
1

1

Python: Further Topics

Bruce Beckles
University of Cambridge Computing Service

Day Two

Note that this course covers Python 2.4 to 2.7, which are the most common versions
currently in use – it does NOT cover the recently released Python 3.0 (or 3.1) since
that version of Python is so new. Python 3.0 is significantly different to previous
versions of Python, and this course will be updated to cover it as it becomes more
widely used.

The official UCS e-mail address for all scientific computing support queries,
including any questions about this course, is:

scientific-computing@ucs.cam.ac.uk

2

2

Introduction
● Who:

– Bruce Beckles, e-Science Specialist, UCS
● What:

– Python: Further Topics course, Day Two
– Part of the Scientific Computing series of courses

● Contact (questions, etc):
– scientific-computing@ucs.cam.ac.uk

● Health & Safety, etc:
– Fire exits

• Please switch off mobile phones!

As this course is part of the Scientific Computing series of courses run by
the Computing Service, all the examples that we discuss will be more
relevant to scientific computing than to other programming tasks.
This does not mean that people who wish to learn about Python for other
purposes will get nothing from this course, as the techniques and
underlying knowledge taught are generally applicable. However, such
individuals should be aware that this course was not designed with them
in mind.

Note that there are various versions of Python in use, the most common of
which are releases of Python 2.2, 2.3, 2.4, 2.5 and 2.6. (The material in
this course is applicable to versions of Python in the 2.4 to 2.7 releases.)

On December 3rd, 2008, Python 3.0 was released. Python 3.0 is
significantly different to previous versions of Python, is not covered by
this course, and breaks backward compatibility with previous Python
versions in a number of ways. As Python 3.0 and 3.1 become more widely
used, this course will be updated to cover them.

3

3

Related/Follow-on courses
“Python: Operating System Access”:

– Accessing the underlying operating system (OS)
– Standard input, standard output, environment variables, etc

“Python: Regular Expressions”:
– Using regular expressions in Python

“Programming Concepts: Pattern Matching Using Regular Expressions”:
– Understanding and constructing regular expressions

“Python: Checkpointing”:
– More robust Python programs that can save their current state and

restart from that saved state at a later date
– “Python: Further Topics” is a pre-requisite for the “Python:

Checkpointing” course

“Introduction to Gnuplot”:
– Using gnuplot to create graphical output from data

For details of the “Python: Operating System Access” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonopsys

For details of the “Python: Regular Expressions” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonregexp

For details of the “Programming Concepts: Pattern Matching Using Regular Expressions”
course, see:

http://www.training.cam.ac.uk/ucs/course/ucs-regex

If you are unfamiliar with regular expressions, the following Wikipedia article gives an overview of them:
http://en.wikipedia.org/wiki/Regular_expression

…although that article does not express itself as simply as it might, so it may be most useful for the
references it gives at the end. If you have met regular expressions before, but haven't yet used them in
Python, then the “Python: Regular Expressions” course will teach you how to use them in Python.
Alternatively, the Python “Regular Expression HOWTO” introductory tutorial also provides a good
introduction to using regular expressions in Python:

http://docs.python.org/howto/regex

For details of the “Python: Checkpointing” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonchckpt

For the notes of the “Introduction to Gnuplot” course, see:
http://www-uxsup.csx.cam.ac.uk/courses/Gnuplot/

If you are unfamiliar with gnuplot, you may wish to have a look at its home page:
http://www.gnuplot.info/

4

4

Pre-requisites
● Ability to use a text editor under Unix/Linux:

– Try gedit if you aren’t familiar with any other Unix/Linux text
editors

● Basic familiarity with the Python language (as would
be obtained from the “Python: Introduction for
Absolute Beginners” or “Python: Introduction for
Programmers” course):
– Interactive and batch use of Python
– Basic concepts: variables, flow of control, functions,

Python’s use of indentation
– Simple data manipulation
– Simple file I/O (reading and writing to files)
– Structuring programs (using functions, modules, etc)

For details of the “Python: Introduction for Absolute Beginners” course,
see:

http://www.training.cam.ac.uk/ucs/course/ucs-python

For details of the “Python: Introduction for Programmers” course, see:
http://www.training.cam.ac.uk/ucs/course/ucs-python4progs

