calculate the mid-point.

Need to know the square of the
mid-point’s value to compare it
with 2.0 whose root we’re after.

We’re now writing real Python scripts. There’s one things we can add that will make
life a lot easier in the long term: comments.
We can read Python syntax. We can see a line such as

middle = (upper + lower)/2.0
and determine what it is doing. But why is it doing it? Why do we want the value of the
mid-point?
A comment is a piece of text in the script which does not get executed by Python and
which can carry a message explaining the why of the script.

161

Comments

The “hash” character. “sharp”

“pound”

a.k.a.

“number”

#
Lines starting with “#” are ignored

Partial lines too.

Comments in Python are introduced by the “#” character, which we will pronounce
“hash”. The comment can be a whole line or part of a line. Everything from the hash to
the end of the line is ignored.

162

Comments — explanation
Set the initial bounds of the interval. Then
refine it by a factor of two each iteration by
looking at the square of the value of the
interval’s mid-point.

Terminate when the interval is 1.0e-15 wide.

lower = 1.0 # Initial bounds.
upper = 2.0

while upper - lower < 1.0e-15 :
 …

Comments can be used, as suggested, to give a “why” for a script.

163

Comments — authorship
(c) Bob Dowling, 2010
Released under the FSF GPL v3

Set the initial bounds of the interval. Then
refine it by a factor of two each iteration by
looking at the square of the value of the
interval’s mid-point.

Terminate when the interval is 1.0e-15 wide.

lower = 1.0 # Initial bounds.
upper = 2.0
 …

They can also be used to enter copyright and licensing statements.

164

Comments — source control
(c) Bob Dowling, 2010
Released under the FSF GPL v3

$Id: root2.py,v 1.1 2010/05/20 10:43:43 rjd4 $

Set the initial bounds of the interval. Then
refine it by a factor of two each iteration by
looking at the square of the value of the
interval’s mid-point.

Terminate when the interval is 1.0e-15 wide.
 …

If the script is being edited you can keep a version number or “last edited” date in a
comment. Most version control systems can do this for you automatically.

165

Comments — logging
(c) Bob Dowling, 2010
Released under the FSF GPL v3

$Id: root2.py,v 1.2 2010/05/20 10:46:46 rjd4 $

$Log: root2.py,v $
Revision 1.2 2010/05/20 10:46:46 rjd4
Removed intermediate print lines.
#

Set the initial bounds of the interval. Then
refine it by a factor of two each iteration by
…

If the script is being edited you can also keep a log of changes in a comment. This is
not just a “why” but a “how it got to be this way” comment. Again, some version control
systems can automatically maintain such a logging comment.

166

Comments

Reading someone
else’s code.

Reading your own
code six months later.

Writing code for
someone else.

Writing code you
can come back to.

Perhaps the best way to think of comments is this:
If you were given a script written by someone else, what comments would you like to
see to make your life easier? Those are the comments that you should write so that
you can pass your script to somebody else.
You may think that your script never will be passed on to someone else. However, you
may be that somebody. Write a script, put is away and don’t come back to it for six
months. Next time you read it, it might as well have been written by somebody else.

167

Exercise
1. Comment your script: collatz.py

Purpose

Author

Date

This script
illustrates …

Bob Dowling

2010-05-20

3 minutes

2. Then check it still works!

Remember the collatz.py script you wrote for an exercise? Add some comments
to it.
Comment lines are ignored by the Python interpreter. They should have no effect on
the execution of your code. Make sure your script still works afterwards.

168

Lists

['Jan', 'Feb', 'Mar', 'Apr',
 'May', 'Jun', 'Jul', 'Aug',
 'Sep', 'Oct', 'Nov', 'Dec']

[2, 3, 5, 7, 11, 13, 17, 19]

[0.0, 1.5707963267948966, 3.1415926535897931]

Now take a deep breath. We are going to introduce a new type of Python object that is
one of the most pervasive types in all of Python. Very many Python procedures rely on
it.
It's called a “list”, a finite sequence of items (often called “elements”).

169

Lists — getting it wrong

A script that prints the names of the
chemical elements in atomic number order.

print('hydrogen')
print('helium')
print('lithium')
print('beryllium')
print('boron')
print('carbon')
print('nitrogen')
print('oxygen')
…


Repetition of “print”

Inflexible

You can usually spot when you ought to be using a list in Python because you get very
repetitive scripts that do something to an item, then do the same thing to another item,
then to a third, a fourth and so on.
For example, rather than have a ninety-two line script that has a print statement for
each of the chemical element names we would be better off with a list of the ninety-
two names and an instruction that said “print them”.

170

Lists — getting it right

A script that prints the names of the
chemical elements in atomic number order.

1. Create a list of the element names

2. Print each entry in the list

So let's look at how that's done.
We will start by creating one of these lists, containing the element names.
Then we will introduce a Python construct that lets us do something to each element
of the list.

171

Creating a list

>>> [1, 2, 3]

[1, 2, 3]

>>> numbers = [1, 2, 3]

>>> numbers

[1, 2, 3]

Here’s a list

Yes, that’s a list

Attaching a name
to a variable.

Using the name

So, let's create a literal list. (i.e. one directly typed in.)
A list is a series of items, separated by commas, contained in square brackets.
That's how Python represents it when it's output too.
A list is just another Python object so we can assign it a name too if we want.

172

Anatomy of a list

[]′delta′,′gamma′,′beta′,′alpha′

Square brackets at end

Elements separated by commas

Individual element

This is all there is to the representation of a list.
Spaces either side of the square brackets or commas are ignored.

173

Square brackets in Python

[…] Defining literal lists

primes = [2,3,5,7,11,13,17,19]

e.g.

>>>

We are going to meet square brackets a lot in the remainder of the course so we will
start building up a list of the various things they are used for.
First use: they are used to mark the ends of a literal list.

174

Order of elements

No “reordering”

>>> [1, 2, 3]

[1, 2, 3]

>>> [3, 2, 1]

[3, 2, 1]

>>> [′a′, ′b′]

[′a′, ′b′]

>>> [′b′, ′a′]

[′b′, ′a′]

Note that the elements of a list have a specific order. It is the order they are defined
with and there is no automatic sorting or reordering based on the values of the items
in the list.

175

Repetition

No “uniqueness”

>>> [1, 2, 3, 1, 2, 3]

[1, 2, 3, 1, 2, 3]

>>> [′a′, ′b′, 'b', 'c']

[′a′, ′b′, 'b', 'c']

Also note that you are perfectly well allowed to have values appear more than once in
a list. Repeats are not stripped out.

176

Concatenation — 1

>>> [1, 2, 3] [4, 5, 6, 7]+

[1, 2, 3, 4, 5, 6, 7]

“+” used to
join lists.

>>> [′alpha′,′beta′] + [′gamma′]>>>>>>

[′alpha′, ′beta′, ′gamma′]

>>>>>>>>>

So what can we do with lists?
Well, we can join them together in a process called “concatenation”. Just as we did
with strings, we can concatenate them with the “+” sign.

177

Concatenation — 2

>>> [1, 2,

[1, 2,

3] + [3, 4, 5, 6, 7]

“3” appears
twice

3, 3, 4, 5, 6, 7]

“3” appears
twice

Again, notice that there is no automatic uniqueness. If a concatenation beings two
identical values together you end up with a list containing both of them.

178

Empty list

>>> []

[]

>>> [2,3,5,7,11,13] + []

[2, 3, 5, 7, 11, 13]

>>> [] + []

[]

There's nothing to say that you can't have an empty list. A pair of square brackets with
nothing between them (spaces are still ignored) gives an empty list.

179

Progress
Lists

Shown with square brackets

Concatenation

Empty list

[23, 29, 31, 37, 41]

Elements separated by commas

[23, 29]+[31, 37, 41]

[]

180

Exercise

2 minutes

Predict what these will create. Then check.

1. [] + ['a', 'b'] + []

2. ['c', 'd'] + ['a', 'b']

3. [2, 3, 5, 7] + [7, 11, 13, 17, 19]

181

How long is the list?

>>> len)[10, 20, 30](

3

Function name

Round brackets

Now let's start doing some things with our lists. We can ask how long our list is with a
new Python function called “len()”.

182

How long is a string?

>>> len)(′Hello, world!′

13

Quotes say “this is a string”.

They are not part of the string.

Same function

!
Recall:

We can also ask for the length of a string.
This counts the characters in the string. Recall that the quotes simply indicate to
Python that this is a string; they are not part of the string.

183

How long is a number?

>>> len)(42

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError:
object of type 'int' has no len()

Error message

Numbers don’t
have a “length”.

Note that we can't ask for the length of a number. It is a meaningless concept.

184

Our first look at a function

>>> len)[10, 20, 30](

Function name

Round brackets

Function “argument”

One argument

3

“Returned” value

len() is our first real Python function, as print is a bit special, so it pays to take a
close look.
The function name is followed by round brackets (“parentheses”) which contain
everything that is going to be fed into the function for it to calculate a result. In this
case there is only one argument. It is a list (which contain elements of its own) but the
one list is the one argument. Triggering the use of a function like this is called “calling
the function”.
The function calculates a value from the input(s) it is given in its brackets and when
Python interprets the function it uses this value. We say that “the function returns a
value”.

185

Progress

Length of a list:

Length of a string:

Number of elements

Number of characters

Length function: len()

186

Exercise: lengths of strings
1. Predict what these Python snippets will return.

(a)

(b)

(c)

len(′Goodbye, ′ + ′world!′)

len(′Goodbye, world!′)

2. Then try them.

3 minutes
for both

len(′Goodbye, ′) + len(′world!′)

There's two slides of exercises to do in this exercise segment. The first covers lengths
of strings…

187

Exercise: lengths of lists
1. Predict what these Python snippets will return.

(d)

(e)

len([′Goodbye, world!′])

len([′Goodbye, ′] + [′world!′])

2. Then try them.

3 minutes
for both

(f) len([′Goodbye, ′]) + len([′world!′])

…and the second the lengths of lists.

188

list

Picking elements from a list
>>> letters = [′a′, ′b′, ′c′, ′d′]

str a

str b

str c

str d

letters

variables

We've looked at lists as a whole, but we still need to extract individual items from
them.

189

list

The first element in a list
>>> letters[

str

str a

b

str c

str d

letters

variables

]0 Count from zero

letters[0]

′a′ “Index”

They key to extracting individual elements is that they each have a position in the list.
By declaring the position we can access the item. This position is called the index of
the item in a list.
Python counts its indices from zero.
(This is not uncommon in programming languages. The “count from zero” vs. “count
from one” philosophical battles have been fought long and hard.)
What matters from our perspective is how Python refers to the index. It does it by
taking the list (or, more typically, the list's name) and following it with the index in
square brackets.

190

Square brackets in Python

[…] Defining literal lists

numbers[N] Indexing into a list

primes = [2,3,5,7,11,13,17,19]

e.g.

primes[0]

>>>

>>>

2

See, I told you that we would see square brackets a lot.
The fact that lists use square brackets for literal lists as well as indices is just a
coincidence. Later we will see square brackets used for indices on an object created
with curly brackets.

191

list

“Element number 2”
>>>

str

str a

b

str c

str d

letters

variables

letters[0]

′c′

letters[1]

letters[2]

letters[3]

letters[]2

The third element

Remember that Python counts from zero.
A useful trick of language is to avoid talking about “the first item” or “the second item”
and to refer to “item number zero” or “item number one”.

192

list

Going off the end
>>>

str

str a

b

str c

str d

letters

variables

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

letters[4]

letters[]4

✘

IndexError: list index out of range

What happens if you give an index that runs off the end of a list? You get an error
message.

193

list

Maximum index vs. length
>>>

str

str a

b

str c

str d

letters

variables

len(letters)

4

letters[0]

letters[1]

letters[2]

letters[3]

Maximum
index is 3!

4

Remember that Python counts from zero. If a list has length four, it has four items in it.
These are indexed 0, 1, 2, and 3 so 4 is not a valid index.

194

“Element number -1 !”
>>>

str

str a

b

str c

str d

letters[0]

′d′

letters[1]

letters[2]

letters[3]

letters[]-1

The final element

letters[-1]

But we can use negative numbers!
The index -1 refers to the last element of the list. This can be very useful.

195

Negative indices
>>>

str

str a

b

str c

str d

letters[0]

′b′

letters[1]

letters[2]

letters[3]

letters[]-3

letters[-1]

letters[-2]

letters[-3]

letters[-4]

The negative numbers actually work all the way back though this is typically less
useful than just refering to the last item with -1.

