
1

1

Python: Further Topics

Bruce Beckles
University of Cambridge Computing Service

Day One

Note that this course covers Python 2.4 to 2.7, which are the most common versions
currently in use – it does NOT cover the recently released Python 3.0 (or 3.1) since
that version of Python is so new. Python 3.0 is significantly different to previous
versions of Python, and this course will be updated to cover it as it becomes more
widely used.

The official UCS e-mail address for all scientific computing support queries,
including any questions about this course, is:

scientific-computing@ucs.cam.ac.uk

2

2

Introduction
● Who:

– Bruce Beckles, e-Science Specialist, UCS
● What:

– Python: Further Topics course, Day One
– Part of the Scientific Computing series of courses

● Contact (questions, etc):
– scientific-computing@ucs.cam.ac.uk

● Health & Safety, etc:
– Fire exits

• Please switch off mobile phones!

As this course is part of the Scientific Computing series of courses run by
the Computing Service, all the examples that we discuss will be more
relevant to scientific computing than to other programming tasks.
This does not mean that people who wish to learn about Python for other
purposes will get nothing from this course, as the techniques and
underlying knowledge taught are generally applicable. However, such
individuals should be aware that this course was not designed with them
in mind.

Note that there are various versions of Python in use, the most common of
which are releases of Python 2.2, 2.3, 2.4, 2.5 and 2.6. (The material in
this course is applicable to versions of Python in the 2.4 to 2.7 releases.)

On December 3rd, 2008, Python 3.0 was released. Python 3.0 is
significantly different to previous versions of Python, is not covered by
this course, and breaks backward compatibility with previous Python
versions in a number of ways. As Python 3.0 and 3.1 become more widely
used, this course will be updated to cover them.

3

3

Related/Follow-on courses
“Python: Operating System Access”:

– Accessing the underlying operating system (OS)
– Standard input, standard output, environment variables, etc

“Python: Regular Expressions”:
– Using regular expressions in Python

“Programming Concepts: Pattern Matching Using Regular Expressions”:
– Understanding and constructing regular expressions

“Python: Checkpointing”:
– More robust Python programs that can save their current state and

restart from that saved state at a later date
– “Python: Further Topics” is a pre-requisite for the “Python:

Checkpointing” course

“Introduction to Gnuplot”:
– Using gnuplot to create graphical output from data

For details of the “Python: Operating System Access” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonopsys

For details of the “Python: Regular Expressions” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonregexp

For details of the “Programming Concepts: Pattern Matching Using Regular Expressions”
course, see:

http://www.training.cam.ac.uk/ucs/course/ucs-regex

If you are unfamiliar with regular expressions, the following Wikipedia article gives an overview of them:
http://en.wikipedia.org/wiki/Regular_expression

…although that article does not express itself as simply as it might, so it may be most useful for the
references it gives at the end. If you have met regular expressions before, but haven't yet used them in
Python, then the “Python: Regular Expressions” course will teach you how to use them in Python.
Alternatively, the Python “Regular Expression HOWTO” introductory tutorial also provides a good
introduction to using regular expressions in Python:

http://docs.python.org/howto/regex

For details of the “Python: Checkpointing” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonchckpt

For the notes of the “Introduction to Gnuplot” course, see:
http://www-uxsup.csx.cam.ac.uk/courses/Gnuplot/

If you are unfamiliar with gnuplot, you may wish to have a look at its home page:
http://www.gnuplot.info/

4

4

Pre-requisites
● Ability to use a text editor under Unix/Linux:

– Try gedit if you aren’t familiar with any other Unix/Linux text
editors

● Basic familiarity with the Python language (as would
be obtained from the “Python: Introduction for
Absolute Beginners” or “Python: Introduction for
Programmers” course):
– Interactive and batch use of Python
– Basic concepts: variables, flow of control, functions,

Python’s use of indentation
– Simple data manipulation
– Simple file I/O (reading and writing to files)
– Structuring programs (using functions, modules, etc)

For details of the “Python: Introduction for Absolute Beginners” course,
see:

http://www.training.cam.ac.uk/ucs/course/ucs-python

For details of the “Python: Introduction for Programmers” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-python4progs

5

5

Start a shell

● Click to add an outline

6

6

Screenshot of newly started shell

● Click to add an outline

7

7

None Ø
None is a special value in Python, with its own
data type (NoneType). It is Python’s way of
representing “nothing”. Its “truth value” is False
(i.e. for the purpose of tests it is equivalent to
False).

It is often used as “placeholder” value, or to
mean that there is “no data”.

>>> None
>>>

>>> type(None)
<type 'NoneType'>

>>> not None
True

The value None is a Python special value (Python calls it a “null object”) designed
for situations when you need a value, but that value should not represent anything.
For instance, it is often used as a “placeholder” for variables that will be assigned a
value later in the script. It has its own separate type (NoneType). For the purpose
of tests, it is equivalent to False (i.e. its “truth value” is False).

Many Python functions use None to mean that there are no appropriate value(s) for
whatever they were asked to do. We will see some examples of how it can be used
later in this course.

It is also the value that is returned by a function that doesn’t explicitly return
anything else. So if your function does not explicitly return anything, then it
actually returns None.

8

8

Controlling loops in Python: break

while x % 2 == 0 :

print x, 'still even'

x = x/2

break
Stop executing loop
and go to statement
immediately after loop

for prime in primes :

print prime

if prime > 5 :

break

The break statement causes Python to stop executing whatever loop it might be
executing and jump to the first statement immediately after that loop. If you have
nested loops (i.e. loops within loops, e.g. a for loop within a while loop), the
break statement will terminate the current innermost loop, transferring control to
the next statement in the containing loop.

If your loop has an else block (while and for loops can have else blocks,
although these are seldom used) then break will skip any statements in the else
block, and jump to the first statement after the loop and its else block.
(If a while loop has an else block, the statements in this block will be executed
when the test in the while loop evaluates to False, after which the rest of the
script will be executed. If a for loop has an else block, the statements in the
else block will be executed after the for loop completes, after which the rest of
the script will be executed.)

9

9

Controlling loops in Python: continue

while x % 2 == 0 :

x = x/2

Stop executing this
iteration of the loop
and go to the next
iteration

for prime in primes :

print prime

continue

if x == 4 :

continue

print 'This line never executed'

The continue statement causes Python to stop executing the current iteration of
whatever loop it might be executing and start on the next iteration of that loop. If
you have nested loops (i.e. loops within loops, e.g. a for loop within a while
loop), the continue statement will start the next iteration of the current innermost
loop.

10

10

>>> import utils

Function Arguments
1st argument

2nd argument

named argument: time

named argument: person

>>> utils.greet(
Good Afternoon, Bruce.

Good Afternoon, Bruce.

"Afternoon", "Bruce")

>>> utils.greet(person="Bruce", time="Afternoon")

We have already seen that when we use a function in Python we can give it some arguments
(parameters). Up to now we have specified the function’s arguments (its input) by position.
We have called the function, specifying its arguments, and the position of each argument
determines what the function does with that argument. Such arguments are called positional
arguments, and the order in which they are given to the function is crucial. In the example
above, the greet() function (a function I have specially written for this course and put in the
utils module in your course home directory) prints out a greeting on the screen – the first
argument is the time of day (morning/afternoon/evening/etc) and the second argument is the
name of the person to whom the greeting is addressed.

Python also has another way of organising a function’s arguments: rather than the position of
an argument being used to determine what the function should do with it, the argument is given
a name (Python calls the name a “keyword”), and that name determines what the function does
with the argument. This allows the arguments to be given to the function in any order. Such
arguments are called named arguments (or keyword arguments). In Python, the functions that
the programmer writes automatically support both positional arguments and named (or
keyword) arguments, and we can use either mechanism to specify the functions arguments
when we use the function. The advantage of using named arguments is that we can specify
them in any order we like, and the purpose of each argument is immediately clear (assuming the
programmer chose sensible names for the arguments).

Note that some of the built-in functions in Python do not support named arguments, but the
functions that you write will do so automatically.

11

11

utils.py

def greet(time,

print "Good %s, %s." % (time, person)

Default value for person

):

Default Values and Optional Arguments

>>> import utils
>>> utils.greet('Afternoon')
Good Afternoon, user.

person

person is now an
optional argument

='user'

Open up the utils.py file in your course home directories with a text editor and edit the definition of the
greet() function as shown above (note that to fit everything on the slide we haven’t shown the function’s doc
string), i.e. add:
='user'

immediately after “person” on the first line (the line with the def keyword) of the greet() function’s definition.
Thus first line should now look like this:
def greet(time, person='user'):

The rest of the function is unchanged. Make sure you save the file after you’ve made this change.
(If you have been following along in the Python interpreter and still have a copy of the interpreter running after
you’ve edited the utils.py file, quit the interpreter and restart it before trying the changed greet()
function.)

This function now has what is called “a default value” for the person argument (parameter). If we import the
utils module, and then call the greet() function without specifying a value for the person argument,
then person will be set to this default value, i.e.
>>> utils.greet('Afternoon')
Good Afternoon, user.

is exactly the same as
>>> utils.greet('Afternoon', 'user')
Good Afternoon, user.