5

5

Start a shell

● Click to add an outline

6

6

Screenshot of newly started shell

● Click to add an outline

7

7

Recap: previous day
● File I/O:

–Reading and writing files
–Using the csv module to
access structured text files

● Exception handling

On the previous day of the course, we’re examined two aspects of file I/O (input and
output) in Python. In each of those areas we started off with a quick recap of the
basics (as was covered in the “Python: Introduction for Absolute Beginners” and
“Python: Introduction for Programmers” courses). We first looked at access to files
and, after covering the basics, moved on to more advanced topics.
In the course of doing this we also looked at exception handling – which is how one
copes with errors in Python – principally in the context of file I/O, but we also
looked at exception handlers in other contexts, and how we could use them to make
more robust functions.
Finally, we had a quick look at how we could use the csv module to access certain
sorts of structured text files.

8

8

Any questions?

If there are any questions about what I have said on the previous day of the course
I'll (try to) answer them now. There will be another opportunity to ask questions at
the end of today.

9

9

Working with modules and functions
>>> import utils
>>> reload(utils)
<module 'utils' from 'utils.pyc'>

dir() displays all the names defined within
a module (or indeed in any type of object).

reload() reloads an already loaded module
from the file containing the module.

callable() tells us whether
or not we can call something.

>>> dir(utils)
['__builtins__', '__doc__', '__file__', '__name__', 'dict2file', 'file2dict',
'find_root', 'greet', 'print_and_return', 'print_dict', 'reverse']

>>> callable(utils.file2dict)
True
>>> callable(utils.__doc__)
False

We already know how to load a module in Python using the import statement. We’ve also seen
that if we make changes to the module we need to reload it by using the reload() function. If
we try to import the module again, Python will not do anything since it knows it has already loaded
(imported) the module. We have to explicitly tell it to reload() it.

How can we find out what functions are defined in a module? This is unfortunately not
straightforward, although we can easily find out all the names that are defined in the module using
the dir() function. These names will not be just the functions defined in the module though,
they will be a mixture of any variables defined in the module, any functions defined in the module
and also some special things created by Python (such as __doc__ which contains the module’s
doc string). The special things created by Python will always be called something like __name__,
i.e. they will be prefixed and followed by two underscore (_) characters. In general you disregard
these, apart from the doc string (__doc__) which should contain useful information about the
module.

Note that we can use the dir() function not just on modules, but on any object and it will tell us
all the names that are defined within that object. (In case you were wondering, everything in
Python is an object: modules, functions, variables, everything. What do we mean by “object”
here? Basically it’s a programming jargon term for a special sort of structure that can have both
variables and functions defined within it.)

So how can we tell whether one of those names is a function or not? Well, we could try using the
name as a function and seeing what happened, but that would quickly get tedious (as well as
possibly giving false negatives). There’s a better way: use the callable() function. The
callable() function tells us whether a given name is callable, i.e. whether we can call it, i.e. if
we can use it as a function. (However, you should be aware that there are pathological
circumstances in which the callable() function will tell us that something is callable even
when a call to it would fail; however, the converse (telling us something isn’t callable when it is)
should never happen.)

10

10

>>> a = 1 >>> a = 1
>>> a += 1 >>> a = a + 1
>>> a >>> a
2 2

>>> a -= 1 >>> a = a - 1
>>> a >>> a
1 1

>>> a *= 4 >>> a = a * 4
>>> a >>> a
4 4

Similarly, we can
also use the
following for…
division: /=
exponentiation: **=
remainder: %=

Augmented assignment

When we use the forms +=, -=, *=, /=, **= and %= we are doing what is known
as augmented assignment. Basically, this is a combination of an operation (+, -, *,
/, ** or % respectively) and an assignment (assigning the result of that operation to
a variable). You can also think of it as “assignment in place” because Python will
attempt to update the variable’s value rather than creating a temporary value and
then “pointing” the variable at that new value (which is what it does when we give
it something like a = a + 1).