196

Going off the end
>>>
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

letters[]-5

IndexError: list index out of range

But you can't go too far back just like you can't go too far forwards.

197

Valid range of indices
>>> len(letters)

4

str

str a

b

str c

str d

letters[0]

letters[1]

letters[2]

letters[3]letters[-1]

letters[-2]

letters[-3]

letters[-4]

-4 -3 -2 -1 0 1 2 3

There is always one zero-or-positive index and one negative index for each entry.
An empty list has no valid indices.

198

Indexing into literal lists
>>> letters = [′a′, ′b′, ′c′, ′d′]

>>> letters

'd'

Legal, but rarely useful:

>>> [′a′, ′b′, ′c′, ′d′]

'd'

[3]

[3]

Name of list

Literal list

Index

Index

Square bracketted indices typically follow a list name. What matters is that the thing
they follow is a list, whether this is via a name or directly. However putting an index
after a literal list is legal but not useful. The author can imagine no use for it at all, but
is realistic about the limits of his imagination.
Later we will meet functions that return lists. We can put the square bracketted indices
directly after those function calls too.

199

Assigning list elements
>>> letters

[′a′, ′b′, ′c′, ′d′]

>>> letters[2]

>>> letters

[′a′, ′b′,

'X'=

The name attached to
the list as a whole

The name attached to
one element of the list

Assign a new value

The new value

, ′d′]′X′

We use this notation to set the individual values in lists as well as to get them,
Just as we can use a simple name on the left hand side of an assignment, we can use
an indexed name on the left to set the value of just one element of the named list.
Lists are known as “mutable” objects because we can change individual elements
within them.

200

list[0]

Progress

Index into a list

Counting from zero

Negative index

Assignment

list[index]

list[-1]

list[1] = 'A'

Square brackets for index

['x','y','z']

'x'

'z'

201

Exercise

3 minutes

data = ['alpha','beta','gamma','delta']

data[-2]

data[2] = 'gimmel'

data[1]

Predict the output from the following five commands.
Then try them.

data

Note that two of the commands in this exercise don't produce any output.

202

Doing something with a list

A script that prints the names of the
chemical elements in atomic number order.

1. Create a list of the element names

2. Print each entry in the list

Recall our challenge:

Let's return to our challenge. We wanted a list of chemical element names and then
we were going to do something with each of the items in the list.
Well, we now know how to create a list of element names:
names = ['hydrogen', 'helium', 'lithium',…]

so now we just need to learn how to do something with each and every one of them.
For our specific challenge we want to print it.

203

Each list element
Given a list

Start with the first element of the list

Do something with that element

Are there any elements left?

Move on to the next element

Finish

We are going to start with a list. Our construct will take the first element of the list and
do something with it. If there is a second element the construct will then move on to
that item and do the same thing to it. And then to the third, the fourth and so on, until
there are no elements of the list left.
We will be reading our way through the list. We will not be removing the items as we
go.)

204

Do that elementwithsomething

Need to identify
“current” element

Need to identify a
block of commands

Another indented block

Each list element

The key is the “do something with that element” phrase.
First, we need some sort of hook to identify the particular element in question.
Second we need to identify the block of commands that will be run on the current
element. This is Python so the block will be marked by being indented.

205

for

print('Have a letter:')
print()letter

:['a','b','c']inletter

keyword keyword colon

Loop
variable

List

Repeated
block

Using the
loop variable

Indentation

The “for loop”

So, let's meet the Python construct we will be using: the “for loop”.
It gets its name from the first keyword in the line: “for”.

This is followed by a name. This should be a new name, not already in use. The name
is going to be used to refer to the elements in the list, one at a time, as we will see in a
moment. In the case of the slide we are using the name “letter”.

The variable's name is followed by a second keyword “in”. This is pure syntactic
sugar and helps the line read more like English.
After “in” comes the list itself. This can be either a literal list (as shown in the slide) or
the name of a list, or (as we will see later) a function whose returned value is a list.
At the end of the line comes a colon, to introduce the indented section.
Next comes the set of commands that are going to be run over each item in the list as
an indented block. There can be as many lines as you want; once the indentation is
over the block ends.
Note that within this block we can use the variable name created on the first line,
“letter” in the case of the slide. The block will be run once for each element of the
list and each time it is run the name will be associated with a different item in the list.
So, in the case on the slide, the block of code will be run three times. The first time it
is run the name “letter” will be associated with the value “a”, the second time with
“b”, and the third and final time it will be associated with “c”.

206

The “for loop”
for letter in ['a','b','c']:
 print('Have a letter:')
 print(letter)
print('Finished!')

for1.py

$ python for1.py

Have a letter:
a
Have a letter:
b
Have a letter:
c
Finished!

Let's look at this in practice. The script for1.py in your home directories implements
the code from the previous slide together with a final line just to prove that the
repeated block is finished with.

207

Progress

The “for…” loop

Processing each element of a list

for item in items :
 …item…

208

Exercise

10 minutes

Complete the script elements1.py

Print out the name of every element.

The file elements1.py contains the Python for a list of all the element names.
Complete the script by adding the loop to print out the entries in the list.

209

[1:5]

[1]

“Slices” of a list
>>> abc = [′a′,′b′,′c′,′d′,′e′,′f′,′g′]

>>> abc

'b'

>>> abc

['b','c','d','e']

Simple index

Slice index

Single element

A new list “Slice”

Let's go back to extracting elements from lists. We have already seen how to extract a
single element from a list by quoting its index in square brackets after the list, or the
list's name.
We can also extract parts of lists as lists themselves. These are called “slices” of lists
are are created with this variant form of the index.

210

✗
[

Slice limits

>>> abc]5:1

“from” index

“to” index

]['e','c','d','b'

abc[1] abc[4]

'f'

abc[5] Element 5
not in slice

Let's look at the slice definition. It's two numbers separated by a colon.
The first is the lower index. The element that has this index in the original list becomes
the first element in the new list.
The second number is the index of the first element of the original list that is not in the
created list. As ever, Python has the approach that the second number is the first
index that doesn't get included.

211

Slice feature

[abc]3:1 [abc]5:3

['b','c'] ['d','e']

Same

+

+

['b','c','d','e']

[abc]5:1

The “off by one” final index system continues to cause some people distress. It does
have one useful feature, though. If you concatenate two slices from the same list with
matching inner indices then those indices “cancel out” and you get the slice
corresponding to the outer indices.

212

Open-ended slices
>>> abc = [′a′,′b′,′c′,′d′,′e′,′f′,′g′]

>>> abc[

[

>>>

[′a′,′b′,′c′,′d′,

]3:

abc[]:5

Open ended at the end

Open ended at the start

,′e′,′f′,′g′]′d′
abc[3]

]′e′
abc[4]

We can omit one of the limits.
If we omit the second, upper limit then the slice is the sub-list starting at the lower
index and going to the the end.
If we omit the lower limit then the slice starts at the beginning. Note, again, the the
created list stops one short of the index quoted.

213

Open-ended slices
>>> abc = [′a′,′b′,′c′,′d′,′e′,′f′,′g′]

>>> abc[

[′a′,′b′,′c′,′d′,′e′,′f′,′g′]

]: Open ended at both ends

This prompts the question: what happens if we omit both limits?
We get a copy of the whole of the list.

214

Progress

Slices

data[m:n] [data[m], … data[n-1]]

data[m:n]

data[:n]

data[m:]

data[:]

215

Square brackets in Python

[…] Defining literal lists

numbers[N] Indexing into a list

numbers[M:N] Slices

This is really just a variant on the indexing use of square brackets.

216

Modifying lists ― recap

>>> abc

>>>

[′a′,′b′,

abc

>>> abc[2] 'X'=

,′d′,′e′,′f′,′g′]′c′

[′a′,′b′, ,′d′,′e′,′f′,′g′]′X′

abc[2]

New value

Changed

We used simple index notation to read an item from a list.
Recall that we use exactly the same notation to refer to “element number two” in the
list but this time we place it on the left hand side of an assignment.

217

Modifying vs. replacing ?

>>> xyz = ['x','y']

>>> xyz[0] = 'A'

>>> xyz[1] = 'B'

>>> xyz

['A','B']

Modifying the list

>>> xyz = ['A','B']

Replacing the list

This prompts a question. Is there a difference between changing a list one item at a
time (which we will call “modifying the list”) and simply changing the whole list in one
go (which we will call “replacing the list”)?
There is a difference but it is subtle.

218

What's the difference? — 1a

list
str

str x

y
xyz

variables

>>> xyz = ['x','y']

Let's start by looking closely at the “modification” model.
We start by establishing a list, “xyz” with two items in it, the single-character strings
'x' and 'y'.

219

What's the difference? — 1b

list
str

str x

y
xyz

variables

>>> xyz[0] =

str Astr x

'A' Right hand side
evaluated first

Now we will modify item number zero in the list.
We will examine the assignment very closely.
The right hand side of the assignment is evaluated first. So Python creates a single
character strings 'A' in memory.

220

What's the difference? — 1c

list
str

str x

y
xyz

variables

>>> xyz[0] =

str A

str x

'A' New value
assigned

Old value
unused and
cleaned up.

Next the left hand side is processed. The list's item number zero is replaced by the
freshly minted 'A'. The previous value, 'x', is left behind and Python has internal,
automatic mechanisms to delete it from memory if it is no longer refered to anywhere.
The posh name for this is “garbage collection”. The unused 'x' is “garbage” and the
act of identifying it as unused and deleting it to free up Python memory is called
“collection”.

221

What's the difference? — 1d

list
str

str A

B
xyz

variables

>>> xyz[1] = 'B' Repeat for
xyz[1] = 'B'

We do the same thing for item number one in the list, giving it the new value 'B'.

We now have the same list object but with both its items changed.

222

What's the difference? — 2a

list
str

str x

y
xyz

variables

>>> xyz = ['x','y']

Now let's look at the replacement scenario.
Again, we start by creating a two item list called “xyz”. Our starting point is identical.

223

What's the difference? — 2b

list
str

str x

y
xyz

variables

>>> xyz = ['A','B'] Right hand side
evaluated first

list
str

str A

B

Now we do the assignment.,
We start, as ever, by evaluating the right hand side. This triggers the creation in
Python memory of a whole new list containing 'A' and 'B'.

224

What's the difference? — 2c

list
str

str x

y

xyz

variables

>>> xyz = ['A','B'] New value
assigned

list
str

str A

B

Old value
unused and
cleaned up.

Then Python processes the left hand side. The name “xyz” is now assigned to this
new list and the whole of the old list is unused (and garbage collected).

225

What's the difference?

Modification:

Replacement:

Does it matter?

same list, different contents

different list

?

So we get a different list with the second approach of replacement. Both cases give us
a list with the same content, though, so does it really make a difference?
Here comes the subtlety I warned you about…

226

Two names for the same list

>>> xyz = ['x','y']

>>> abc = xyz

list
str

str x

y

abc

variables

xyz

Let's suppose we had two names assigned to the same list.

227

>>> abc[0] = 'A'

list
str

str A

B

abc

variables

xyz

>>> xyz

['A', 'B']

Modification

>>> abc[1] = 'B' Modification

It we do the modifications one after the other we simply change the content of the list
both names point to and so we can change via the name “xyz” and see the results in
“abc”.

228

list
str

str x

y

abc

variables

xyz

Same starting point

>>> xyz = ['x','y']

>>> abc = xyz

Now we will look at replacement, starting with exactly the same situation.

229

list
str

str x

y

abc

variables

xyz

list
str

str A

B

>>> xyz

['x', 'y']

>>> abc = ['A','B'] Replacement

Assigning “abc” in one go causes the name to point to the new list. But now, instead
of the old list being unused, and therefore garbage collected, it is still refered to by the
name “xyz”.

230

One last trick with slices
>>> abc = ['a','b',

>>> abc[2:4]

['c','d']

>>> abc[2:4] ['x',y','z']

>>> abc

['a','b', ,'e','f']'x',y','z'

'c','d','e','f']

=

Length 6

New length

We have used the simple index notation of the left hand side to modify individual
elements of a list. We can also use the slice notation on the left hand side to modify
parts of the list. We can even change the length of the list in the process.

231

Progress
Modifying lists values[N] = new_value

Modification ≠ replacement

values[0] = 'alpha'
values[1] = 'beta'
values[2] = 'gamma'

values = ['alpha', 'beta', 'gamma']

232

Exercise 1. Predict what these will do.
2. Then run the commands.