This means that person is now an optional argument: we no longer have to specify a value for it when we call
the function; if we don’t specify a value, Python will use the default value we’ve given in the function
definition.

VERY IMPORTANT: Once you’ve defined a default value for one argument in the function definition, you
need to define default values for all the following arguments taken by the function. So, in the greet()
function, if we had given a default value for the time argument, we would have to also specify one for the
person argument as well.

12

12

Accessing files

1. Direct access to files
2. Structured files: csv module

Today, we’re going to examine file I/O (input and output) in Python. We’ll start
off with a quick recap of the basics (as was covered in the “Python: Introduction for
Absolute Beginners” course, and in a more abbreviated fashion in the “Python:
Introduction for Programmers” course) and then move on to more advanced topics.
First we will consider directly accessing files ourselves, and then move on to how
we can access structured files with the help of the csv module.

13

13

input
data
file

Python
script

output
data
file

input
data
file

input
data
file

output
data
file

output
data
file

We want to be able to directly access files from Python. In particular, we want to be
able to cope with the situation where there is more than one input and/or output file.

14

14

Reading a file

3. Closing the file

1. Opening a file

2. Reading from the file

So, we will start by reminding ourselves how we read a file in Python. There are
three phases if we start with a file name.
We “open” the file. This takes the name of the file, checks to see if it exists and
gives us a “handle” − a special type of data type known as a file object − on the
contents of the file itself.
Then we use that file object to read the file’s contents.
Then we disconnect from the file by declaring that we are done with it now. This is
called “closing” the file (in contrast to “opening” it in the first place).

15

15

Opening a file

'data.txt'

line one\n
line two\n
line three\n
line four\n

filesystem node

position in file

“open” type: file

file name

type: string

the data
on disc

Opening a file involves taking the file name and getting some Python object whose
internals need not concern us – it’s a Python type called “file” (logically enough).
 If there is no file of the name given, or if we don’t have permission to get at this
file, then the opening operation fails. If it succeeds we get a file object that has
two properties of interest to us. It knows the file on disc that it refers to, obviously.
But it also knows how far into the file we have read so far. This property, known as
the “offset”, obviously starts at the beginning of the file when it is first opened. As
we start to read from the file the offset will change.
Think of opening a file, given its name, as being in a library. You are given a
book’s name, you fetch the book from the shelves (if it exists and you have
permission), you open the book and place your finger under the first letter of the first
word of the book, ready to read.

16

16

'data.txt'>>> data = open ()

file name type: string

Python
command

Python
file object

type: file

refers to the file with name data.txt

initial position at start of file

In Python, we open a file with the “open” command. (You may also meet some scripts that use
the “file” command instead of the “open” command. The “file” command is used to create
file objects and so can be used to do the same thing as the “open” command, but this is not
really a very good idea. Stick to the “open” command for opening files.)
In your Python directories there is a file called “data.txt”. If you enter Python interactively
and give the command
>>> data = open('data.txt')

then you should get a file object for this file inside the Python interpreter.

Note that we just gave the name of the file, we didn’t say where it was. If we don’t give a path to
the file then Python will look in the current directory. If we want to open a file in some other
directory then we need to give the path as well as the name of the file to the open command. For
instance, if we wanted to open a file called “data.txt” in the /tmp directory, we would use the
open command like this: open('/tmp/data.txt').

If you want to know which directory is your current directory, you can use a function called getcwd()
(“get current working directory”) that lives in the os module:

>>> import os
>>> os.getcwd()
'/home/x282'

(If you try this on the computer in front of you, you will find that it displays a different directory to the one
shown in these notes.)

You can change your current directory by using the chdir() (“change directory”) function, which also
lives in the os module. You give the chdir() function a single argument: the name of the directory you
want to change to, e.g. to change to the /tmp directory you would use os.chdir('/tmp'). However,
don’t try this now, as if you change the current directory to something other than your course home
directory then many of the examples in these notes will no longer work! (If you have foolishly ignored my
warning and changed directory, and don’t remember what your course home directory was called (and so
can’t change back to it), the easiest thing to do is to quit the Python interpreter and then restart it.)

17

17

>>> data = open('data.txt')

>>> data.readline()

a dot
the Python file object

a “method”

'line one\n' first line of the file
complete with “\n”

>>>
'line two\n'

data.readline()
second line of file
same command again

Reading a file

To read a file line by line (which is typical for text files), the file object provides
a method to read a single line. (Recall that methods are the “built in” functions that
objects can have.) The method is called “readline()” and the readline()
method on the data object is run by asking for “data.readline()” with the
object and method name separated by a dot.
There are two important things to notice about the string returned. The first is that
it’s precisely that: one line, and the first line of the file at that. The second point is
that it comes with the trailing “new line” character, shown by Python as “\n”.
Now observe what happens if we run exactly the same command again. (Remember
that Python on PWF Linux has a history system. You can just press the up arrow
once to get the previous command back again.) This time we get a different string
back. It’s the second line.

18

18

>>> data = open('data.txt')

line one\n
line two\n
line three\n
line four\n

data

position:
start of file

Let’s take a closer look at what just happened to be sure we understand how reading
from a file works. We started with the file object for the “data.txt” file
having its offset point to the start of that file. That's what we always get
immediately after an open().

19

19

>>> data = open('data.txt')

line one\n
line two\n
line three\n
line four\n

>>> data.readline()
'line one\n'

data

position:
after end of first line,
at start of second line

Then we ran data.readline(). This read one line from the file and returned it
to us in a string. As it did so it moved the offset along to just beyond the last
character read. It’s now at the start of the second line.
In our book analogy, as you read the words you slide your finger along. It’s now at
the start of the second line ready for you to read that.

20

20

>>> data = open('data.txt')

line one\n
line two\n
line three\n
line four\n

>>> data.readline()
'line two\n'

>>> data.readline()
'line one\n'

data

position:
after end of read data,
at start of unread data

Next time we call readline() we get the line following on from the current
position in the file.
(It is possible to put the position in the middle of a line using a method that I’m not
going to mention yet. What readline() generates is everything from the current
position to the end of the line, including the new line character.)

21

21

>>> data readlines().
['line three\n', 'line four\n']

>>> data readline().
'line one\n'

>>> data readline().
'line two\n'

remaining unread
lines in the file

Just so you know, there’s another method which is occasionally useful. The
“readlines()” method gives all the lines from the current position to the end as
a list of strings.
We won’t use readlines() much as there is a better way to step through the
lines of a file.

22

22

>>> data = open('data.txt')

line one\n
line two\n
line three\n
line four\n

>>> data.readlines()
['line three\n', 'line four\n']

>>> data.readline()
'line one\n'

>>> data.readline()
'line two\n'

data

position:
at end of file

Once we have read to the end of the file the position marker points to the end of the
file and no more reading is possible (without changing our position in the file,
which we’re not going to discuss yet).

23

23

data
>>> data.readlines()
['line three\n', 'line four\n']

>>> data.close()

disconnect

Closing a file

The method to close a file is, naturally, “close()”.
It’s only at this point that we declare to the underlying operating system (Linux in
this case) that we are finished with the file. On operating systems that lock down
files while someone is reading them, it is only at this point that someone else can
access the file.
Closing files when we are done with them is important, and even more so when we
come to examine writing to them.

24

24

>>> data.readlines()
['line three\n', 'line four\n']

>>> data.close()

>>> del data delete the variable if we
aren't going to use it again

We should practice good Python variable hygiene and delete the data variable if
we aren't going to use it again immediately.

25

25

Common trick

Python “magic”:
treat the file like
a list and it will
behave like a list

for line in data.readlines():
stuff

for line in data:
stuff

Some Python objects have the property that if you treat them like a list they act like
a particular list. file objects act like the list of lines of the file, but be warned that
as you run through the lines you are running the offset position forward, i.e. you
won’t get the same results twice (in fact, most likely you won’t get anything the
second time) unless you move the offset back to where it was. (We’ll see how to do
this later.)

26

26

Putting it all together in a function

1. Take a file name as the function argument.
2. Read a file of “key/value” lines.
3. Create the equivalent dictionary.
4. Return the dictionary.

H hydrogen
He helium
Li lithium
Be beryllium
B boron

chemicals.txt

So let’s look at a sensible example. In the “Python: Introduction for Absolute
Beginners” course we created a function – that we put in a module called
“utils” – that took a file name as its argument, read in the lines, expecting each
line to consist of two simple words, and returned a Python dictionary where the first
word on each line is a key of the dictionary and the second word is the
corresponding value.
In your course home directory you will find this utils module (the module is in a
file called utils.py), containing the function that does this. The function is
called “file2dict()” and we’ll examine it now to see what it does. Then we’ll
try improving it.

(For the pedants reading, the author knows that the file we’re using this function on
really contains the atomic elements rather than chemicals, and so it would be better
to call it “elements.txt” rather than “chemicals.txt”. However, the word
“element” is often used to refer to the individual items in lists or dictionaries (as in
“an element of a list” or “an element of a dictionary”), and I’d rather avoid any
confusion.)