11

11

variables

int1 int1

+

variables

int2stringa

stringa

>>> a = a + 1

These values are
held in different
memory locations

Variable is re-assigned to “point” at the answer,
which is in a different part of memory

When you tell Python to do something like:
a = a + 1

what it does is look up the value of a, then adds 1 to that value and stores the
answer in a different memory location. It then updates a to “point” to that new
memory location and releases the memory that stored the previous value of a.

12

12

variables

int1 int1

+
int2

stringa

>>> a += 1 value is updated to 2
(in same memory location)

However, when you tell Python to do an augmented assignment, such as:
a += 1

what it does is look up the value of a, then adds 1 to that value and stores the
answer in the same memory location (if it can), i.e. it updates a “in place”.

13

13

>>> import utils

>>> a = utils.print_and_return(1)
1

>>> 0 <
1

>>> a
1

Comparisons and conjunctions

1
True

utils.print_and_return(1) and utils.print_and_return(1) < 3

>>> 0 <
1
True

utils.print_and_return(1) < 3

print_and_return()
function evaluated
twice

…same truth value
but function only
evaluated once

We’ve already met the and conjunction for joining two comparisons together.
However, there is a more compact way of doing something similar for the special
case where we are doing something like:

a compare b and b compare c
(where “compare” stands for any comparison operator, such as “<” or “>”; note that
the comparison operators used to compare a to b and b to c do not have to be the
same). In this particular case, we can just drop the “and”, thus:

a compare b compare c
e.g. a < b < c, or even a < b >= c.

However, there is one important thing to note: in this more compact form, b is only
evaluated once, whilst in “a compare b and b compare c”, b may be evaluated
twice. We can easily see this if b is a function that has some side-effect (such as
printing something on the screen) as in the slide above.

(The print_and_return() function is not a standard Python function. It was
specially created for this course to illustrate this particular point. You will find it in
the utils module in your course home directory. It just prints whatever
argument it has been given and then returns that argument.)

14

14

>>> list1 = [1, 2, 3, 4]

>>> list1[2] = 7

>>> list2 = list1

[1, 2, 3, 4]

How not to copy a list

Is list2 a copy of list1,
or does it refer to the same
list as list1?

list1 and list2
refer to the same list

>>> list2

>>> list1
[1, 2, 7, 4]

>>> list2

[1, 2, 7, 4]

If we’ve assigned a list to a variable (say a variable called list1) and we want to make a
copy of that list (and assign that copy to another variable, say a variable called list2), we
might be tempted to do something like this:

list2 = list1
Unfortunately this does not work in the way we might expect!

What happens is that both list1 and list2 now refer to the same list in the computer’s
memory. Changing list1 will affect list2 (and vice-versa), since they are both actually
the same list. When we “copy” a list like this, we don’t actually copy it at all, we just create a
new variable that “points” to the same list that we had before. (This is sometimes called a
“shallow copy”.)

We can see that this is the case if we use the id() function. This function returns a constant,
unique reference (an “identity”) for each unique object that has been created. If two variables
refer to the same object, then the id() function will return the same reference for both
variables. (The reference will be an integer or long integer – what the id() function actually
returns is the memory address at which the object is stored.) If you’ve typed in the Python on
the slide above, you can try this function on list1 and see what it returns:
>>> id(list1)

and then on list2:
>>> id(list2)

You should find that id() returns the same value for both these variables (whatever that value
might happen to be).

So how can we make a real copy of a list?…

15

15

>>> list1 = [1, 2, 3, 4]

>>> list1[2] = 7

>>> list2 = list1[:]

[1, 2, 3, 4]

Using list slices: copying a list
Same question: Is list2
a copy of list1, or does
it refer to the same list as
list1?

list1 and list2 refer
to different lists: list2
was a “genuine” copy
of list1

>>> list2

>>> list1
[1, 2, 7, 4]

>>> list2

[1, 2, 3, 4]

Recall that list1[:] gives us a “slice” of the
list that is the entire list (since we have not
specified any indices).

Recall how we can get sections of a list: list slices. If list1 is a list, we can get a “slice” of
it using the syntax list1[i:j], where i and j are indices of the list. list1[i:j] will
give us all the items in the list from the item whose index is i up to and including the item
whose index is j-1. We can exclude either or both of the indices in the slice; if we exclude
both indices (so list1[:]) then the slice we get is the entire list.