5 minutes

>>> alpha = [0, 1, 2, 3, 4]
>>> beta = alpha
>>> gamma = alpha[:]
>>> delta = beta[:]

>>> beta[0] = 5

>>> alpha
>>> beta
>>> gamma
>>> delta

233

Appending to a list
>>> abc = ['x','y']

>>> abc.append('z')

>>> abc

['x','y']

>>> abc

['x','y','z']

Add one element to
the end of the list.

A very common modification requirement is to be able to add something to the end of
a list. In fact, it's very common to create lists by starting with an empty list and building
one item at a time.
To do this we have to introduce a new element of Python syntax.
Certain Python objects (for example, lists) have built-in functions, called “methods”.
We see a simple example of one of these here.
The name “abc” is assigned to a list, initially ['x','y'].

We then use this new syntax, “abc.append('z')”, to append 'z' to the end of the
list.
So what's going on here?

234

List “methods”

abc)'z'(append.

A list

A dot

A built-in function

Round brackets

Argument(s)
to the function

Built-in functions: “methods”

The syntax for a method — a built-in function ― is to take
1. the object (or more typically a name assigned to the object), followed by
2. a dot to act as the glue, followed by
3. the name of the method, “append” in this case followed by
4. round brackets to contain
5. the arguments passed into the function.
Note that we don't seen to pass the list itself in as an argument. Built-in functions
know where they came from and have access to the object.

235

.

Methods

object (arguments)method

Privileged access to object

Connected by a dot

“Object-oriented programming”

These “methods” are core to the idea of “object oriented programming”. While we
won't dwell on it too much in this course, there are volumes written on this type of
programming.
The UCS offers a course which may be useful to take this aspect of Python
programming further:

Object Oriented Programming: Introduction using Python:
http://training.csx.cam.ac.uk/ucs/course/ucs-oop

236

The append() method
>>> abc = ['x','y','z']

>>> abc.append()'A'

>>> abc.append()'B'

>>> abc.append()'C'

>>> abc

['x','y','z','A','B','C']

One element at a time

Let's return to the only example we have met so far: the “append()” method for lists.
It adds a single element to the list each time it is called.

237

Beware!
>>> abc = ['x','y','z']

>>> abc.append()['A','B','C']

>>> abc

['x', 'y', 'z', ['A','B','C']]

Appending
a list

Get a list as
the last item!

You cannot use the append() method to add multiple items by putting them in a list.
All you get is a “mixed list” that has (in this case) three strings and a list as its four
elements.

238

“Mixed lists”

['x', 'y', 'z', ['A','B','C']]
!

['x', 2, 3.0]

['alpha', 5, 'beta', 4, 'gamma', 5]

Mixed lists, while syntactically legal, are almost always the sign of confused thinking.
Avoid them. Stick to lists of just one type.
Don't forget that a list of lists of integers is a perfectly sound list. It's a list of a single
type: lists of integers. Each of its elements is also a perfectly sound list: a list of
integers.

239

The extend() method
>>> abc = ['x','y','z']

>>> abc.extend()['A','B','C']

>>> abc

['x','y','z','A','B','C']

All in one go

Utterly unnecessary! !

So how do we add a list to the end of a list?
We can use the extend() method which takes a list of elements as its argument and
adds them individually to the end.
But there is no need to ever use this!

240

Avoiding extend()
>>> abc = ['x','y','z']

>>> abc = abc + ['A', 'B', 'C']

>>> abc

['x', 'y', 'z', 'A', 'B', 'C']

Remember that lists can be concatenated with the “+” sign. So we have this much
simpler syntax to do it.

241

Changing the list “in place”
>>> abc

>>>

.append('w')
No value returned

abc
['x','y','z','w'] List itself is

changed

>>> abc

>>>

.extend(['A','B'])
No value returned

abc
['x','y','z','w','A','B'] List itself is

changed

There's something worth noticing about both the append() method and the
extend() method. Both of them modify the list they are a method of. They don't
return a new modified list, they silently modify the list itself.

242

Another list method: sort()
>>> abc = ['z','x','y']

>>> abc.

>>> abc

['x','y','z']

()sort

New method

No arguments

Let's look at a couple more methods like this.
We start with sort() which takes causes the list it is attached to to become sorted in
place.
A list can be of any type of item which supports “>”, “>=”, etc. and it will happily sort.

243

Any type of sortable element
>>> abc = [3, 1, 2]
>>> abc.sort()
>>> abc
[1, 2, 3]

>>> abc = [3.142, 1.0, 2.718]
>>> abc.sort()
>>> abc
[1.0, 2.718, 3.142]

Any sort of list where “<” etc. makes sense can be sorted.

244

Another list method: insert()

>>> abc = ['z']'y','x','w',

0 1 2 3

>>> abc.insert()'A',2

>>> abc

['z']'y','x','w', 'A',

“old 2”

Insert just before
element number 2

Here's another. The append() method adds an item to the end of its list. How do we
add items elsewhere?
The insert() method takes two arguments. The first is the index before which the
item is to be inserted and the second is the item itself.

245

Progress

list.append(item)

list.extend([item
1
, item

2
, item

3
])

list.sort()

list.insert(index, item)

Don't return any result

Change the list itselfList methods:

We have met four list “methods” which modify the list itself but don't return any result.

2465 minutes

Exercise

data = []
data.append(8)
data.extend([6,3,9])
data.sort()
data.append(1)
data.insert(3,2)
data

1. Predict what this will do.
2. Then run the commands.

247

Creating new lists
>>> numbers = [0,1,2,3,4,5,6,7,8,9]

>>> copy =

>>> for number in numbers:

... copy.append(number)

...

>>>

[]

copy

[0,1,2,3,4,5,6,7,8,9]

Simple
copying

Copying items across one at a time with a for… loop is typically overkill. However, if
you want to change that number as it gets copied across then it's quite a sensible
approach.
This is an example of straightforward copying.

248

Creating new lists
>>> numbers =

>>> squares = []

>>> for number in numbers:

... squares.append(number**2)

...

>>> squares

[0,1,4,9,16,25,36,49,64,81]

[0,1,2,3,4,5,6,7,8,9]
Boring!

Changing
the value

And here's an example of changing the number as it goes across. In this case we
square it.
Note that we are using a literal list of the numbers from 0 to 9. There must be a better
way to do it than that!

249

Lists of numbers
>>> numbers = range(0,10)

>>> numbers

[0,1,2,3,4,5,6,7,8,9]

range()10,0

[,1,2,3,4,5,6,7,8,9]0 c.f. numbers[0:5]

There is!
Python has built into it a function called range() which generates lists of whole
numbers. As ever, it starts at the first argument and ends one short of the second
argument. (c.f. slices)

250

Creating new lists
>>> numbers =

>>> squares = []

>>> for number in numbers:

... squares.append(number**2)

...

>>> squares

[0,1,4,9,16,25,36,49,64,81]

range(0,10)
Better!

This makes our instructions a little more sensible. More importantly, it makes them
more flexible. I can adapt this program to run up to 99 rather than 9 with a simple edit
of just one number.

251

Lists of words

>>> 'the cat sat on the mat'

['the','cat','sat','on','the','mat']

>>> 'The cat sat on the mat.'.split()

['The','cat','sat','on','the','mat

split().

string method

.']

No special handling
for punctuation.

There are other ways to get lists. A method that's often useful when processing lines
of data is the split() method on strings. This returns a list of “words” which are the
components of the string separated by spaces. It is a very primitive mechanism; there
are better but more complex methods elsewhere in Python. For example, it only splits
on spaces, not other punctuation.

252

Progress

Ways to build lists:

slices

loops appending elements

range(m,n) function

for

data[:]

split() string method

25310 minutes

Exercise

Write a script from scratch:

1. Run a variable n from 0 to 10 inclusive.
2. Create a list with the corresponding values of

n2 + n + 41.
3. Print the list.

transform.py

Here are some hints to help you with the exercise:

1. Run a variable from 0 to 10 inclusive.
To run a variable through a list you will need to use a for… loop.
To get the values being a list of numbers from 0 to 10 inclusive you can either use a
literal list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] or you can use the
range(from,to) function. Recall the strange behaviour about the upper limit of the
list produced.

2. Create a list…
In this case, when you are building an “outputs” list from an “inputs” list (0–10), your
best bet is to start with an empty outputs list before the for… loop starts and to add an
output to it for each run of the for… loop.

254

Brief
diversion

I want to take a quick diversion to discuss something that may be coming to mind but
which we are not going to handle yet.

Image (c) FreeFoto.com: licensed under Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0 Licence.

255

Arrays as lists of lists
0.0 -1.0 -4.0 -1.0 0.0
1.0 -0.0 -1.0 -0.0 1.0
4.0 -1.0 -0.0 -1.0 4.0
1.0 -0.0 -1.0 -0.0 1.0
0.0 -1.0 -4.0 -1.0 0.0

[[0.0, -1.0, -4.0, -1.0, 0.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[4.0, -1.0, -0.0, -1.0, 4.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[0.0, -1.0, -4.0, -1.0, 0.0]]

Scientists deal in arrays of data, not just linear lists. Two-, three- and four-dimensional
arrays are common.
Plain Python can handle multi-dimensional data, but its facilities are limited. Python
would represent a two-dimensional array as a list of lists. The “outer list” would have
one row per item. Each item would be a list of the elements in that row.

256

0.0 -1.0 -4.0 -1.0 0.0
1.0 -0.0 -1.0 -0.0 1.0
4.0 -1.0 -0.0 4.0
1.0 -0.0 -1.0 -0.0 1.0
0.0 -1.0 -4.0 -1.0 0.0

Indexing from zero

[[0.0, -1.0, -4.0, -1.0, 0.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[4.0, -1.0, -0.0, , 4.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[0.0, -1.0, -4.0, -1.0, 0.0]]

1.0

1.0

a
23

a[2][3]

And don't forget that Python indexes from zero.

257

0.0 -1.0 -4.0 -1.0 0.0
1.0 -0.0 -1.0 -0.0 1.0

1.0 -0.0 -1.0 -0.0 1.0
0.0 -1.0 -4.0 -1.0 0.0

Referring to a row — easy

[[0.0, -1.0, -4.0, -1.0, 0.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[4.0, -1.0, -0.0, 1.0, 4.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[0.0, -1.0, -4.0, -1.0, 0.0]]

4.0 -1.0 -0.0 -1.0 4.0

a[2]

Referring to a single row as a “thing” is easy…

258

0.0 -1.0 -4.0 -1.0 0.0
1.0 -0.0 -1.0 -0.0 1.0
1.0 -1.0 -0.0 -1.0 4.0
1.0 -0.0 -1.0 -0.0 1.0
0.0 -1.0 -4.0 -1.0 0.0

Referring to a column

[[0.0, -1.0, -4.0, -1.0, 0.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[4.0, -1.0, -0.0, 1.0, 4.0] ,
[1.0, -0.0, -1.0, -0.0, 1.0] ,
[0.0, -1.0, -4.0, -1.0, 0.0]]

No Python
construct!

…but there is no way to refer to a column with simple syntax.

259

Numerical Python?

Hold tight!

Later in this course,
powerful support for:

numerical arrays

matrices

“numpy”

But all is not lost!
Later in this course we will refer to a set of Python functions and objects known as
“numerical Python” or “numpy” for short. This will solve all our problems.
Be patient.

260

End of
diversion

We now return you to your normally scheduled course.

Image (c) Flickr user illustir, released under a Creative Commons licence v2.0.
http://www.flickr.com/photos/alper/3257406961/sizes/o/in/photostream/

261

Files

input
data
file #2

input
data
file #1

input
data
file #3

output
data
file #1

output
data
file #2

python
script

Let's put lists behind us now and move on to look at something else.
At the moment all our Python scripts have been self-contained. All the data they act on
is wired into them. We want to move away from that and have them interact directly
with the system. The first example of that will be interacting with files.
So, we want our scripts to be able to read data in from multiple files and write results
out to multiple files.

262

Reading a file

3. Closing the file

1. Opening a file

2. Reading from the file

We will start by reading a file. The procedure for this comes in three distinct phases.
First we will get our hooks into the file we want to read from. This is the transformation
from a name of the file to a Python object that represents the file. This called “opening
the file”.
Second we will use that newly minted Python object to read the data from the file.
Third we will dispose of the Python object corresponding to the file to alert the system
that we no longer need access to it. This is called “closing the file”.