27

27

1. Create an empty dictionary.

2. Open the file.

3. For each line in the file:

3a. Split the line into two strings (key & value).

3b. Add the key and value to the dictionary.

4. Close the file.

5. Return the dictionary.

The function

This is what the function does in words…

28

28

utils.py

def file2dict(filename):
dict = {}
data = open(filename)
for line in data:

[key, value] = line.split()
dict[key] = value

data.close()
return dict

Simple, really.

…and this is what it does in Python.

We know how to create a function – chiefly, we need to decide on its name and the name(s) of its
argument(s). This function is called “file2dict()” and its single argument is “filename”.
Remember that the body of the function must be indented.

This function takes the approach to creating a dictionary of starting with an empty one and adding
entries as it proceeds. So first it creates an empty dictionary.

It needs access to the content of the file so it opens the file to read it.

Next it needs to step through the lines of the file. It uses the standard Python trick of treating
something like a list and having it behave like a list.

Then it needs to split the line into two words. It does this using the split() method (with which
you should be familiar). Note that split() discards all white space, including the new line
character as well as the spaces between the words. Observe that it assigns the list of words
generated to a list of two variable names. If any lines in the file don't consist of exactly two words,
this line (and the function) will fail.

Having got two words it adds them into the dictionary.

Once it finishes with the file it closes it.

Now that it is done it hands back the dictionary, and the function ends.

29

29

#!/usr/bin/python
import utils

chemicals = utils.file2dict('chemicals.txt')
utils.print_dict(chemicals)

mkdict.py

So we can use it to create a dictionary from a text file structured in a particular way.

(Again, for the pedants reading, the author knows that the text file really contains
the atomic elements rather than chemicals, and so it would be better to call the
dictionary we create “chemicals” rather than “elements”. However, as I said,
I want to avoid confusion with the use of the word “elements” in “elements of lists”
or “elements of dictionaries” to refer to the individual items in lists or dictionaries.)

30

30

>>> data = open('output')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: 'output'

What if something goes wrong?

data.txt

output

>>> data = open('data.txt')
>>> data.readlines()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 13] Permission denied

What happens if we try to open a file that doesn’t exist? Or what if something
happens to the file whilst we’re reading it? – perhaps it is on a network filesystem
and there’s a network problem, or maybe there’s a bad sector on the disk where the
file is stored.

Dealing with files is one of the places where we are most likely to encounter
unexpected errors that are beyond our control or impossible to predict in advance
(or avoid). So how can we handle such unexpected errors?

(Note that the errors shown above are examples of what could happen while you are
performing, or attempting to perform, file I/O operations in Python. You won’t
necessarily get those results if you try the Python commands above now in class. If
you do open the file data.txt make sure you close() it before continuing.)

31

31

>>> data = open('output')

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: No such file or directory

“Traceback”: the
command's history

“stdin”: “standard
input” = the
terminal

Only one line
of command

Type of
exception (error)

Error message

: 'output'[Errno 2]

Error number

Errors in Python are called exceptions. When something goes wrong, Python will “raise an
exception”, i.e. generate an error. It is up to your script to handle (deal with) that error. If your script
does not have a mechanism for handling the exception, then Python’s default exception handler is
used, which normally halts your script and prints out some error messages similar to those above.

The first line of the error message above declares that what we are seeing is a “traceback” with the
“most recent call last”. A traceback is the command’s history: how we got to be here making this
mistake, if you like. The error itself will come at the end. It will be preceded with how we got to be
there. (If our script has jumped through several hoops to get there we will see a list of the hoops.) In
the above example the error occurs as soon as we try to open the file, so the traceback is pretty trivial.
The next two lines are the traceback. In more complex examples there would be more than two but
they would still have the general structure of a “file” line followed by “what happened” line.
The file line says that the error occurred in a file called “<stdin>”. What this actually means is that
the error occurred on Python being fed to the interpreter from “standard input”. Standard input means
our terminal. We typed the erroneous line and so the error came from us.
Each line at the “>>>” prompt is processed before the prompt comes back. Each line counts as “line
1”.
If the error had come from a script we would have got the file name instead of “<stdin>” and the line
number in the script.
The “<module>” refers to what function (and module) we were in. This command wasn’t in a
function (or a module), so we get “<module>” as the function name (indicating we weren’t in a
function, or a module for that matter).
The third line gives information about the error itself. First comes a description of what type of error
(exception) has occurred. This is followed by a more detailed error message – some errors (such as
this one) also have an error number. If the error had come from a script the line of Python that
generated this error would also be reproduced here.

32

32

Exception handling

Python exception handling:
0. try some commands
1. if there’s an error…
2. …execute the except

block…
3. …but if there’s no error,

don’t execute the
except block.

(Similar to if…else statements)

try:
Python commands

except:
Exception handler

Exception handling in Python is done using the try…except construct.
Essentially, whenever I think that some commands may fail, I create an exception
handler for the errors I expect using the try…except construct. If I don’t
specify a specific exception (error) to handle, then my exception handler is used for
any errors that occur while executing those commands. If my exception handler
only handles certain exceptions and my script produces an exception that my
handler wasn’t written to deal with, Python’s default exception handler will handle
that error for me.

Using the try…except construct will become clearer as we do some examples.

You can get a list of all the built-in exceptions that Python knows about in the
Python documentation here:

http://docs.python.org/library/exceptions.html
Note that those are the exceptions that are part of Python itself – however, it is also
possible to define new exceptions (these are known as “user-defined exceptions”),
and many Python modules do this. If a module defines a new exception, it should
document this in its documentation, and, if it is a well written module, in its doc
string.

33

33

def file2dict(filename):
import sys
dict={}
try:

data = open(filename)
for line in data:

[key, value] = line.split()
dict[key] = value

data.close()
except IOError:

print "Problem with file %s" % filename
print "Aborting!"
data.close()
sys.exit(1)

return dict utils.py

Modify the file2dict() function as shown above. Note that the commands in the try and
except blocks have to be indented.

As already mentioned, when dealing with files, it is very important that you close() any files
you were using when you are finished with them. This is especially true if something has gone
wrong. So, if we run into problems while reading the file, we print an error message and close the
file (or try to). Since we don’t really know what it would be safe to do at this point, we just make
whatever script called us exit with an error. Note that although this may seem a draconian
response, it is no more than what Python would do anyway if we didn’t handle this error.

Apart from the try…except construct, you should be familiar with all the Python in the
function above with the exception of the exit() function.
The exit() function lives in the the sys module – which is why we have to put “import
sys” at the start of the file2dict() function – and causes your script to stop what it is doing
and return to the operating system (or whatever program called it). If you give the exit()
function an integer as input, then that integer will be the exit status of the program. If you don’t
supply an integer, then the exit() function behaves as though it had been called with the integer
0 (i.e. the exit status will be 0). By convention, the exit status of a program or script should be 0 if
it completed successfully, and non-zero if it didn’t. If we get to the except block then there’s
been a problem, so we should exit with a non-zero exit status.
If you are unfamiliar with the exit status concept (also called exit code, return code, return status, error code, error
status, errorlevel or error level), the following Wikipedia article gives a bit more detail:

http://en.wikipedia.org/wiki/Exit_status

Apart from the exit() function and the try…except construct, if there is any Python above
which you don’t understand please put up your hand now and ask the course giver to explain.

Don’t forget to save the file after you’ve finished it or your changes won’t take effect.

34

34

>>> import utils
>>> mydict = utils.file2dict('output')
Problem with file output
Aborting!
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "utils.py", line 110, in file2dict
 data.close()
UnboundLocalError: local variable 'data' referenced before assignment
>>>

Well, that didn’t work quite as expected.

Observe that the error is in our except block, and so Python’s default exception
handler takes over to handle it (well, an except block can hardly be expected to
handle an error within itself).

The problem here is that, since the file doesn’t exist, the variable data never gets
assigned a value, and so it doesn’t exist when we reference it to close() the file
in our except block. The easiest way of fixing this problem is to assign data a
value before we enter the try block. What value should we use? Well, it doesn’t
really matter so long as it is not another file object. We’ll use the value None
that we met earlier, as it is a Python special value designed for such purposes.
Many Python functions use it to mean that there are no appropriate values for
whatever they were asked to do.

So let’s fix this error and try again.

35

35

def file2dict(filename):
import sys
dict={}
data = None
try:

data = open(filename)
for line in data:

[key, value] = line.split()
dict[key] = value

data.close()
except IOError:

print "Problem with file %s" % filename
print "Aborting!"
if type(data) == file:

data.close()
sys.exit(1)

return dict utils.py

Modify the file2dict() function as shown above. Remember to indent the
“data.close()” line for the if statement.

You should be able to see why the above modifications will fix the error we
encountered before. If you are confused, please ask the course giver to explain.

Don’t forget to save the file after you’ve finished it or your changes won’t take
effect.

36

36

>>> import utils
>>> mydict = utils.file2dict('output')
Problem with file output
Aborting!
$

Note that the exit() function not only causes our function to stop running, it
throws us out of the Python interpreter as well.