263

Opening a file
'data.txt'

line one\n
line two\n
line three\n
line four\n

filesystem node
position in file

Python file object

file name

Data on disc

open()

Let's start with opening the file. This is conceptually the most complicated part of the
whole process.
We start with the name of the file. This is just a string. In our case we have the name
of a file “data.txt”. We need to convert that string into a Python object that will let us
access the file. The Python object, internally, will need to know what file it corresponds
to and how far into the file we have read. On initial creation, of course, this position in
the file (known as the “offset”) will point to the very start of the file.
This mapping from file name to the file object itself is handled by a Python function
called “open()”.

264

'data.txt'>>> data = open ()

file name stringPython
command

Python
file object

file

refers to the file with name 'data.txt'

initial position at start of data

So, what's the Python syntax?
The open() function takes the file name as its argument and returns the Python file
object.

265

Reading from a file

line one\n
line two\n
line three\n
line four\n

filesystem node
position in file

Python file objectData on disc

Python
script

How can we use this Python object? How do we read data from the file?

266

>>> data= open('data.txt')

>>> data.readline()

the Python file object
a dot
a “method”

'line one\n' first line of the file
complete with “\n”

>>>
'line two\n'

data.readline() same command again

second line of file

We can read the file's content one line at a time.
The file object, data, has a method readline() which reads one line from the file
and returns it as a string.
Note that the “end of line” marker is returned as part of the line (at the end, obviously).
Also note that if we call the readline() method a second time we get the second
line of the file.

267

>>>

line one\n
line two\n
line three\n
line four\n

position:
start of file

data = open('data.txt')
data

What's happening is this: Immediately after creating the file object with the open()
function its position pointer points to the very start of the line.

268

>>>

line one\n
line two\n
line three\n
line four\n

position:
after end of first line
at start of second line

data = open('data.txt')
data

>>> data.readline()

'line one\n'

When we call the file object's readline() method we read out the first line (including
the new line marker) and the position indicator is changed to point to the start of the
second line.

269

>>>

line one\n
line two\n
line three\n
line four\n

after end of second line
at start of third line

data = open('data.txt')
data

>>> data.readline()

'line one\n'

>>> data.readline()

'line two\n'

When we call data.readline() again the pointer is moved forwards a second time,
this time to the start of the third line.
Each time we call data.readline(), the reading starts at the current position, runs
to just after the next end of line character and is left ready for the next lot of reading.

270

>>>

line one\n
line two\n
line three\n
line four\n

end of file

data = open('data.txt')
data

>>> data.readline()

'line one\n'

>>> data.readline()

'line two\n'

>>> data.readlines()

['line three\n',
 'line four\n']

We can read the entire rest of the file in one go with the readlines() method
(n.b. the terminal “s”). This returns a list of all the lines. In practice we won't do this as
we will meet better methods to do it later.

271

>>> data.readline()

'line two\n'

>>> data.readlines()

['line three\n',
 'line four\n']

>>> data.close()

data

disconnect

Once we have read all the data we want from the file (not necessarily all of it) we
should close the file to tell the system we no longer need it. This is done with the
method close().

272

Common trick

Python “magic”:
treat the file like
a list and it will
behave like a list

for line in data:
 stuff

for line in data.readlines():
 stuff

I mentioned earlier that Python has a couple of tricks so that you would never need to
run the readlines() method directly. This is the first of them.

The most common reason for wanting a list of the lines in a file is so that you can step
through them one at a time in a for… loop. Python's trick is that for many type of
object where there is an obvious “list view” of that object, you can simply drop the
object in to a situation where a list would be expected.
For example, if we drop a file into the list slot in a for… loop, it behaves like this list of
lines. The two blocks of Python code behave in exactly the same way.

273

Simple example script

count = 0

print(count)
data.close()
 count = count + 1
for line in data:
data = open('data.txt')

1. Open the file

2. Read the file
One line at a time

3. Close the file

So let's see a real example. This is a primitive “count the lines” script. All it does is to
count the lines in a file.
It starts by setting the counter to zero, as no lines have been read yet.
The first file operation is that it opens the file. This returns a Python file object. The
author's habit is to name them after the file name if the file name is embedded in the
script but it is quite arbitrary. Instead of “data” it could have been called “input”,
“file_whose_lines_are_to_be_counted”, or “fred”.

The second file operation is to read the lines from the file, one at a time. We do this
with a for… loop. This is the classic way to read in a text file in Python.

Within the block of the for… loop we act on each line as it comes up. In our case we
ignore what's in the line itself, but just increment the counter.
The third file operation is to close the file after we have finished with it.
Finally we print out the number of lines.

274

Progress
filename open() readable file object

data.readline()

for line in data:
 ...line...

data = open('input.dat')

275

Exercise Write a script treasure.py
from scratch to do this:

Open the file treasure.txt.
Set three counters equal to zero:

n_lines, n_words, n_chars
Read the file line by line.
For each line:

increase n_lines by 1
increase n_chars by the length of the line
split the line into a list of words
increase n_words by the length of the list

Close the file.
Print the three counters.

15 minutes

Here's an exercise. It's a serious one that should take some time. (The file
treasure.txt contains the entire text of “Treasure Island” by Robert Louis
Stevenson and is provided courtesy of Project Gutenberg.)
Some hints:
1. Open the file.
file = open(filename)
2. Set three counters equal to zero.
n_lines = 0 etc.
3. Read the file line by line. Recall the Python idiom that if you treat a file like a list
it will behave like a list of the lines in that file:
for line in file:
4. Increase n_lines by one. Please tell me you don't need this hint.
n_lines = n_lines + 1
5. Increase n_chars by the length of the line.

Recall that len(string) gives the length of the string.

6. Split the line into a list of words. Recall the split() method on strings.

words = line.split()
7. Increase n_words by the length of the list of words

Recall that len(list) gives the length of the list, i.e. the number of items in it.

8. Close the file. Recall the close() method on file objects.

9. Print the three counters. This will do for this exercise:
print(n_lines, n_words, n_chars)

276

Converting the type of input
Problem:

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0

numbers.dat

['1.0\n','2.0\n',
 '3.0\n','4.0\n',
 '5.0\n','6.0\n',
 '7.0\n','8.0\n',
 '9.0\n','10.0\n',
 '11.0\n']

List of strings, not
a list of numbers.

Now let's suppose we want to do something with the content of the lines, as opposed
to just counting the lines. We immediately hit a problem that reading from files always
delivers strings. We can't do arithmetic with strings so we need some way to get from,
say, the string '1.0' to the floating point number 1.0.

277

Type conversions
>>> float('1.0\n')

1.0

>>> str(1.0)

'1.0'

String

Float

>>> float(1)

1.0

Int

>>> int(-1.5)

-1

Float

→

→

→

→

Float

String

Float

Int

No newline

Rounding to zero

Python has a set of functions for converting types. Each of these is named after the
type it converts into and takes whatever it can as an argument.

278

Type conversions to lists

>>> list('hello')

['h','e','l','l','o']

String

>>> data = open('data.txt')

>>> list(data)

['line one\n', 'line two\n',
 'line three\n', 'line four\n']

File

→

→

List

List

Recall that lists are valid Python types. Therefore there is a list() function that
attempts to convert its argument into a list.
Strings are converted into lists of characters. File objects are converted into lists of
lines.

279

Example script

sum = 0.0

print sum
data.close()
 sum = sum + float(line)
for line in data:
data = open('numbers.dat')

Let's see the conversions in practice. Given our data.txt file with one floating point
number per line, this script adds up all the values.
It reads each line of the file exactly as it did before, but this time it takes the string of
the line and converts it into a float before doing arithmetic with it.

280

Python
script

Writing to a file

filesystem node
position in file

Python file object Data on disc

'output.txt'

file name open()

To date we have just been reading from files. Now we want to write to them too. We
will open a file again, but this time we will need to declare that we are opening it for
writing.

281

'r'output = open('output.txt'),

Writing to a file

Open for
reading

output = open('output.txt')

'w'output = open('output.txt'), Open for
writing

Default

Equivalent

Let's start by looking at the open() function we know already. This takes a file name
and opens a file for reading. Actually, it can open a file for reading or writing, and the
behaviour is governed by a second argument saying which. If this second argument is
omitted then the file is opened for reading. If we want to explicitly include that second
argument then the way to declare that the file is to be opened for reading is to set the
argument to the letter 'r'.

If we want the file opened for writing then we set that second argument to be the
letter 'w'.

282

filesystem node
position in file

Opening a file for writing

Start
of file

Empty
file

'output.txt'

open('output.txt','w')

The open() function returns a file object as ever, with a pointer set to the beginning of
the file. Note that if the file already exists the setting of a write pointer to the start of
the file effectively truncates the file to being zero bytes long.

283

>>> output = open('output.txt','w')

file name open for
writing

So, how do we write to a file?
We start by opening it for writing.

284

>>> output = open('output.txt','w')

alpha\n

>>> output.)'alpha\n'(write

Method to
write a lump
of data

Lump of
data

“Lump”: need
not be a line.

Current
position
changed

Then we use the write() method in the file object. The read() method takes no
argument and returns a line. The write() method takes a line (actually an arbitrary
lump of data) and returns nothing.
The current position marker (the offset) is moved to the end of the file.

285

>>> output = open('output.txt','w')

alpha\n
bet

>>> output.)'alpha\n'(write

>>> output.)'bet'(write

Lump
of data to
be written

The write() method does not need to be passed lines.

286

>>> output = open('output.txt','w')

alpha\n
beta\n

>>> output.)'alpha\n'(write

>>> output.)'a\n'(write

Remainder
of the line

>>> output.)'bet'(write

287

>>> output = open('output.txt','w')

alpha\n
beta\n
gamma\n
delta\n

>>> output.)'alpha\n'(write

>>> output.)'a\n'(write

>>> output.
)

['gamma\n',(writelines
'delta\n']

Method to write
a list of lumps

>>> output.)'bet'(write

Just as there is a readlines() method there is a writelines() one too.

288

>>> output = open('output.txt','w')

>>> output.)'alpha\n'(write

>>> output.)'a\n'(write

>>> output. ['gamma\n',(writelines
'delta\n']

>>> output.close()

Python is done
with this file.

Data may not be
written to disc
until close()!

Once we have written what we want we must close the file with the close() method.
We could get away without closing the file for reading. We must close it after writing.
There is no guarantee that the data will actually make it to disc until the file is closed.

289

!

alpha\n
beta\n
gamma\n
delta\n

>>> output.close()

Only on close() is it
guaranteed that the
data is on the disc!

We repeat: You must always close a file after writing.

290

Progress
filename open() writable file object

data.write(line)

data = open('input.dat', 'w')

line must include \n

data.close() “flushes” to disc

291

Example

output = open('output.txt', 'w')
output.write('Hello, world!\n')
output.close()

Rather than bore you with a trivial exercise we'll give a very quick example here. This
three line script is a complete “write to a file” Python script.

292

Example of a “filter”
Reads one file, writes another.

input
data
file

output
data
file

python
script

To do something useful with files we need to read and write data at the same time.
The classic example of this is a “filter” which reads in one file and writes out another
based on the input's contents a line at a time.
We will write very simple filters right now and look at more complex ones later inth e
course when we've learnt a few more tricks.

293

 output.write('Line ')
 output.write(str(line_number))
 output.write(' has ')
 output.write(str(len(words)))
 output.write(' words.\n')

Example of a “filter”
input = open('input.dat', 'r')
output = open('output.dat', 'w')
line_number = 0

input.close()
output.close()

for line in input:
 line_number = line_number + 1
 words = line.split()

Setup

Shutdown

Ugly!

filter1.py

Here's a straightforward example.
The setup opens the two files. It's a matter of personal choice whether or not you are
explicit about the read-only open of the input. The author thinks it helps to contrast the
two operations.
Note the explicit close operations. Get into this habit even if, in this particular case,
they would have been closed by the script terminating.
Note how ugly the output writing lines are. We can do much better and will see how to
later in the course.

294

Exercise

Read treasure.txt and write treasure.out.
For each line write to the output:

line number
number of words on the line
number of characters in the line

separated by TABs.
At the end output a summary line

number of lines
total number of words
total number of characters

separated by TABs too.
15 minutes

Change treasure.py
to do this:

Hints:
1. Start with data.txt before trying your script out on the full text of Treasure
Island.
2. If the line number is in n_lines, the line is called line, and the list of words is
called words, then the string to output each line is this:
str(n_lines) + '\t' + str(len(words)) + '\t' + str(len(line)) +
'\n'
3. Work with print() to get the output right and then change to
output.write().