Now, our error message is a little vague (“Problem with file”) and it would be nice
if we could be a bit more specific. Recall that Python’s default exception handler
not only tells you the type of error but gives you some detail in the form of an “error
message”. How can we get access to this?

37

37

def file2dict(filename):
import sys
dict={}
data = None
try:

data = open(filename)
for line in data:

[key, value] = line.split()
dict[key] = value

data.close()
except IOError, error:

(errno, errdetails) = error
print "Problem with file %s: %s" % (filename, errdetails)
print "Aborting!"
if type(data) == file:

data.close()
sys.exit(1)

return dict utils.py

Modify the file2dict() function as shown above.

Don’t forget to save the file after you’ve finished it or your changes won’t take effect.

As well as specifying what type of exception we want to handle, we can also get the error
information produced by Python put into a variable of our choice. We do this by specifying the
name of our chosen variable, separated by a comma, after the type of exception we want to handle.
So a more complete syntax for the try…except construct is:

try:

commands
except ExceptionType, errorvariable:

exception handler commands

where ExceptionType is the type of exception we want to handle (IOError is the type of
exception raised if there is a problem with file I/O) and errorvariable is the optional variable
in which we want information about the error to be placed.

The information about the error may actually contain several pieces of information: the error
number, the error message, etc. If so, we would normally want to use these separately, so we
would “unpack” this variable using a tuple of variables to hold its constituent parts (recall that we
can do exactly this sort of “unpacking” for lists or tuples to get the values in the list or tuple into
individual variables). The way the error information is stored for errors that result in the
IOError exception being raised is that the first value is the error number and the second is the
actual error message.

The Python documentation gives some details about the error information available with the
different sorts of exception:

http://docs.python.org/library/exceptions.html

38

38

>>> import utils
>>> mydict = utils.file2dict('output')
Problem with file output: No such file or directory
Aborting!
$

Now we have a much better exception handler. It tells us quite specifically what the
problem is, and then exits our program.

We now have a reasonably well-written Python function that reads a dictionary
from a file, exiting with an informative error message if something goes wrong with
the file I/O. Can we make improve this function’s error handling even further?

39

39

>>> line = "Too many values"
>>> [key, value] = line.split()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: too many values to unpack
>>> line = "notenough!"
>>> [key, value] = line.split()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: need more than 1 value to unpack
>>>

What happens if the data in the file isn’t in the format we were expecting?

Using the Python interpreter, we can simulate this error quite easily.

The variable line gets set to the next line of data in the file we are reading. We
then use split() on this variable, which returns a list of words in the line we’ve
just read, i.e. a list of collections of characters separated by whitespace (spaces,
tabs, etc). We then “unpack” this list into two variables, key and value. If the
list does not contain exactly two items (i.e. if line does not contain exactly two
“words”), then Python will complain.

We can simulate such errors by setting line to a string that contains more than two
words, and one that contains fewer than two words, and then using split() and
trying to unpack the resulting list, exactly as we do in our function. If we do this,
we see that the exception that Python raises (in both error cases) is a ValueError
exception. (Note that the information about the error that we get with a
Val ueEr r or exception is just the error message, there is no error number as there
was with IOError exceptions.)

So, perhaps we could modify our function to handle this type of exception?

40

40

1. Place it in a try…except construct:

1a. try block contains statement(s) that may fail.

1b. except ExceptionType block says what
to do on failure:

i). print a message saying what has gone
wrong.

ii). Set the dictionary to None.

0. Find the part of the function where
the ValueError may occur.

The plan

iii). Stop processing the file.

This is the approach we will take.

We first identify the part of the function where the exception we intend to handle (the
ValueError exception) occurs.

Then we surround this part of the function with a try…except construct.

We have to decide what we want to do on failure. The sensible thing is to tell the user that there is
something wrong with the file. We’ll use a print statement for that.

We have two options at this point: we can either halt the Python program using the exit()
function, as we have done before, or we can carry on.

Arguably, a file that is in the wrong format is not so serious an error that we should automatically
force the program to quit. However, we don’t want to return a garbled or incomplete dictionary
either. The sensible thing would be to return something that couldn’t possibly be a valid dictionary
(the special None value, for instance). The program or user who called our function can then look
at what they got back and, if it is not a dictionary, then they can decide whether to quit or do
something else (for example, they could try reading from a different file).

We then need to stop processing the file (well, we could continue, but there would be no point
reading any more of the file as at this point we’ve decided to return None anyway). In this
function we read and process data from the file in a for loop, so we need a way of telling Python
to quit the for loop. (Recall that the Python statement that forces a for (or while) loop to
terminate is the break statement.)

41

41

Exercise
Add exception handling to the
file2dict() function for the
ValueError exception.

def file2dict(filename):

try:
statement(s) from original function

except …
print …
…
break utils.py

Now I want you to modify the file2dict() function in the utils.py file in
your course home directory to add exception handling for the ValueError
exception.

In case you get stuck, here are a couple of hints/pointers:

● Remember that the statement(s) from the original function that you are
putting into the try block need to be indented!

● Remember to specify the type of exception your except block should
handle (if you don’t it will try to handle all exceptions).

● If you’ve positioned your exception handler properly within the function then
you don’t need to worry about closing the file, since your exception handling
for this exception should occur before the file would normally be closed.
Thus you don’t need to worry about closing the file in your exception handler
as this will happen anyway.

● The last line of your except block will be a break statement.

If (and only if!) you really can't manage it take a look at the page after next.

After you’ve done this exercise take a short break (i.e. stop using the computer) and
then we’ll continue.

42

42

This page intentionally left blank
Deze bladzijde werd met opzet blanco gelaten.

Ta strona jest celowo pusta.
このページは計画的にブランクを残ている

Esta página ha sido expresamente dejada en blanco.

Эта страница нарочно оставлена пустой.
Denne side med vilje efterladt tom.

Paĝon intence vaka.
اين صفحه خالي است

An leathanach seo fágtha folamh in aon turas.

This page intentionally left blank: nothing to see here. If you’re stuck for an answer to the
exercise, have a look at the next page.

43

43

def file2dict(filename):

Beginning of function unchanged

for line in data:

try:
[key, value] = line.split()

except ValueError:
print "File %s is not in the correct format." % filename
dict = None
break

dict[key] = value

data.close()

Rest of function unchanged

utils.py

You should have modified the file2dict() function in a similar way to the modifications
shown above.

(Don’t forget to save the file after you’ve finished it or your changes won’t take effect.)

There are two points worth mentioning regarding the above exception handler. Firstly, note that
we not only tell the user what the problem is, but we tell them what file has caused the problem –
this will help them track down the problem. Secondly, note that if our exception handler for the
ValueError exception is called we will exit the for loop and the file will then be closed, thus
we don’t need to worry about closing it in the exception handler.

You can now try this function on two files in your course home directory that aren’t in the correct
format: bad-format1.txt and bad-format2.txt.
>>> import utils
>>> dict1 = utils.file2dict('bad-format1.txt')
File bad-format1.txt is not in the correct format.
>>> print dict1
None
>>> dict2 = utils.file2dict('bad-format2.txt')
File bad-format2.txt is not in the correct format.
>>> print dict2
None

If you had problems with the exercise, or if you don’t understand the Python above, please let the
course giver know.

44

44

Handling multiple exceptions
0. try some commands
1. if there’s an error…
2. …examine the except

blocks…
3. …if the error is

Exception1 use that
except block…

4. …if it’s Exception2
use that except
block…

5. …and so on…
6. …if it’s not any of the

listed exceptions, use
the final except: block
if it exists.

try:
Python commands

except Exception1:
Exception handler1

except Exception2:
Exception handler2

…
except:

Handler for all other
exceptions

If you need to handle multiple exceptions in the same block of code, you simply list each
of the exception handlers in separate except blocks one after the other with each
except block indicating what type of exception it is supposed to handle in its except
statement, You can have as many of these except blocks as you want.

After you’ve finished defining exception handlers for specific exceptions, you can then
have a final except block which will handle any other exceptions not previously
handled – this except block will be written just as “except:” since it is supposed to
handle multiple types of exception.

For example, consider the code snippet below:

try:
my_function(data)

except IOError:
print "There was an I/O error."

except ValueError:
print "There was something wrong with a value."

except:
print "There was some other error!"

This code snippet will call the my_function() function with data as its argument.
If an IOError exception occurs, it will print “There was an I/O error.”. If a
ValueError exception occurs, it will print “There was something wrong
with a value.”. If any other type of exception occurs it will print “There was
some other error!”.

45

45

Exception handling: exc_info()
import sys

exc_info() returns a tuple of three items of
information about the current exception:
(ExceptionType, ExceptionDetails, Traceback)

err_type, err_value) = sys.exc_info() [:2](

Variable for
type of
exception
e.g. IOError Variable for exception details

e.g. (2, 'No such file or directory')

It is dangerous to access the
traceback so don’t: use a slice
of the first two items in the tuple

The exc_info() function (which lives in the sys module) returns exception information. It
returns a tuple of three items relating to the current exception. (If no exception has been raised then it
returns the tuple (None, None, None).)

The first item is the type of the exception, e.g. IOError, ValueError, etc.

The second item contains the exception details, e.g. for an IOError exception it might contain the
tuple (2, 'No such file or directory'). These details are the information about the
error that we’ve accessed earlier using a try…except construct for a specific type of exception.

The third item contains the traceback, which is the listing of the lines of our script that have gotten us
to this error. We’ve seen Python display the traceback before when we’ve made errors, but we have
not tried to access it. In fact, it can be quite dangerous to interfere with the traceback, and, in
particular, assigning it to a local variable in a function will cause a circular reference. Therefore
it is best not even to access this item. Consequently you normally call the exc_info() function like
this:
sys.exc_info()[:2]

The “[:2]” tells Python to take a slice of the first two items of the tuple returned by the
exc_info() function, i.e. (the type of the exception, the exception details), and so it ignores the
traceback.

Given that we already know how to get the exception details when handling a specific type of
exception, why might we want to use the exc_info() function?

Recall that we can have an exception handler that handles all types of exception. Inside such an
exception handler, we might want to know what type of exception we were handling, as well as the
details of the exception. In such circumstances the best way to get this information is with the
exc_info() function.

46

46

>>> data = open('data.txt')

line one\n
line two\n
line three\n
line four\n

data

position:
start of file

Moving around a file

As we know, when we open() a file, we start at the beginning of the file: the
offset of our file object is set to the start of the file (unsurprisingly, as we will see in
a moment, this position is offset 0 of the file).

47

47

>>> data = open('data.txt') data

line one\n
line two\n
line three\n
line four\nposition:

at end of file

>>> data.readlines()
['line one\n', 'line two\n', 'line three\n', 'line four\n']

>>> data.readlines()
[]
>>> data.readline()
''

We can move to the end of the file by reading all the data in it using the
readlines() method. Once we are at the end, if we try to use the
readlines() or readline() methods we don’t get any more data, we just get
an empty list or an empty string (respectively).

Suppose we want to read from somewhere else in the file, how can we do that? We
could always close the file and then open it again, but that seems a bit silly – is
there a better way?

48

48

>>> data = open('data.txt')

line one\n
line two\n
line three\n
line four\n

data

position:
start of file

>>> data.readlines()
['line one\n', 'line two\n', 'line three\n', 'line four\n']

>>> data.seek(

Moving to the start of a file

0

offset in file

)

The better way is to use the seek() method. The seek() method is a method that
moves the offset of the file object to the specified location in the file without reading
(or writing) any data. You need to be very careful with this method, as it is very easy
to accidentally move yourself to a random position in a file, which can then play havoc
with subsequent read or write operations.

As we see here, the start of the file has an offset of 0, and so, to move to the start of a
file we would call the seek() method with an argument of 0, as shown above.

You can find out what the current offset of the file object is using the tell()
method, as we will see shortly.

A very important point to note is that not all offsets you can give the seek()
method are valid! This is one reason why the seek() method is rarely used except
to move to the beginning or an end of a file (and even that is relatively uncommon).
(In case you are curious, what offsets are valid depends on the type of file (whether it
is text or binary) and the operating system that Python is running on. In this course we
are only going to deal with text files (although we’ll mention binary files briefly a little
later), and we’re not going to use the seek() method except to show you how to
move to the start and end of a file.)

There are also certain sorts of file object that do not support the seek() method –
however, if you are reading from a normal file that is stored on a file system
somewhere, the seek() method should work.

49

49

>>> data = open('data.txt') data

>>> data.readlines()
['line one\n', 'line two\n', 'line three\n', 'line four\n']

>>> data.seek(0) line one\n
line two\n
line three\n
line four\nposition:

after end of first line,
at start of second line

>>> data.readline()
'line one\n'

We can verify that we are indeed at the start of the file by trying to read a line from
it. As we see, we indeed at the start of the file, and have now moved to the start of
the second line of the file.

50

50

>>> data = open('data.txt') data

line one\n
line two\n
line three\n
line four\nposition:

at end of file

>>> data.readline()
'line one\n'

>>> data.seek(0, 2

specifies that offset is
relative to the end of the file

)

Moving to the end of a file

We can move to the end of the file using the seek() method as well. If we know
exactly what value corresponded to the offset of the end of the file, we could
instruct the seek() method to move to that offset, but that depends on us knowing
exactly what the offset of the end of the file is.

So the seek() method can be instructed to move to an offset relative to the end of
the file (or relative to the current position in the file). The syntax is as follows:

seek(offset) or seek(offset, 0) move to the specified offset
(absolute position, i.e. relative
to the start of the file)

seek(offset, 1) move to the specified offset
relative to the current
position in the file

seek(offset, 2) move to the specified offset
relative to the end of the file

So to move to the end of the file, we call the seek() method with the arguments
0, 2. 0 for the offset, and 2 to signify that this offset is relative to the end of the
file.

51

51

>>> data = open('data.txt') data

line one\n
line two\n
line three\n
line four\nposition:

at end of file

>>> data.readline()
'line one\n'

>>> data.seek(0, 2)

>>> data.readline()
''

We can verify that we are at the end of the file by trying to use the readline()
method (or the readlines() method, if you prefer). As we are at the end of the
file, if we try to use the readline() or readlines() methods we don’t get
any more data, we just get an empty string or an empty list (respectively).

52

52

>>> data = open('data.txt') data

line one\n
line two\n
line three\n
line four\n

position:
at end of file

>>> data.readline()
'line one\n'

>>> data.seek(0, 2)

>>> data.tell()

Finding your position in a file

current offset as a
long integerL39

>>> data.close()

We can determine the value of the offset of a file object (i.e. our position within
the file) using the tell() method. The offset is an integer, and because files can
be very large, it is a long integer (in Python long integers can be of arbitrary size,
limited only by the amount of memory the computer possesses), hence the ‘L’ that is
printed after the ‘39’ above.

(Note that the tell() method only returns valid offsets, except when you have
opened a Unix text file as a text file on the Windows platform, when it is
unreliable – the solution to this is to open Unix text files as binary files on the
Windows platform (we’ll see how to open a file in binary mode later). However,
apart from in this pathological case, any offset returned by the tell() method can
be used as the offset argument for the seek() method.)

We’ve finished playing around with this file now, so make sure you close() it. If
you’re being good you get rid of the data variable as well:
>>> del data

53

53

What about output?
input = open('input.txt')

'r'input = open('input.txt'),

'w'output = open('output.txt'),

equivalent

open for
reading

open for
writing

To date we have been only reading from files. What happens if we want to write to
them?

The open() function we have been using actually takes more than one argument.
The second argument specifies the mode in which we want to open the file.
Amongst other things, the mode specified whether we want to read or write the file.
If the mode is not specified, then the default is to open the file for reading only.

The explicit value you need to open a file for reading is the single letter string 'r'.
 That's the default value that the system uses. The value we need to use to open a
file for writing is 'w'.

There are other modes apart from the above two simple ones, some of which we’ll
meet later.

54

54

Opening a file for writing

'output.txt'

filesystem node

position in file

“open”

empty
file

start of file

As ever, a newly opened file has its position pointer (“offset”) pointing to the
start of the file. This time, however, the file is empty. If the file previously had
any content then it would get completely replaced.

55

55

>>> output = open('output.txt' , 'w')

file name open for
writing

Apart from the explicit second argument, the open() function is used exactly as
we did before.

56

56

>>> output = open('output.txt' , 'w')

>>> output.write ('alpha\n')

alpha\n

method to write
a lump of data

lump of data
to be written

lump: not
necessarily
a whole line

Now that we've opened our file ready to be written to we had better write something
to it. There is no “writeline()” equivalent to readline(). What there is is
a method “write()” which might be thought of as “writelump()”. It will write
into the file whatever string it is given whether or not that happens to be a line.
When we are writing text files it tends to be used to write a line at a time, but this is
not a requirement.

57

57

>>> output = open('output.txt' , 'w')

>>> output.write ('bet')

alpha\n
bet

>>> output.write ('alpha\n')

lump of data
to be written

For example, we could write three characters in one write()…

58

58

>>> output = open('output.txt' , 'w')

>>> output.write ('a\n')

alpha\n
beta\n

>>> output.write ('alpha\n')

>>> output.write ('bet')

remainder
of the line

…and the last two characters (the new line counts as one character) in a second
write().

59

59

>>> output = open('output.txt' , 'w')

>>> output.writelines(

'a\n'

)

alpha\n
beta\n
gamma\n
delta\n

>>> output.write ('alpha\n')

>>> output.write ('bet')

>>> output.write (

['gamma\n', 'delta\n']

)

method to write
a list of lumps

the list of lumps
(typically lines)

There is a writing equivalent of readlines() too: “writelines()”.
Again,the items in the list to be written do not need to be whole lines.

60

60

>>> output = open('output.txt' , 'w')

>>> output.

writelines(

'a\n'

)

>>> output.write ('alpha\n')

>>> output.write ('bet')

>>> output.write (

['gamma\n', 'delta\n']

)

>>> output.

close()

Python is done
with this file.

Only at this point is it
guaranteed that the
data is on the disc!