295

Problem

…

…

A snippet of
code using n

…n…

…n… But what if n was
already in use?

results = []
for n in range(0,11):
 results.append(n**2 + n + 41)

Let's look at a common problem in writing a script (in any language). We run a for…
loop using a variable “n”. Doing this will overwrite any previous definition of n we had
elsewhere in the script. If the script is short then this isn't really a problem. However,
as the script gets longer (and they rarely seem to get shorter!) it becomes an
increasing risk.

296

…

…

Want to isolate
this bit of code.

…n…

…n… Keep it away from
the external n.

results = []
for n in range(0,11):
 results.append(n**2 + n + 41)

Solution in principle

The solution would be to somehow isolate the variable name “n” within the for… loop
from any use of the same name outside.

297

Solution in principle

 = []
for n in range(0,):
 .append(n**2 + n + 41)

11

Pass in the value
of the upper limit

Pass out the
calculated
list's value.

results

results

The names
used inside
never get out

…

…

The isolation of the for… loop can't be absolute, obviously. We want to get the limit
(11 in this case) in and the results out. But we don't really care what they are called
inside the for… loop. We want to pass the value 11 in and get the value of the list
out.

298

Solution in practice

11

…
results (my_function=)

…

output

…

function

input

Need to be
able to define
our own
functions!

We implement this by building our own function. We will pass in the value we want as
an argument and read out the value we get as a result. We can then assign this to
whatever variable name we want.
(We can also use whatever variable name we want as the input argument too instead
of a literal value.)

299

Defining our function

def

:)limit(limitmy_function(

define

function name

input

colon

indentation

So let's define a function.
We start with the new Python keyword “def” which starts the definition of a function.

This is followed by the name of the function.
Then comes the indicator for the function's arguments. In this introductory course we
won't worry about optional arguments and just do functions with a fixed number of
arguments. We list the arguments giving them the names that will be used in the
definition of the function. These names have nothing to do with any name that may
appear outside the function definition. We have our isolation.
The line ends with a colon and what follows, the definition of the function, is indented.

300

Defining our function

):limit
answer = []
for in range(0, limit):n

answer.append(n**2 + n + 41)

Names are used
only in the function

Function definition

def my_function(

So we follow with our function “body”. This indented block carries the actual working of
the function. Note that any variable names created within the function (including the
one for the argument) are purely internal. If there are variables called limit, answer
and n elsewhere in the script they are not touched by this function.

301

Defining our function

):limit
answer = []
for in range(0, limit):n

answer.append(n**2 + n + 41)

def my_function(

return answer

Pass back…

…this value

We still have to spit out the function's calculated value. This is done with the new
Python keyword “return” which can only be used in a function. This returns the value
corresponding to the name answer.

This ends our definition of the function so we cease the indentation.

302

11

Using our function

def my_function(limit):
 answer = []
 for n in range(0, limit):
 answer.append(n**2 + n + 41)
 return answer

…

results)= my_function(

“answer” “limit”

Now that we have our function defined we still have to use it.
We call these user-defined functions exactly the same way as we use system-defined
ones.
Note that the names used outside the function definition have nothing to do with the
names used within the definition. It's values that are passed in and out, not names.

303

Why use
functions?

Reuse

ReliabilityClarity

If you use a function
in lots of places and
have to change it,
you only have to edit
it in one place.

Clearly separated
components are
easier to read.

Isolation of variables
leads to fewer
accidental clashes
of variable names.

So we can define our own functions. So what?
There are lots of reasons to use your own functions in your code.
The first reason is clarity. If you extract the nitty-gritty of how do do various operations
into functions then you can string the function calls together in the body of your script
or program and the whole becomes much easier to read. You can see the wood,
because the trees are all packaged up inside functions.
It also lets you write more reliable code. Because your functionality is chopped up into
function-sized chunks you can check those pieces individually. If you have one
function that reads data from a file, a second that processes the data and a third that
writes the processed data out again you can write tests for those three pieces of
functionality that won't trip over each other.
Finally, hiving off functionality to functions allows those lumps of functionality to be
easily copied into other scripts. (Actually, we don't even need to copy them as we will
see very shortly.)

304

A “real” worked example

Write a function to take a list of floating point
numbers and return the sum of the squares.

(a
i
) → ∑|a

i
|2

Let's take some real examples, both in the sense that you might really want a function
that does this, and in terms of how you might write it.
We'll start with creating the sum squares of a list of floating point numbers.

305

Example 1

def norm2(values):

 sum = 0.0

 for value in values:
 sum = sum + value**2

 return sum

This isn't the best implementation in the world, but it is the simplest.
It follows a very common pattern for “accumulating” functions. It sets up an initial value
(typically zero for addition, and one for multiplication) and then runs through its input
list, accumulating the values from the list. Finally it returns the acculated value to end
the function.

306

Example 1
print norm2([3.0, 4.0, 5.0])

50.0

$ python norm2.py

50.0

169.0

[3.0, 4.0, 5.0]

[12.0, 5.0]

This isn't the best implementation in the world, but it is the simplest.
It follows a very common pattern for “accumulating” functions. It sets up an initial value
(typically zero for addition, and one for multiplication) and then runs through its input
list, accumulating the values from the list. Finally it returns the accumulated value to
end the function.
There is an example of this function being used in the file norm2.py. This finds the
norm squared of two lists of numbers, once with an explicit list and once with a named
list.

307

A second worked example

Write a function to pull the
minimum value from a list.

(a
i
) → min(a

i
)

Here's another “real world” example. Given a list of values, return the minimum value
from the list.

308

Example 2

def minimum(a_list):

 a_min = a_list[0]
 for a in a_list:
 if a < a_min:
 a_min = a

 return a_min

When will this go wrong??

This is an example of a function that won't always work. There is one circumstance
when it will fail. What is it?
There is an example of this script in minimum.py. This tries to find the minimum of
two lists: once with an explicit list, and once with a named list. There is a third attempt,
commented out, which demonstrates how the function can fail.

309

Example 2

print minimum([2.0, 4.0, 1.0, 3.0])

1.0

$ python minimum.py

3.0

5

[4.0, 3.0, 5.0]

[12, 5]

310

A third worked example

Write a function to “dot product” two vectors.

(a
i
,b

j
) → ∑a

k
b

k

This is the generalization of the norm2() function.

311

Example 3

def dot(a_vec, b_vec):

 sum = 0.0
 for n in range(0,len(a_vec)):
 sum = sum + a_vec[n]*b_vec[n]

 return sum

When will this go wrong??

Again, this simple Python implementation fails under certain circumstances. The index
runs over the length of the first list. What happens if the second list is longer? Or
shorter?
There is an example of this script in dot_product.py. This calculates two dot products,
once with literal values, and once with names. It also has two examples commented
out that will go wrong in different ways.

312

Example 3

print dot([3.0, 4.0], [1.0, 2.0]))

11.0

$ python dot_product.py

11.0

115

313

Example 3 — version 2

def dot(a_vec, b_vec):

 if len(a_vec) != len(b_vec):
 print 'WARNING: lengths differ!'

 sum = 0.0
 for n in range(0,len(a_vec)):
 sum = sum + a_vec[n]*b_vec[n]

 return sum

If there are circumstances under which your function will fail or will give misleading
results, it is always a good idea to test your inputs.
Remember: functions get reused. The next user might not be as careful as you, or
might not even know the limitation.
Better ways to handle error cases are presented in the “Python: Further Use” course.

314

A fourth worked example

Write a function to filter out the
positive numbers from a list.

e.g.

[1, -2, 0, 5, -5, 3, 3, 6] [1, 5, 3, 3, 6]

This is our fourth and final example. Rather than a simple numerical result, this one
returns a list.

315

Example 4

def positive(a_list):

 answer = []

 for a in a_list:
 if a > 0:
 answer.append(a)

 return answer

Within the function body we use one of our classic means to build a list. We start with
an empty list and append() elements to it one at a time.

There is an example script in positive.py. Note that it is quite permissible for an
empty list to be returned if there are no positive values in the input.

316

Progress

Functions !

Defining them

Using them

317

Exercise

Write a function list_max() which takes two lists
of the same length and returns a third list which
contains, item by item the larger item from each list.

list_max([1,5,7], [2,3,6]) [2,5,7]

Hint: There is a built-in function max(x,y)
which gives the maximum of two values.

15 minutes

If you want some hints for how to solve this exercise, look at the third and fourth
worked examples again.
Hints:

● The third example demonstrates how you use the index to move through two lists
in parallel.

● The fourth example demonstrates starting with an empty “answer” list and
growing it an item at a time for each round of a for… loop.

● Python has a function which returns the maximum of two simple values.
>>> max(1,2)
2
>>> max(4.0,-5.0)
4.0
You cannot use it directly on a list.

318

How to return more
than one value?

Write a function to pull the
minimum and maximum
values from a list.

To date our functions have all returned a single value, even where that value was a
list. For example we might have a function that returns the minimum value from a list
and a second function that returns the maximum. Why can't we have a function that
returns both at the same time?
A list of two elements is not an appropriate type to return. The pair of values is just
that: a pair of values. There's no reason why they should come in a particular order.
There's no concept of the third item in the list.

319

Returning two values

def min_max(a_list):
 a_min = a_list[0]
 a_max = a_list[0]
 for a in a_list:
 if a < a_min:
 a_min = a
 if a > a_max:
 a_max = a

return (a_min, a_max) Pair of
values

We should have no problem thinking about the body of the function by now. But what
do we do with the return statement to return two values at the same time?

We do it by returning a pair of values. Python indicates these by separating them with
a comma. This pair is typically surrounded by brackets for clarity, but actually it's the
comma that's the active ingredient.
There is an example of this in the script minmax.py.

320

Receiving two values

values = [1, 2, 3, 4, 5, 6, 7, 8, 9]

…

print minval
print maxval

(minval, maxval) = min_max(values)

Pair of
variables

So we can emit a pair of values from the innards of the function. How do we pick up
those values on the outside when we use the function?
We use exactly the same commas and brackets notation as we did before.
There is an example of this in the script min_max.py.

321

Pairs, triplets, …

“tuples”

singles
doubles
triples
quadruples
quintuples
…

There's a posh name for these comma separated collections of values: “tuples”.
The word comes from the name given once we get past “triples” for three items
together: “quadruples”, “quintuples”, “hextuples”, etc.
We meet them often enough for tem to deserve a few slides of consideration.

322

Tuples ≠ Lists

Lists Tuples

Concept of “next entry” All items at once

Same types Different types

Mutable Immutable

Tuples are not quite the same as lists. In fact, they differ very significantly from lists in
a few technical ways, but the most important difference is conceptual.
A list is used for a sequence of numbers where there is some concept of successor;
each item naturally follows the one before it. A natural question to ask of a list is “is
there a meaningful way to extend the list?”
A tuple is used when all the items happen “at once”.
In a list, where there is a concept of a sequence, the items tend to be all of the same
type. In fact we recommend that you only use lists with all items of the same type.
In a list where there are just a number of items grouped together, there is no such
obligation.
Finally, there is an important technical difference. We saw with lists that we could
change individual elements and had an entire section contrasting modifying a list with
replacing a list. Tuples are immutable.

323

Tuple examples

Pair of measurements of a tree

(7.2, 0.5)(height,width)

(0.5, 7.2)(width,height)

Details about a person

('Bob', 45, 1.91)(name, age, height)

(45, 1.91, 'Bob')(age, height, name)

Here are some examples of natural use of tuples.
Suppose we are measuring trees. We measure their width and heights. These two
number are related (same tree) so we pair them up as we sling them round the
program, but they could come in either order. There is no natural order for these two
numbers.
We could handle three pieces of data about people in our program, for example their
names, ages and heights. These are three different types of data and can come in any
order.

324

Progress

Tuples

“not lists”

Multiple values bound together

Functions returning multiple values

325

Exercise

Copy the min_max() function.
Extend it to return a triplet:
(minimum, mean, maximum)

10 minutes

Copy the min_max function from min_max.py.
The exercise is to add an arithmetic mean to the values returned (turning a pair into a
triple). To calculate a mean:
1. Set up a sum variable before the for… loop with initial value 0·0.

2. Within the loop add each value encountered to sum.

3. After the for… loop is complete (so not indented) calculate mean as sum divided by
the length of the list of values.
4. Return the three values rather than just two.

326

Tuples and
string substitution

“Hello, my name is Bob and I'm 46 years old.”