Closing the file is particularly important with files opened for writing. As an optimisation,
the operating system does not write data directly to disc because lots of small writes are very
inefficient and this slows down the whole process. When a file is closed, however, any
pending data is “flushed” to the file on disc. This makes it particularly important that files
opened for writing are closed again once finished with.

It is only when a file is closed that the writes to it are committed to the file system.

61

61

In utils.py, write a function called dict2file()
that takes a dictionary and an optional filename as
its arguments and writes the contents of the
dictionary to the file:

2. For each key in the dictionary:

2a. Write the key to the file.

2b. Write a tab ('\t') to the file.

3. Close the file.

Exercise

2c. Write the value corresponding to the key,
followed by a newline ('\n'), to the file.

1. Open a file for writing.

So now let’s try creating a function that writes to a file. You should create your function in the utils.py
file in your course home directory. We have covered all the Python I/O you need to write this function (hint:
you can use either the write() method or the writelines() method (or both if you’re particularly
creative)). And you should already know the basic Python you’ll need (hint: recall that if you treat a
dictionary like a list (say in a for loop) it behaves like a list of its keys).

Make sure you put in exception handling for any IOError exceptions that may be
raised when writing to the file. Your function should also use a default filename (i.e. a
filename to use if the user does not specify one when they call the function) of
dictionary.txt.

Once you’ve finished writing this function (make sure you saved the file) you can test it out on the dictionary
of atomic symbols and element names in the file chemicals.txt in your course home directory:

>>> import utils
>>> chemicals = utils.file2dict('chemicals.txt')
>>> utils.dict2file(chemicals)

Now exit the Python interpreter, and have a look at the file dictionary.txt:
$ more dictionary.txt
Ru ruthenium
Re rhenium
Ra radium
Rb rubidium

(For space reasons, only an excerpt of the dictionary.txt file is shown above.)

If – and only if – you really get stuck, have a peek at the answer on the page after next.

When you’ve finished make sure and take at least a 5 minute break (preferably at least a 10 minute break) –
and that means a break from the computer, not checking your e-mail.

62

62

This page intentionally left blank
Deze bladzijde werd met opzet blanco gelaten.

Ta strona jest celowo pusta.
このページは計画的にブランクを残ている

Esta página ha sido expresamente dejada en blanco.

Эта страница нарочно оставлена пустой.
Denne side med vilje efterladt tom.

Paĝon intence vaka.
اين صفحه خالي است

An leathanach seo fágtha folamh in aon turas.

This page intentionally left blank: nothing to see here. If you’re stuck for an answer to the
exercise, have a look at the next page.

63

63

def dict2file(dict, filename='dictionary.txt'):
import sys
data = None
try:

data = open(filename, 'w')
for key in dict:

output = "%s\t%s\n" % (key, dict[key])
data.write(output)

data.close()
except IOError, error:

(errno, errdetails) = error
print "Problem with file %s: %s" % (filename, errdetails)
print "Aborting!"
if type(data) == file:

data.close()
sys.exit(1)

return
utils.py

Your dict2file() function should look similar to the one above. If it doesn’t, or if you had
problems with the exercise, please let the course giver know.

Also, if there is anything in the above function that you don’t understand please ask the course
giver.

Note that in my version of the function above I only use the write() method once as I process
each key, value pair from the dictionary. This makes my code fairly compact, but not as readable
as it might be. It is perfectly acceptable to use the write() method multiple times, e.g.

data.write(key)

data.write('\t')

data.write(dict[key])

data.write('\n')

Note that one problem with the above sequence of Python code is that there is no guarantee that
either the key or the value is a string and the write() method only accepts a string as an
argument. This is why it is better to use the string formatting operator (%) as I do here:

output = "%s\t%s\n" % (key, dict[key])

and then use the write() method like this:
data.write(output)

The use of the string formatting operator guarantees that output will be a string (unless, of
course, there is something wrong with key or dict[key], say if dict is not actually a
dictionary, in which case the function will fail anyway). An alternative would be to use str()
function to convert the key and value to strings before giving them to the write() method.

64

64

>>> import os.path
>>> os.path.exists('chemicals.txt')
True
>>> os.path.exists('rubbish.txt')
False
>>>

Checking whether a file exists

Those of you who have ever accidentally overwritten a file may have spotted the
glaring flaw with our otherwise well-behaved dict2file() function: it happily
overwrites (or attempts to overwrite) whatever file it is given as a file name (or
dictionary.txt if it is not given a file name).

Clearly, this is dangerous and we should fix this glaring bug. How do we do this?
We need to check whether the file already exists before we try to write to it.

The exists() function – which lives in the os.path module – returns True if
the specified file exists, False if it doesn’t (or if the specified file is a broken
symbolic link).

(A symbolic link (also known as a symlink or a soft link) is similar to a shortcut in
the Microsoft Windows operating system (if you are familiar with those) –
essentially, a symbolic link points to another file elsewhere on the system. When
you try and access the contents of a symbolic link, you actually get the contents of
the file to which that symbolic link points. If the file to which the symbolic link
points does not exist, then the symbolic link is said to be broken. For a more
detailed explanation of symbolic links see the following Wikipedia article:

http://en.wikipedia.org/wiki/Symbolic_link
)

65

65

def dict2file(dict, filename='dictionary.txt'):
import sys, os.path

if os.path.exists(filename):
print "File %s exists." % filename
print "Not overwriting it."
return

data = None

Rest of function unchanged

utils.py

Modify the dict2file() function as shown above.

 Remember to save the file after you’ve made your modifications.

Now the first thing our function does is to see whether the file name it has been
given is of a file that already exists. If it does, it prints out a message to that effect,
says that it is not overwriting the file, and simply returns without doing anything.

If we wanted to, we could make the function cause our program to exit(), but
that seems an overly draconian response – it makes more sense to just let the user
know that we haven’t overwritten the file and let the program continue.

Of course it would be even better if the program (and not just the user) could tell
whether the function had succeeded or not. To do that we need to make our
function do something that a program calling it could easily check to see whether
the function had succeeded or not.

66

66

def dict2file(dict, filename='dictionary.txt'):
import sys, os.path

if os.path.exists(filename):
print "File %s exists." % filename
print "Not overwriting it."
return False

data = None

Rest of function unchanged except last line:

return True

utils.py

Modify the dict2file() function as shown above.

 Remember to save the file after you’ve made your modifications.

Now, if the passed file name is of a file that already exists, our function returns the
Boolean value False, as well as printing out a message for the user. If the
function succeeds, it returns the Boolean value True. A well-written program can
now test whether the function succeeded or not and behave accordingly.

We can now try out our greatly improved function:
>>> import utils
>>> chemicals = utils.file2dict('chemicals.txt')
>>> writeout = utils.dict2file(chemicals,'dict1.txt')
>>> print writeout
True
>>> writeout = utils.dict2file(chemicals,'dict1.txt')
File dict1.txt exists.
Not overwriting it.
>>> print writeout
False

67

67

>>> import os
>>> os.

Renaming a file
>>> import os.path
>>> os.path.exists('data1.txt')
True

>>> import os.path
>>> os.path.exists('data1.txt')
False

rename('data1.txt', 'data2.txt')

rename() renames files.
It lives in the os module.

Under Unix/Linux if the new name is a file that
already exists, then that file is deleted, i.e.
rename() behaves like the Unix mv command.

So what do you do if there already exists a file with the name you want to use? You
could use a different name for your file, or you could rename the existing file to
avoid overwriting it.

You can rename a file (or directory) using the rename() function that lives in the
os module.

IMPORTANT: If the new name of the file or directory you want to rename is a file
that already exists, then under Unix/Linux that file will be deleted and then the
renaming will be done. If the new name is the name of an existing directory, then
an OSError will be raised. Under Windows, if the new name is an existing file or
directory then an OSError will be raised.

Under Unix/Linux rename() basically behaves like Unix’s mv command (which
means that on Unix/Linux you can use rename() to move files around, not just
rename them in the same directory). Note though, that on some versions of Unix
rename() will fail if the new “name” is on a different file system to the original
file, i.e. if, instead of just renaming the file, you use the rename() function to
move the file to a different file system.

68

68

Appending output to a file

open for
appending

$ cat output.txt
alpha
beta
gamma
delta
epsilon

>>> output = open('output.txt',

$ cat output.txt
alpha
beta
gamma
delta

>>> output.write('epsilon\n')
>>> output.close()
>>> del output
>>>

)'a'

So we know how to read from files, and how to write to a file. However, if we
write to a file that already exists then we will overwrite it. Now suppose we don’t
want to overwrite the file, but just add some more data to the end of it – how can we
do this?

Another value for the mode of the open() function that we can use is 'a'. This
means that we should open the file for writing, but we want to append our writes to
it, i.e. we don’t want to destroy the data already in the file, and instead we want to
add whatever we write to the end of the file.

Note that on some systems (most commonly some (but not all) versions of Unix) if
you open a file in append mode then all writes to the file are always appended to
the end of the file, regardless of the position you may have moved to in the file
using seek(). This means that if you use seek() on a file opened in append
mode, you should not rely on it working in the way you might hope.

(Note that in the above slide the cat command is given at the Unix/Linux prompt.
We then issue some Python commands in the Python interpreter. Finally, we quit
the interpreter and issue the cat command (at the Unix/Linux prompt) again to see
what effect our Python commands have had.)

69

69

>>> data.close()
>>> data.closed
True

Checking whether a file is open
>>> data = open('data.txt')

>>> data.closed

a dot
the Python file object

an “attribute”

False
Boolean indicating
whether or not the
file is closed

Some of you may be wondering how we can tell whether a file is open or closed.

file objects have an attribute called closed, which is set to True if the file is
closed and set to False if the file is open. (Attributes are “built in” variables that
objects can have.) If we need to tell whether a file is open or closed, we can do so
by examining the closed attribute of the corresponding file object to see
whether it is True or False.

70

70

Accessing binary files

'rb'input = open('input.dat'),

'wb'output = open('output.dat'),

open for reading
a binary file

open for writing
in binary mode

input. 1
maximum number of bytes
to read from file: omit to read
all remaining bytes of file

)read(

read some bytes from a file:
bytes are returned as a string

To date we have only been accessing text files. What about binary files?

The first thing to understand is that many operating systems (such as Unix/Linux) do not treat text and
binary files differently: so on these platforms we can carry on much as before. Some platforms (such
as Windows) do treat text and binary files differently however, and on those platforms it is very
important to know what sort of file you are dealing with.

Recall that the open() function for opening a file takes more than one argument, and the second
argument specifies the mode in which we want to open the file. The mode tells Python whether to
treat the file as a text file or a binary file. If we don’t explicitly say it is a binary file, then the default
is to treat the file as a text file.

The explicit value you need to use to open a file in binary mode is the single letter string 'b' which
you add to the end of the file mode. So for reading a binary file, use 'rb' and for writing in binary
mode, use 'wb' (and to append to a binary file you would use 'ab').

If you are working with binary files, then the concept of lines probably no longer applies, so we need
another method to read data from such files. That method is read(). When you use the read()
method you can specify the maximum number of bytes you wish to read – read() will return that
number of bytes or fewer if it comes to the end of the file. If you don’t specify the maximum number
of bytes then read() will read all the bytes in the file from the current offset in the file to the end of
the file. Just as with readline() or readlines(), using read() advances the position in the
file (the offset). And also as with readline() and readlines(), read() returns the bytes it
reads as a string. If your binary file does not contain strings, it is up to you to convert the data in the
string returned by read() to the correct format.

We already have a method (write()) that allows us to write arbitrary length strings, rather than
whole lines, to a file, so we don’t need a new method for writing to a binary file.

71

71

>>> data = open('Win-text.txt')
>>> data.readline()
'line one\r\n'
>>> data.close()

Reading files from other OSes

>>> data = open('Win-text.txt',
>>> data.readline()
'line one\n'
>>> data.close()

'rU')

open as a text
file in Universal
newline mode
(for reading)

Those of you who frequently work on both Unix/Linux and Windows platforms, or old Macintosh (pre-MacOS X) and
Windows platforms, etc will probably have come across the annoying fact that text files are handled differently on all
these platforms.

On Unix/Linux systems, each line of text in a text file is terminated with a single line feed character (‘\n’).

On Windows systems, each line of text in a text file is terminated with a single carriage return character (‘\r’)
followed by a single line feed character (‘\n’), i.e. the two character combination ‘\r\n’.

On old Macintosh systems (up to MacOS 9), each line of text in a text file is terminated with a single carriage return
character (‘\r’).

As long as you are always working on the same platform, or always working with binary files, this is irrelevant and you
are unlikely to care. However, when working with text files on different platforms, it can be a problem, since some
applications will not recognise a file as text if it doesn’t have the correct end-of-line (EOL) character combination for
that platform, or else they may get confused.

Python has a special mode – universal newline support – for handling such files. Instead of just opening such files as
we have been doing up to now, we use the special mode 'rU' (or just 'U') as shown above. In this mode, Python
treats any of the EOL combinations as a single newline character, which it represents as ‘\n’. (Note that the copy of
Python you are running needs to have been compiled with universal newline support enabled – this is the default, so
normally you shouldn’t need to worry about whether or not universal newline support is enabled on your particular
copy of Python.) This mode is only for reading text files – when Python writes to text files it is uses the EOL
character combination for the platform on which it is running whenever you specify the ‘\n’ character.

The file Win-text.txt in your course home directory is a Windows text file version of the file data.txt. As
you can see, if we open it normally it doesn’t look right: there’s an extra ‘\r’ character hanging around near the end of
each line. If we open it using Python’s universal newline support mode then it behaves “normally”.

If you want to know more about line endings for text files on different platforms, see the following Wikipedia article:
http://en.wikipedia.org/wiki/Newline

72

72

Accessing files

1. Direct access to files
2. Structured files: csv module

We’ve already met the limitations of the split() function for handling input, and
we’ve already come across two structured files that we can’t read because they
aren’t in the simple “whitespace” delimited format we’re used to. How can we
handle such files?

Obviously, we could write our own functions for making sense of (parsing) every
single file format we came across, but there is an easier way, at least for a large
class of text files. We use one of the standard Python modules (introduced in
Python 2.3): the csv module.

This module allows us to read and write so-called CSV (comma separated value)
files. These are files where each line has the same structure, consisting of a number
of values (called fields) separated by some specified character (or sequence of
characters), typically a comma (,). The character (or characters) that separates the
fields is called a delimiter.

This module also defines its own special sort of exception that is used when
something goes wrong with the functions and methods it provides. This exception
is “Error”, but as it is defined in the csv module, you would normally refer to it
by prefixing it with “csv.”, e.g.

try:
…

except csv.Error:
print "Can’t read CSV file!"

73

73

CSV files

5.6, 2.8, 9.3, -4.6, 9.8
-3.9, 25.0, 1.23, 5.6, 7.8

1.0 , 2.5 , 3.0 , -6.8 ,23.4

2.9, 5.2, 6.7, 2.4, 5.6

Fields containing
data

Fields are separated
by delimiters.
A comma (,) is often
used as a delimiter.

Sometimes spaces may follow
delimiter between fields, or may
be used as “padding” to make
fields a particular size (width).

Although CSV stands for “comma separated values”, as far as Python is concerned
CSV files are any type of text file which have a particular structure.

For Python, the CSV file will consist of a number of lines, each of which will have
a number of items of data (called fields), separated from each other by a particular
character known as a delimiter. (A comma (,) is often used as a delimiter, hence the
name “comma separated values”.)

There may also be spaces after (or before) the delimiter to separate the fields, or the
fields may be “padded” out with spaces to make them all have the same number of
characters in them. (The number of characters in a field is called the field’s width.)

Some programs that work with CSV files will only accept a comma as a delimiter,
or else will only accept a comma, a space or a tab as delimiters. Python, however,
will accept any single character as a delimiter.

Also, some programs that work with CSV files require each line of the file to have
the same number of fields (although some of the fields may be empty). Python
doesn’t care how many fields there are on each line, provided that the same
delimiter is used throughout the file.

74

74

"Joe Bloggs", blue, 27.8
"Jill East", brown, 28.9

"

Data with spaces
may be quoted
(surrounded by
quotation marks).

Quoting in CSV files

Fred Smith", red, 56.9

"Bloggs, Joe", blue, 27.8
"East, Jill", brown, 28.9

"Smith, Fred", red, 56.9
Data containing
special characters,
e.g. the delimiter,
is also quoted.

"Fred Smith", "red", "56.9"
"Joe Bloggs", "blue", "27.8"
"Jill East", "brown", "28.9"

We can even quote
all data (or all text
data) if we wish.

In CSV files, data with spaces in it is often quoted (surrounded by quotation marks)
to make clear that it is one single item of data and should be treated as such. In
Python this is not necessary unless you are using a space as your delimiter, but you
will often find that programs that produce CSV files automatically quote data with
spaces in it.

If your data contains special characters, such as the delimiter or a new line ('\n')
character, then you will need to quote that data or Python will get confused when it
reads the CSV file.

If you want, you can quote all the data in the file, or all the text data. Python
doesn’t mind if you quote data even when it is not strictly necessary.

75

75

input>>> data = reader()
file object

>>> import csv

>>> input = open('bad-format1.txt', 'rb')

csv.

must open file
in binary modecsv module

reader() function

>>> data.next() next() method
of reader object['H', 'hydrogen']

returns a list (of strings or numbers)

Reading CSV files

Make sure you close the file (data.close()) after you’ve finished reading from
it!

You read a CSV file using the reader() function in the csv module. This
function requires a file object as input. The file object must be opened for
reading in binary mode.

The reader() function returns a special sort of object, called a reader object.
The reader object has a next() method which reads the next line of the CSV
file and returns it as a list of strings or numbers. The first field on the line is the
first item in the list, the second field is the second item in the list, and so on.

It is your responsibility to delete the reader object, close the CSV file and delete
its file object when you are finished with the file.