We'll take a quick break from functions fro a moment. Now that we have tuples we
ought to look at what else we can do with them.
Suppose we want to take some values (e.g. from a tuple) and substitute them into a
string, mail-merge-style.

327

Simple string substitution

>>> 'My name is

'My name is Bob.'

'Bob'%.'%s

Substitution marker

Substitution operator

%s Substitute a string.

Let's start with a single substitution.
We take a string containing the magic code “%s” marking where we want the string to
be inserted. It will substitute for the %s.

We follow the string with the substitution operator, “%”. This has nothing to do with the
arithmetic use of the same character.
We follow the substitution operator with the string to be inserted. The “%s” means that
the substitution is expecting a string and a string must be provided.
The result is the original string with “%s” replaced.

328

Simple integer substitution

>>> 'I am

'I am 46 years old.'

46%.'

Substitution marker

%d Substitute an integer.

years old%d

We can do exactly the same thing with a “%d” to indicate an integer.

329

>>> '''My name is %s and
I am %d years old.'''... % ('Bob', 46)

'My name is Bob and\nI am 46 years old.'

Two markers

A pair

Tuple substitution

And this is where tuples come in. Suppose we want to substitute a string and an
integer. If we follow the substitution operator with a tuple then the markers in the string
get replaced in order from the tuple.

330

Lists of tuples
data = [
 ('Bob', 46),
 ('Joe', 9),
 ('Methuselah', 969)
]

for

List of tuples

print '%s %d' % (person, age)
in data:(person, age)

Tuple of
variable
names

In practice we might see something like this.
Our data comes as a list of tuples (or something treated like a list). We can use a tuple
of variable names to identify these values in a for… loop.

331

Problem: ugly output

Bob 46
Joe 9
Methuselah 969

Columns should align

Columns of numbers
should be right aligned

Bob 46
Joe 9
Methuselah 969

✘

✓

Trouble is, t produces really ugly output. Typically with lists of data like that we want
them aligned in columns. Numbers, typically, get right aligned for easy comparison
too.

332

'%-5s' %

'%

Solution: formatting

'%s' % 'Bob'

'Bob'

'Bob'

 'Bob'

 '␣␣Bob'

 'Bob␣␣'

Five characters
s' %5

Right aligned
'%-

Left aligned

'% 'Charles' 'Charles's' %5

We have a solution. The substitution operators have a set of modifiers that let us
change the details of the substitution. For example,
The simplest are for the strings. Adding a number between the “%” and the “s”
specifies how many characters should be assigned to the string. The string is right
aligned. If we specify a negative number it is left aligned. (These defaults make more
sense for numbers). If the string being inserted is too long then it just overflows; it
does not truncate.

333

'%d'

Solution: formatting

% 46 '46'

'%5d' % 46 '␣␣␣46'

'%-5d' % 46 '46␣␣␣'

'%05d' % 46 '00046'

There is similar formatting for integers. There is an additional option for integers where
a “0” is inserted before the width specifier. This pads the number out with leading
zeroes.

334

Columnar output
data = [
 ('Bob', 46),
 ('Joe', 9),
 ('Methuselah', 969)
]

for
print

in data:(person, age)
% (person, age)'%-10s %3d'

Properly formatted

We now have everything we need for formatted output.

335

Floats

'%f' % 3.141592653589 '3.141593'

'%.4f' % 3.141592653589 '3.1416'

'%.4f' % 3.1 '3.1000'

Finally, we need to look at floating point numbers. These have many more options and
we will restrict ourselves to just the most useful here. Note that truncating a floating
point number causes it to be rounded.

336

Progress

Formatting operator

Formatting markers

'%s %d' % ('Bob', 46)

%s %d %f

Formatting modifiers %-4s

We have taken a quick tour of formatting and string substitution using tuples (or a
single for the simplest cases). There is a fuller set of formatting codes as a separate
hand out.

337

Exercise
Complete the script format1.py
to generate this output:

Alfred 46 1.90
Bess 24 1.75
Craig 9 1.50
Diana 100 1.66
↑ ↑ ↑
1 9 15

5 minutes

Edit the script format1.py to complete this exercise. I suggest you attack the problem
in stages.
1. Get the basic %X symbols right.
2. Then work on the name column and get it right
3. Then work on the age column
4. Add some spaces to get the height column right.
5. Format the height column for two decimal places.

338

Reusing our functions

Want to use the same function in many scripts

Copy? Have to copy any changes.

Single
instance?

Have to import the
set of functions.

Now let's get back to the idea of reusing a function. We can reuse a function within a
script easily. Its definition is written once near the top of the script and we use it
multiple times within the script. If we change (e.g. fix) the function definition, all the
points in the script that use the function immediately benefit.
Now suppose we had written a really useful function that we wanted to use in lots of
different scripts.
We can, of course, just copy the function's definition from one script to another.
However, if we change (fix) the function definition in one script we have to repeat the
edit in all our scripts.
What we want is a mechanism to use a single definition in multiple scripts. This is
called “importing the function”.

339

How to reuse — 0

def min_max(a_list):
 …
 return (a_min,a_max)

vals = [1, 2, 3, 4, 5]

(x, y) = min_max(vals)

print(x, y)

five.py

Let's do this as a worked example.
In an earlier exercise we wrote a function that generates (simultaneously) the
minimum and maximum of a list and returns it as a pair. We have an example of this in
a script called five.py. We are going to split the definition of this function out from
the script that uses it.
$ python five.py
(1, 5)

340

How to reuse — 1

vals = [1, 2, 3, 4, 5]

(x, y) = min_max(vals)

print(x, y)

five.py

def min_max(a_list):
 …
 return (a_min,a_max)

utils.py

Move the definition
of the function to a
separate file.

The first thing we do is to cut and paste the definition into a different, new file. We will
call it utils.py (short for “utilities”).

The script five.py will no longer work. It cannot find the definition of the min_max()
function it uses.
python five.py
Traceback (most recent call last):
 File "five.py", line 3, in <module>
 (x, y) = min_max(vals)
NameError: name 'min_max' is not defined

341

How to reuse — 2

import utils

vals = [1, 2, 3, 4, 5]

(x, y) = min_max(vals)

print(x, y)

five.py

def min_max(a_list):
 …
 return (a_min,a_max)

utils.py

Identify the file with
the functions in it.

So now we modify five.py to import the min_max() function from utils.py.

First, we tell the script where to get some more functions from. We do this with the
command
import utils
This causes Python to go looking for a file called utils.py which contains functions.
Don't worry about where it goes looking; it includes a set of system locations and your
current directory.
On its own this isn't sufficient.
$ python five.py
Traceback (most recent call last):
 File "five.py", line 4, in <module>
 (x, y) = min_max(vals)
NameError: name 'min_max' is not defined
We need to tell Python that min_max() is supposed to come from that import. (There
may be several imports or it may be meant to come from the current script, or even
the system.)

342

How to reuse — 3

import utils

vals = [1, 2, 3, 4, 5]

(x, y) = utils.min_max(vals)

print(x, y)

five.py

def min_max(a_list):
 …
 return (a_min,a_max)

utils.py

Indicate that the
function comes
from that import.

We indicate that min_max() now comes from the utils.py file by prefixing
“utils.” to its name.

Now it works again:
$ python five.py
(1, 5)

343

A library of our functions

“Module”
Functions

Objects

Parameters

Container

This collection of functions in a .py file is called a “module”. Actually, a module can
contain more than just functions but that's what we are going to be most interested in
for this course.
A module is a collection of functions, types of object and various parameters, all
bound together, brought in my a single import statement and all with the same dotted
prefix to identify where they came from.

344

System modules
os

sys

re

operating system access

general system functions

regular expressions

subprocess support for child processes

csv read/write comma separated values

math standard mathematical functions

numpy numerical arrays and more

scipy maths, science, engineering

A huge number of modules exist built in to Python, or typically provided alongside it.
Here are just a few of the more useful ones.
Python keeps its language simple by hiving off most of the complexities of special
circumstances into modules that you only import if you need that particular piece of
functionality.
“There's a module for that” is the standard answer to almost all “how do I…” questions
in Python.

345

Using a system module

>>> import math

>>> math.sqrt(2.0)

1.4142135623730951

>>>

Keep track of
the module with
the function.

Let's take an example. We will work interactively here just for convenience.
Python itself does not support most mathematical functions. These are in the “math”
module (beware American spelling). So if we want the square root of a real number we
need the math.sqrt() function, i.e. the sqrt() function from the math module.

346

Don't do this

>>> from math import sqrt

>>> sqrt(2.0)

1.4142135623730951

>>>

!

There are a couple of short cuts that we want to advise you away from. These are
syntactically legal but lead to confusion and the author of Python, Guido van Rossum,
allegedly regrets ever having permitted them.
You can import a single function from a module and then use it without identifying
which module it comes from.
Don't do that.

347

Really don't do this

>>> from math import *

>>> sqrt(2.0)

1.4142135623730951

>>>

!!

You can even import all the functions from a module and use them without identifying
the module they come from.
Really don't do that.

348

Do do this

>>> import math

>>> help(math)

Help on module math:
NAME
 math
DESCRIPTION
 This module is always available. It
 provides access to the mathematical
 functions defined by the C standard.

So how do you find your way around a new module?
One of the things that should be built in to a module is its own documentation. You
may request help on any imported module by issuing the Python command help()
on the module name. The module must be imported before you ask for help on it.

349

Progress

“Modules”

System modules

Personal modules

import module

module.function(...)

350

Exercise

Edit your utils.py file.1.

Write a function print_list() that prints
all the elements of a list, one per line.

2.

Edit the elements2.py script to use this new
function.

3.

5 minutes

351

Interacting with the system

>>> import sys

So now we can start looking at the modules that come with every Python
implementation.
The sys module provides the hooks for interacting with the system in an operating
system neutral fashion. (There is a separate module for the operations that do depend
on the operating system.)

352

Standard input and output

>>> import sys

sys.stdin

sys.stdout

Treat like an
open(…, 'r') file

Treat like an
open(…, 'w') file

So, what's in sys?

First, we will look at two objects (rather than functions) that are very useful if you write
in the classic “filter” style:
python script.py < input_file > output_file
The object sys.stdin corresponds to the “standard input” (input_file in our
example) as an already opened file object. The sys.stdout object is the equivalent
for the “standard output” (output_file in our example).

353

Line-by-line copying — 1

import sys

sys.stdout

for :sys.stdin

.write(

inline

)line

Import module

No need to open() sys.stdin or sys.stdout.
The module has done it for you at import.

For example, here is a complete Python script for copying one file to another line by
line.

354

Line-by-line copying — 2

import sys

sys.stdout

for :sys.stdin

.write(

inline

)line

Standard input

Treat a file like a list Acts like a list of lines

Note the usual trick with an open file object: if we treat it like a list it behaves like a list
of lines. The sys.stdin object is just an open file. The only difference is that it was
opened for us.

355

Line-by-line copying — 3

import sys

sys.stdout

for :sys.stdin

.

inline

)line Standard output(write

An open file
The file's
write()
method

Similarly, we treat sys.stdout as an open file (opened for writing). We don't need to
open it; the system has done that for us.

356

Line-by-line copying — 4

import sys

sys.stdout

for :sys.stdin

.write(

inline

)line

$ python copy.py < out.txt>in.txt

Copy

Lines in…
lines out

We can now copy a file. Great.

357

Line-by-line actions

Copying lines
unchanged

Changing
the lines

Only copying
certain lines

Gathering
statistics

Now copying a file is pretty much pointless. We have cp for that.

However, the general shape of the script opens up the route to two different, very
commonly needed operations.
The first is where we change the lines, or process them in some way.
The second is where we only write them out again if some criterion is satisfied.
An extreme third case is where we gather statistics as we go and print them out only
at the end.

358

Line-by-line rewriting

import sys

sys.stdout

for :

.write(

input

)output

$ python process.py < out.txt>in.txt

Process

output

Define or
import a
function here

)input

in sys.stdin

= function(

The standard script for modifying a line would be this. Notice that we tend to separate
the line-by-line rewrite and the process of running through the lines by splitting the
rewrite off to a function.

359

Line-by-line filtering

import sys

for :sys.stdinininput

$ python filter.py < out.txt>in.txt

Filter

if test(input):

sys.stdout.write()input

Define or
import a test
function here

Similarly, this is the model for optionally writing out the line or not.

360

Progress

sys module

sys.stdin

sys.stdout

Standard input

Standard output

“Filter” scripts process line-by-line

only output on certain input lines

361

Exercise

Write a script that reads from standard input.