The reader() function can take a number of optional formatting parameters that
specify what sort of CSV file it is reading. See the csv module’s documentation
for a list of these parameters and their default values:

http://docs.python.org/library/csv.html#csv-fmt-params

You may also find the examples given in the module’s documentation useful:
http://docs.python.org/library/csv.html#csv-examples

76

76

csv1.py

import csv

input = open('bad-format1.txt','rb')
data = csv.reader(input)

[key, value] = line
chemicals[key] = value

del key, value, line, data
input.close()

Treat a reader
object like a
list…

for line in data:

chemicals = {}

del input

utils.print_dict(chemicals)

import utils

…it behaves
like a list of the
lines of the CSV
file, where each
line is itself a
list (of fields of
the CSV file).

…so here is a typical example of using the csv module to read a CSV file. This
script is in the file csv1.py in your course home directory.

Recall that in Python very often if you treat an object like a list, it will behave like a
list of something, e.g. a dictionary will behave like a list of its keys. If we treat a
reader object like a list, it behaves like a list of the lines of the CSV file, where
each of those lines is itself a list (of strings or numbers). (Of course, just as when
we treat a file object like a list we move our position in the file forward until we
get to the end of the file, the same thing happens when we treat a reader object
like a list. This means that we can only really treat a reader object like a list
once, unless we then use the seek() method of the underlying file object to
reset our position in the file.)

The print_dict() function is not a standard Python function. It is a function
that prints out the keys and values of a dictionary that we wrote in the “Python:
Introduction for Absolute Beginners” and the “Python: Introduction for
Programmers” courses. For this course the function has been put in the utils
module in your course home directories.

Finally, note that the bits of Python that read the CSV file and set up the dictionary
would normally be hived off as a separate function in the script – that way we
wouldn’t have to worry about deleting the loop variable and all the other temporary
variables. I haven’t bothered with structuring this script that way as its purpose
here is just to demonstrate the simple use of reader objects. Similarly, I haven’t
put in any exception handling. If this script was actually meant to be used for any
serious task, it would be better structured and would have some exception handling.

77

77

output>>> data = writer ()
file object

>>> import csv

>>> output = open('csv-file.txt', 'wb')

csv.

must open file
in binary mode

writer() function

>>> data.writerow

writerow() method
of writer object

list (of strings
or numbers)

['H', 'hydrogen'])(

Writing CSV files

Make sure you close the file (data.close()) after you’ve finished writing to it!
It is only when a file is closed that the writes to it are committed to the file system.

You write a CSV file using the writer() function in the csv module. This function requires a
file object as input. The file object must be opened for writing in binary mode.

The writer() function returns a special sort of object, called a writer object. The writer
object has a writerow() method which writes takes a list of strings or numbers and writes them
out as a complete line of the CSV file, formatted appropriately. The first item in the list will be the
first field of the line that is written to the CSV file, the second item will be the second field of the
line, and so on. Python will handle quoting any data that needs to be quoted, you do not have to do
it yourself.

Note that it is your responsibility to delete the writer object, close the CSV file and delete its
file object when you are finished with the file. It is only when you close the file object that
the data you’ve written to the CSV file will be committed to the file system.

The writer() function can take a number of optional formatting parameters that specify what
sort of CSV file it is reading (these are the same as the optional formatting parameters for the
reader() function). See the csv module’s documentation for a list of these parameters and
their default values:

http://docs.python.org/library/csv.html#csv-fmt-params

You may also find the examples given in the module’s documentation useful:
http://docs.python.org/library/csv.html#csv-examples

78

78

import csv

symbol_to_properties = {…}

output = open('chem_props.txt','wb')

data = csv.writer(output)

for symbol in symbol_to_properties:
(name, anum, boil) = symbol_to_properties[symbol]
data.writerow([symbol, name, anum, boil])

del symbol, name, anum, boil
del data

output.close()
del output

csv2.py

Above is an example of using the csv module to write to a CSV file. This example
is in the file csv2.py in your course home directories. Again, for simplicity I
have not included any exception handling in this script, but if it was intended for
serious use then it would include some exception handling.

 We can try out this script if we wish:
$ python csv2.py
$ more chem_props.txt
Ru,ruthenium,44,4423.0
Re,rhenium,75,5900.0
Ra,radium,88,2010.0
Rb,rubidium,37,961.0
Rn,radon,86,211.3
Rh,rhodium,45,3968.0

(For space reasons, only an excerpt of the chem_props.txt file is shown
above.)

You should understand all the Python in the script above. If there is anything you
do not understand, please ask the course giver now.

79

79

5.6, 2.8, 9.3, -4.6, 9.8
-3.9, 25.0, 1.23, 5.6, 7.8

1.0 , 2.5 , 3.0 , -6.8 , 23.4

2.9, 5.2, 6.7, 2.4, 5.6

delimiter = ','
delimiter is a string
that specifies the
character being used
as the delimiter.
Default value: ','

skipinitialspace = True
will ignore any whitespace
immediately after the
delimiter. Default value: False

Formatting options for CSV files

We’ll look at some of the most common of these optional formatting parameters now.
Note that these parameters are optional, so you don’t have to specify them: if you don’t specify a
parameter then Python will use that parameter’s default value. When you call the reader() or
writer() functions you can specify as many, or as few, of these optional parameters as you
wish. If you specify any of these optional parameters, they must come after the file object you
give to the reader() or writer() function, separated by a comma (,) as is usual for multiple
arguments for a function in Python..

The delimiter parameter specifies the delimiter that separates the fields in the CSV file. It is a
one-character string and defaults to the comma (',').

The skipinitialspace parameter is a Boolean that controls whether any spaces immediately
following a delimiter should be ignored or considered part of the data in the field. When set to
True any whitespace immediately following the delimiter is ignored, when set to False any
whitespace is considered part of the data in the field. Its default value is False.

These optional parameters are specified as named (or keyword) arguments that you give when you
call the reader() or writer() functions, e.g. if data is a file object for a CSV file that has
been opened for writing, and the CSV file uses the tab character (‘\t’) as its delimiter, you would
call the writer() function like this:

writer(data, delimiter='\t')

Similarly, if you had a file object for a CSV file that was opened for reading in data, and that
CSV file used a space as its delimiter, and you wanted to ignore any extra spaces between fields,
you would call the reader() function like this:

reader(data, delimiter=' ', skipinitialspace=True)

80

80

"Joe Bloggs", blue, 27.8
"Jill East", brown, 28.9

"
quotechar = '"'
quotechar is a string
that specifies the
character to be used
for quoting.
Default value: '"'

Fred Smith", red, 56.9

Formatting options for CSV files

The quoting parameter controls when things
should be quoted.
The default is to only quote fields that contain
special characters (the delimiter, etc).

The quotechar parameter specifies the character to be used for quoting. It is a
one-character string and defaults to the double quote character ('"').

It is another optional parameter that you can specify when you call the reader()
or writer() function. For example, if data is a file object for a CSV file that
has been opened for writing, and you want to use the single quote (') character for
quoting, you would call the writer() function like this:

writer(data, quotechar="'")

When things are quoted is controlled by the optional quoting parameter. The
default value for this tells Python only to quote a field when the data in that field
contains a special character, such as the delimiter. We’ll look at the values the
quoting parameter can take next.

81

81

"Joe Bloggs", "blue", 27.8
"Jill East", "brown", 28.9

"

Controlling quoting in CSV files

Fred Smith", "red", 56.9

"Fred Smith", "red", "56.9"
"Joe Bloggs", "blue", "27.8"
"Jill East", "brown", "28.9"

quoting = csv.QUOTE_ALL

quoting = csv.QUOTE_NONNUMERIC

"Bloggs, Joe", blue, 27.8
"East, Jill", brown, 28.9

"Smith, Fred", red, 56.9

quoting = csv.QUOTE_MINIMAL

default behaviour

The quoting parameter can take one of four values. These values are special constants that are
defined in the csv module. This means that to use one of these special values we have to prefix it
by “csv.” so that Python knows where to find it. The four values (and their meanings) are:

QUOTE_ALL Makes writer objects quote all fields.

QUOTE_MINIMAL Makes writer objects only quote those fields which contain special
characters in the data, such as the delimiter.

QUOTE_NONNUMERIC Makes writer objects quote all non-numeric fields (i.e. fields whose
data cannot be represented as a number). Makes reader objects
convert all non-quoted fields to floats.

QUOTE_NONE Makes writer objects never quote fields. If the field contains a
special character, then the writer object will try to escape it. For
further details on this behaviour see the QUOTE_NONE entry in the csv
module’s documentation:

http://docs.python.org/library/csv.html#csv-contents
QUOTE_NONE makes reader objects do no special processing of
quote characters, i.e. any quote characters will be treated as part of the
data in the field.

For example, if data is a file object for a CSV file that has been opened for writing, and you
want all text fields (i.e. all non-numeric fields) to be quoted, you would call the writer()
function like this:

writer(data, quoting=csv.QUOTE_NONNUMERIC)

82

82

Any questions?

If there are any questions about what I have said today I'll (try to) answer them now.
There will be another opportunity to ask questions at the start of the next day.