If should generate two lines of output:

Number of lines: MMM
Number of blank lines: NNN

Hint: len(line.split()) == 0 for blank lines.

5 minutes

Blank lines may have spaces on them. The best test for blank lines is to take the line
and to split it into “words”. If there are none, count the line as blank.

362

The command line

We are putting
parameters in
our scripts.

We want to put
them on the
command line.

$

number = 1.25
…

…

python script.py 1.25

Now let's look at another facility that the sys module gives us.

To date we are setting our parameters explicitly in the script itself. We really want to
enter them on the command line.

363

Reading the command line

import sys

print(sys.argv)

$ python args.py 1.25

[]'1.25','args.py'

sys.argv[0] sys.argv[1]

Script's
name

First
argument

A string!

The sys module provides an object sys.argv which is a list of all the command line
arguments. We can see this with a trivial script that prints it out.
We should notice a couple of significant points:
The name of the script itself is item zero in the sys.argv list.

All the items on the command line are presented as strings.

364

import sys

number = sys.argv[1]
number = number + 1.0

print(number)

Command line strings

Traceback (most recent call last):
 File "thing.py", line 3, in <module>
 number = number + 1.0
TypeError:
cannot concatenate 'str' and 'float' objects



Because all command line arguments are presented as strings we can't treat
numerical arguments as numbers straight away.

365

Using the command line

import sys

number = float(sys.argv[1])
number = number + 1.0

print(number)

Enough arguments?

Valid as floats?



We have to convert them to the correct type. We have already met the type
conversion functions. If we want a floating point number on the command line we use
the float() function to convert from the given string to the desired float.

366

Better tools for
the command line

argparse module Very powerful parsing
Experienced scripters

Manual parsing of the command line will do for simple scripts. There is a module
dedicated to parsing the command line called “argparse”. This is more suitable for
slightly more experienced scripters, but is exceptionally powerful.

367

General principles

1. Read in the command line

2. Convert to values of the right types

3. Feed those values into calculating functions

4. Output the calculated results

Here's a general approach for scripts that process the command line. The important
bit is that the parsing of the command line from string to directly usable values should
be split off into a function, which can then be independently tested.

368

Worked example

Write a script to print points

y=xr x∈[0,1], uniformly spaced(x, y)

Two command line arguments:
r (float) power
N (integer) number of points

So, let's go. We will write a “proper” program that reads input from the command line
and uses it to control its output.
We will consider as our goal a script that takes a floating point number, r, and an
integer, N, from the command line and supplies N points (x,y) uniformly distributed
along the curve y=xr on standard output for x ranging from 0·0 to 1·0 inclusive.

369

General approach

1a.

1b.

2a.

2b.

3.

Write a script that tests that function.

Write a function that parses the command line for
a float and an integer.

Write a script that tests that function.

Combine the two functions.

Write a function that takes (r, N) as (float, integer)
and does the work.

Unsurprisingly, we are going to split it up into functions. Splitting up a problem into
components and implementing each component as a function is the key to successful
programming. There are two components to our problem. We need to get the
command line arguments into forms we can use: one float and one integer. We also
need to take these two values and output the corresponding points.

370

import sys

def parse_args():
pow = float(sys.argv[1])
num = int(sys.argv[2])

return (pow, num)

1a. Write a function that parses the command line for
a float and an integer.

curve.py

The first function has to parse the command line. We are expecting two arguments so
we simply convert them and return a pair (tuple) of the two values. If there are not
enough command line arguments or if they cannot be interpreted as the right sort of
number then this function will fail and the script will halt.

371

import sys

def parse_args():
 ...
(r, N) = parse_args()
print 'Power: %f' % r
print 'Points: %d' % N

1b. Write a script that tests that function.

curve.py

We write a simple test. The parsing of the command line has to return objects of the
correct type and value. So we simply print out their values from within a substitution,
which will fail if they are not of the expected types.

372

1b. Write a script that tests that function.

$ python curve.py 0.5 5

Power: 0.500000
Points: 5

It works!

373

2a. Write a function that takes (r, N) as (float, integer)
and does the work.

def power_curve(pow, num_points):

for index in range(0, num_points):
x = float(index)/float(num_points-1)
y = x**pow
print '%f %f' % (x, y)

curve.py

The second function takes a float and an integer (presumed already converted from
the argument strings) and outputs the data we want.
Note:
● range(0, num_points) gives num_points as desired, but its maximum value is
num_points-1. Because of this we divide by num_points-1 in the following line
and not num_points.
● index starts as an integer, as does num_points-1. We explicitly convert both to
floats prior to dividing one by the other to make sure we get a float afterwards. (If we
did it in integers every value except the last would be 0.)
Our function does not need to return any value because it is just printing output and
doesn't need to report back.

374

2b. Write a script that tests that function.

def power_curve(pow, num_points):
 ...

power_curve(0.5, 5)

curve.py

Next we need to test our function.
We run it with values passed explicitly in the script. Its specification is that it must
produce a certain number of points satisfying a power law. So we have two checks we
need to make. Does it produce the correct number of points and are they
mathematically correct?

375

2b. Write a script that tests that function.

$ python curve.py

0.000000 0.000000
0.250000 0.500000
0.500000 0.707107
0.750000 0.866025
1.000000 1.000000

Yes, they are. It works.

376

3. Combine the two functions.

import sys

def parse_args():
pow = float(sys.argv[1])
num = int(sys.argv[2])
return (pow, num)

def power_curve(pow, num_points):
for index in range(0, num_points):

x = float(index)/float(num_points-1)
y = x**pow
print '%f %f' % (x, y)

(power, number) = parse_args()
power_curve(power, number)

curve.py

Now we trust our two functions we combine them to create the script's final
functionality:
(1) parse the command line to get the power and number of points
(2) print that many points on the power curve

377

Progress

Parsing the command line

sys.argv

Convert from strings to useful types

int() float()

378

Exercise

Write a script that takes a command line of
numbers and prints their minimum and maximum.

Hint: You have already written a min_max function.
Reuse it.

5 minutes

379

Back to our own module
>>> import utils
>>> help(utils)

Help on module utils:
NAME
 utils
FILE
 /home/rjd4/utils.py
FUNCTIONS
 min_max(numbers)
...

We want to do
better than this.

We have seen that the system modules come with their own help. What does ours
come with?
We can ask for help and we get a minimal, automatically generated help text. We want
to be able to add to this.

380

Function help
>>> import utils
>>> help(utils.min_max)

Help on function min_max in
module utils:

min_max(numbers)

We can also ask for help on specific functions in our module and we get just the basic
information there.
We want to be able to add help text to individual functions as well as the module as a
whole.

381

Annotating a function
def min_max(numbers):

Our current file minimum = numbers[0]
 maximum = numbers[0]
 for number in numbers:
 if number < minimum:

 minimum = number
if number > maximum:
 maximum = number

 return (minimum, maximum)

We will start by annotating an individual function.

382

A “documentation string”
def min_max(numbers):

 minimum = numbers[0]
 maximum = numbers[0]
 for number in numbers:
 if number < minimum:

 minimum = number
if number > maximum:
 maximum = number

 return (minimum, maximum)

 """This functions takes a list
 of numbers and returns a pair
 of their minimum and maximum.
 """

A string before
the body of the
function.

What we will do is simply place a string immediately after the def line and before any
of the active lines in the function's definition. (Comments don't count.)
Because this is often a long string it is traditional to use triple quotes. It doesn't matter;
it's just a string.

383

Annotated function
>>> import utils
>>> help(utils.min_max)

Help on function min_max in
module utils:

min_max(numbers)
 This functions takes a list
 of numbers and returns a pair
 of their minimum and maximum.

Now if we ask for help on that function we get the text we inserted.

384

Annotating a module

def min_max(numbers):

 minimum = numbers[0]
 maximum = numbers[0]
 for number in numbers:
...

 """This functions takes a list
 of numbers and returns a pair
 of their minimum and maximum.
 """

"""A personal utility module
full of all the pythonic goodness
I have ever written.
"""

A string before
any active part
of the module.

How do we annotate the module as a whole?
We add another string to the file, this time before any of the active lines.

385

Annotated module
>>> import utils
>>> help(utils)

Help on module utils:
NAME
 utils
FILE
 /home/rjd4/utils.py
DESCRIPTION
 A personal utility module
 full of all the pythonic goodness
 I have ever written.

And we get the text out again when we ask for help on the module.

386

Progress

Annotations

…of functions

…of modules

help()

“Doc strings”

387

Exercise

Annotate your utils.py and the functions in it.

3 minutes

388

Simple data processing

input data

output data

Python script

What format?

We now have just about enough Python to write some serious scripts. We need one
more feature, and we will meet it by looking at how to do data processing.
First of all we ought to look at the sorts of files that contain our data. What format is
the data in?

389

Comma Separated Values

input data
A101,Joe,45,1.90,100
G042,Fred,34,1.80,92
H003,Bess,56,1.75,80
...

1.0,2.0,3.0,4.0
2.0,4.0,8.0,16.0
3.0,8.0,24.0,64.0
...

A very common, and very useful format is called “comma separated values”. This is
usually marked by a suffix “.csv” on the file name. It is a common interchange format
for spreadhseets.
Each record is a row. Each column is separated from its neighbours by a comma.
Sometimes the records are in quotes.

390

Quick and dirty .csv — 1

CSV: “comma separated values”

>>> line =

>>> line.split(

'1.0, 2.0, 3.0, 4.0\n'

More likely to
have come
from sys.stdin

)',' Split on commas
rather than spaces.

['1.0', ' 2.0', ' 3.0',]' 4.0\n'

Note the leading
and trailing
white space.

Here's a quick way to chop up a line at the commas. The split() method takes an
optional argument which is the character to split on. Note that the strings in the list
have some strange spaces in them. Don't worry; the float() conversion function can
handle them.

391

Quick and dirty .csv — 2
>>> line = '1.0, 2.0, 3.0, 4.0\n'

>>> strings = line.split(',')

>>> numbers = []

>>> numbers

[1.0, 2.0, 3.0, 4.0]

>>> for string in strings:

... numbers.append(float(string))

...

This is a straightforward conversion.

392

Quick and dirty .csv — 3

Why “quick and dirty”?

Can't cope with common cases:

'"1.0","2.0","3.0","4.0"'Quotes

'A,B\,C,D'Commas

csvDedicated module:

Don't push the simple split() trick too far, though. There are many cases it can't
cope with. If you want to handle CSV files for real you should use the csv module
written for just that purpose.

393

Proper .csv
csvDedicated module:

import csv
import sys

input = csv.reader(sys.stdin)
output = csv.writer(sys.stdout)

for [id, name, age, height, weight] in input:
 output.writerow([id, name, float(height)*100])

Much more in the “Python: Further Topics” course

The csv module would work like this. Don't worry about the specifics; there's a proper
coverage of the module in the “further topics” Python course.

394

Processing data
Storing data in the program

id name age height weight

A101 Joe 45 1.90 100
G042 Fred 34 1.80 92
H003 Bess 56 1.75 80
...

id → (name, age, height, weight)? ?

So how we can read tabular or columnar data how can we store it within the program?
Let's consider a case where we want to map from some text key or ID to a tuple of
data.

395

Simpler case
Storing data in the program

id name

A101 Joe
G042 Fred
H003 Bess
...

id → name? ?

Let's start with a simple case where we map from an id string to a single string value
as opposed to a tuple.

396

Not the same as a list…

index name

0 Joe
1 Fred
2 Bess
...

['Joe', 'Fred', 'Bess', …]

names[1] = 'Fred'

This mapping from string id to value is different from a list. A list is indexed by
positions. We need to index by string.

397

…but similar: a “dictionary”

{'A101':'Joe', 'G042':'Fred', 'H003':'Bess', …}

names['G042'] = 'Fred'

id name

A101 Joe
G042 Fred
H003 Bess
...

We are going to use a different structure. We want something that takes an arbitrary
Python object (rather than just an integer) and looks up a corresponding value. Python
has such a type, called a “dictionary”.

398

Dictionaries Generalized look up

Python
object
(immutable)

 Python
 object
(arbitrary)

'G042' 'Fred' string string

1700045 29347565 int int

'G042' ('Fred', 34) string tuple

(34, 56) 'treasure' tuple string

“key” “value”

(5,6) [5, 6, 10, 12] tuple list

A dictionary maps from an arbitrary Python type (strictly speaking, any immutable
Python type) to an arbitrary (mutable or immutable) type.
The jargon is that instead of an index a dictionary has a “key” which it maps to a
“value”.
We can map from strings to strings (a very common case), or from strings to tuples
(which we want to do here).

399

Building a dictionary — 1

data =

A101 → Joe
G042 → Fred
H003 → Bess

'H003':'Bess''G042':'Fred' ,,'A101' }{

Curly brackets

Items

Comma

'Joe':

Key

colon

Value

So how do we build a dictionary?
We can create it all in one go as shown. The dictionary is delimited with curly brackets
(as opposed to a list's square brackets) and the individual elements are separated by
commas, just like a list. The elements themselves, however, are composite. Each is
the key/value pair separated by a colon. In a list the order they are specified defines
the index. With a dictionary, where we use the key rather than an index, we have to
quote both parts.

400

Building a dictionary — 2

data = {} Empty dictionary

data 'Joe'=]'A101'[

Square brackets

Key

Value

data 'Fred'=]'G042'[

data 'Bess'=]'H003'[
A101 → Joe
G042 → Fred
H003 → Bess

The alternative approach is to create an empty dictionary with just the pair of curly
brackets and then to add the elements one at a time.

401

Example — 1

>>> data = {'A101':'Joe', 'F042':'Fred'}

>>> data

{'F042': 'Fred', 'A101': 'Joe'}

Order is not
preserved!

So here's an example of a dictionary being created. Note that because there is no
numerical indexing there is no natural ordering either. Just because I enter the
key:value combinations in one order doesn't mean it stores them in that order.

402

Example — 2

>>> data['A101']

'Joe'

>>> data['A101'] = 'James'

>>> data

{'F042': 'Fred', 'A101': 'James'}

We get values out of a dictionary by quoting the corresponding key. They key appears
in square brackets, just as we did with a list. We can change the value corresponding
to a key just like we did with a list.

403

Square brackets in Python

[…] Defining literal lists

values[key] Looking up in a dictionary

numbers[M:N] Slices

numbers[N] Indexing into a list

Note that while we use curly brackets to define a literal dictionary, we still use square
brackets to resolve a key to a value in it.
(The only reason Python uses curly brackets rather than square brackets for literal
dictionaries is that otherwise the Python interpreter would not be able to distinguish
“{}” for an empty dictionary and “[]” for an empty list.)

404

Example — 3

>>> data['X123'] = 'Bob'

>>> data['X123']

'Bob'

>>> data

{'F042': 'Fred', 'X123': 'Bob',
'A101': 'James'}

We can add additional items into a dictionary using the same syntax as we used to
change them. Because there is no concept of order, there is no concept of
“appending”; we are just adding additional values.

405

Progress Dictionaries

data =
{'G042':('Fred',34), 'A101':('Joe',45)}

data['G042'] ('Fred',34)

data['H003'] = ('Bess ', 56)

406

Exercise
Write a script that:

1. Creates an empty dictionary, “elements”.

2. Adds an entry 'H'→'Hydrogen'.

3. Adds an entry 'He'→'Helium'.

4. Adds an entry 'Li'→'Lithium'.

5. Prints out the value for key 'He'.

6. Tries to print out the value for key 'Be'.
10 minutes

407

Worked example — 1

Reading a file to populate a dictionary

H Hydrogen
He Helium
Li Lithium
Be Beryllium
B Boron
C Carbon
N Nitrogen
O Oxygen
F Fluorine
...

elements.txt

symbol_to_name Dictionary

File

Let's move forward from that example to look at populating dictionaries from files.
You have a file in your home directories called elements.txt. This contains 92 rows
of data in 2 columns: the symbol and name for each chemical element. We want to
create a dictionary called symbol_to_name that contains equivalent data.

408

Worked example — 2
data = open('elements.txt')

for line in data:
 [symbol, name] = line.split()

symbol_to_name[symbol] = name

data.close()

Open file

Read data

Populate dictionary
Close file

Now ready to use the dictionary

symbol_to_name = {} Empty dictionary

Let's see how we would do it.
We'll start with an open file to read the data from and an empty dictionary to write the
data to.
Then we run through the data in the file a line at a time, using the string split() method
to carve the line up into its two components.
For each line we take those two components as the key and value and ad them to the
dictionary.
Finally, after running through the file, we close our input file.

409

Worked example — 3

Reading a file to populate a dictionary

A101 Joe
F042 Fred
X123 Bob
K876 Alice
J000 Maureen
A012 Stephen
X120 Peter
K567 Anthony
F041 Sally
...

names.txt

key_to_name

We can do exactly the same to read in our keys→names table too.

410

Worked example — 4
data = open('names.txt')

for line in data:
 [key, person] = line.split()

key_to_name[key] = person

data.close()

key_to_name = {}

The code is equivalent with just some names changed.

411

'elements.txt'

Make it a function!

symbol_to_name symbol

symbol_to_name

data = open(

for line in data:
 [symbol, name] = line.split()

data

name

.close()

= {}

)

[] =

This is an obvious candidate to be made a function.

412

'elements.txt'

Make it a function!

symbol_to_name symbol

symbol_to_name

data = open(

for line in data:
 [symbol, name] = line.split()

data

name

.close()

= {}

)

[] =

Input

We know what our input should be: the file name.

413

filename

filename

Make it a function!

symbol_to_name symbol

symbol_to_name

data = open(

for line in data:
 [symbol, name] = line.split()

data

name

.close()

= {}

)

[] =

Input

def filename_to_dict():

So we can write the def line and modify the script to use the input variable..

414

symbol_to_name

filename

filename

Make it a function!

symbol

symbol_to_name

data = open(

for line in data:
 [symbol, name] = line.split()

data

name

.close()

= {}

)

[] =

def filename_to_dict():

Output

We know what the output should be: the dictionary.

415

x_to_y

filename

filename

Make it a function!

x

x_to_y

data = open(

for line in data:
 [x, y] = line.split()

data

y

.close()

= {}

)

[] =

def filename_to_dict():

Output

So we can give that a nice generic name (x_to_y) and change the internal variables
to match (x and y).

416

x_to_y

x_to_y

filename

filename

Make it a function!

x

x_to_y

data = open(

for line in data:
 [x, y] = line.split()

data

y

.close()

= {}

)

[] =

def filename_to_dict():

Output

return()

And we add the return line to hand back the dictionary.

417

Exercise
1. Write filename_to_dict()

in your utils module.

2. Write a script that does this:

a. Loads the file elements.txt as a dictionary
(This maps 'Li' → 'lithium' for example.)

b. Reads each line of inputs.txt
(This is a list of chemical symbols.)

c. For each line, prints out the element name
10 minutes

Here's a “skeleton” of the script you need to write:

Read in the master dictionary
import utils
symbol_to_name = utils.filename_to_dict('elements.txt')

Open the input file
input = …

Run through the data file one line at a time
for line in input:
 symbol = line.strip()
 # Look up the name of the element with this symbol
 name = …
 print name

Close the input file
input.…

All you have to do is to fill in the three blanks.

418

Keys in a dictionary?

“Treat it like a list”

total_weight = 0
for symbol in
 name = symbol_to_name[symbol]
 print '%s\t%s' % (symbol, name)

symbol_to_name :

How can we tell what keys are in a dictionary?
Specifically, what happens when we want to run through all the keys in the dictionary?
We use the Python magic of “treat it like a list and it behaves like a list”. In the case of
dictionaries it behaves like a list of the keys.

419

“Treat it like a list”

“Treat it like a list and it
behaves like a (useful) list.”

File → List of lines

String → List of letters

Dictionary → List of keys

We've seen this before. Files behave like this list of lines and strings behave like this
list of letters. Dictionaries behave like the list of keys.

420

“Treat it like a list”

for item in list:
 blah blah
 …item…
 blah blah

for key in dictionary:
 blah blah
 …dictionary[key]…
 blah blah

So we can use a dictionary in a for… loop by looping through all its keys and then
looking up the corresponding value in the body of the loop.

421

Missing key?

data = {'a':'alpha', 'b':'beta'}>>>

data['g']>>>

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'g'

Dictionary equivalent of
“index out of range”

What happens if we ask for a key the dictionary doesn't have? Obviously we get an
error. We get an error very similar to the error we get if we ask for an out of range
index in a list. Instead of being an “IndexError”, a dictionary returns a “KeyError”.

422

“Treat it like a list”

if item in list:
 blah blah
 …item…
 blah blah

if key in dictionary:
 blah blah
 …dictionary[key]…
 blah blah

So we need to be able to tell in advance wither a key is in a dictionary. We do this
using the “treat like a list; behave like a list” magic. We can ask
if key in dictionary
just like we can ask
if item in list

423

Convert to a list

keys = list(data)
print(keys)

['b', 'a']

We can make the change to a list literally, of course, with the type converter function
list().

424

Progress

Keys in a dictionary

“Treat it like a list”

list(dictionary) [keys]

for key in dictionary:
 ...

if key in dictionary:
 ...

425

Exercise

Write a function invert()
in your utils module.

symbol_to_name 'Li' 'Lithium'

name_to_symbol = invert(symbol_to_name)

name_to_symbol 'Lithium' 'Li'

10 minutes

Write a function that takes a dictionary as its argument and returns the “reversed”
dictionary as its result.
To do this write the def line to take a dictionary x_to_y.

Start your function body by creating an empty dictionary y_to_x.

Run through the keys of x_to_y, calling the key x.

For each x look up the corresponding y in the given dictionary x_to_y.

For that x and y, add an entry to the y_to_x dictionary.

Once the loop is complete return the y_to_x dictionary.

426

One last example

Word counting

Given a text, what words appear and how often?

Let's finish with one last, serious example.
We are going to analyze some text and count up how often each word in the text
appears.

427

Word counting algorithm

Run through file line-by-line

Clean up word

Run through line word-by-word

Is word in dictionary?

If not: add word as key with value 0

Increment the counter for that word

Output words alphabetically

This is what we are going to do.
We will require the file to be counted to be given on the command line.

428

Word counting in Python: 1

Set up
import sys

count = {}

data = open(sys.argv[1]) Filename on
command line

Empty dictionary

Need sys for
sys.argv

We need to import the sys module to get at the command line arguments in sys.argv.

429

Word counting in Python: 2

for line in data:

for word in line.split():

Lines

Words

clean_word = (word)cleanup

We need
to write this
function.

Next we run through the data pulling apart the words. This is a very crude analysis so
we suppose a simple function exists that cleans up a word: stripping any punctuation
that might have come along for the ride, converting everything to lower case, etc. We
will need to write this function.

430

Word counting in Python: 3

def cleanup(word_in):
 word_out = word_in.lower()
 return word_out

“Placeholder”
function

Insert at start of script

Here's a simple cleanup function. All it does is convert the word to lower case.
If you want a better function that strips out punctuation, go to the course opn “regular
expressions”.

431

Word counting in Python: 4

Two levels
indented

clean_word = (word)cleanup

if not clean_word in count :

count[clean_word] = 0

count[clean_word] = count[clean_word] + 1

Create new
entry in
dictionary?

Increment
count for word

Now we change the dictionary. If this is the first time we have ever seen the word, we
have to add an entry to the dictionary. Because we will be incrementing the dictionary
value in a moment we set it to zero on creation.

432

Word counting in Python: 5

words = list(count) All the words

count[clean_word] = count[...

words.sort() Alphabetical
order

data.close() Be tidy!

As soon as we have finished with our nested loops running through the words, we
close the data file.
Our specification wanted us to run through the words in alphabetical order. The order
we get them from a dictionary by treating it like a list is essentially random, so we
create a list and then sort it. This is the alphabetically ordered list of all the words that
appear once or more in the file. Each word only appears once in the list; the frequency
with which they appear in the data file is in the dictionary value.

433

Word counting in Python: 6

words.sort() Alphabetical
order

for word in words:

print('%s\t%d' % (word,count[word]))

Then we print out all the words and values.

434

Run it!

$ python counter.py treasure.txt

What changes would you make to the script?

There is a script prepared for you with this worked example in it.
Run it, look at the output. Discuss what changes you would make to improve the
script.

435

And we're done!

Python types

Python control structures

Python functions

Python modules

and now you are ready
to do things with Python!

And that's it!

436

More Python

Python for
Absolute
Beginners

Python:
Further topics

Python for
Programmers

Python:
Regular
expressions

Python:
Object oriented
programming

Python:
Checkpointing

Python:
O/S access

Unless you want more, of course.