In fact, that slice is a copy of the entire list. A real, genuine, honest-to-goodness copy that is a
different list (with the same values in the same order), stored in a different memory location.
(This is sometimes called a “deep copy”.)

Again, we can see that this is the case using the id() function. If you’ve typed in the Python
on the slide above, you can try this function on list1 and see what it returns:
>>> id(list1)

and then on list2:
>>> id(list2)

You should find that id() returns different values for each variable (whatever those values
might happen to be). That means that they refer to different objects in memory (which may or
may not happen to have the same value).

16

16

>>> data = [41, 2, 3, , 5, 6, 7, 8]

0 1 2 3 4 5 6 7

>>> data[16, 17]
>>> data
[41, 2, 16, 17 , , 5, 6, 7, 8]

] = [2:2

Using list slices: insert

Items are inserted
into the list before
the item whose index
is given

3,

Note that the items we are inserting have to come from a list, and we can insert as many (or as
few) items as we like.

You may wonder why the insertion is before the given index rather than after it. Recall that a
slice starts from the lower index and goes up to just before (one less than) the higher index. So
the slice i:i at first glance seems nonsensical because it would have to start at item i and stop
just before item i. So Python interprets this as being “the empty space just before item i”,
which does not actually contain a value, so that, for any list the slice i:i will evaluate to the
empty list, e.g.
>>> data = [1, 2, 3, 4, 5, 6, 7, 8]
>>> data[2:2]
[]

You can also insert a single item into a list using the insert() method of the list, which
inserts a single item at the given index, e.g.
>>> data = [1, 2, 3, 4, 5, 6, 7, 8]
>>> data.insert(2,16)
>>> data
[1, 2, 16, 3, 4, 5, 6, 7, 8]

17

17

>>> data = [41, 2, 3, , 5, 6, 7, 8]

0 1 2 3 4 5 6 7

>>> data[24, 32, 17]
>>> data
[41, 2, 24, 32, 17, , 5, 6, 7, 8]

] = [2:3

Using list slices: replace (and insert)

Items are inserted
into the list replacing
the selected slice

As mentioned earlier, the items we are inserting have to come from a list, and we
can replace the slice with as many (or as few) items as we like. Thus, if the slice
we’re replacing is not the empty list ([]), as it was in the previous example, then
we will actually be “inserting and replacing” rather than just inserting…

18

18

>>> data = [1, 2, 3, 4, 5, 6, 7, 8]

0 1 2 3 4 5 6 7

>>> data[
>>> data
[1, 2, 6, 7, 8]

] = 2:5

Using list slices: deletion

[]

Selected slice is deleted

empty list

…which means that if we replace the slice with no items, i.e. the empty list ([]),
then we’ll actually delete the slice.

For comparison, remember that you can also delete a single item from a list using
the list’s remove() method. This method removes the first matching item in a list
(wherever that item might be), e.g.
>>> data = [1, 2, 3, 2, 8]
>>> data.remove(2)
>>> data
[1, 3, 2, 8]

There’s also another way you can delete items from a list: using the del operator.
This operator can either delete a single item from a list, or an entire slice. del
list[i] removes the item whose index is i from the list, whilst del
list[i:j] removes the slice i:j from the list, e.g.
>>> data = [1, 2, 3, 2, 8]
>>> del data[2]
>>> data
[1, 2, 2, 8]
>>> del data[0:2]
[2, 8]

19

19

>>> data = [41, 2, 3, , 5, 6, 7, 8]

0 1 2 3 4 5 6 7

>>> data[
[1, , 5, 7]

]0:7:2

List slices: selecting part of a slice

Every 2nd item is selected,
starting from item 0 and
stopping at or before item 6

3

This may seem slightly odd until you get used to it. The way to think of it is that the slice
i:j:k (which you can read as “the slice i:j in steps of size k”) gives you the following items
from the slice i:j –

item i
item i + k
item i + 2*k
item i + 3*k
item i + 4*k

…and so on, up to (but not including) item j, i.e. (for the mathematically inclined) we stop at
i + n*k, where

i + n*k < j ≤ i + (n+1)*k

Having selected part of a slice in this way, you can replace the items you’ve selected in a
similar manner to the way in which we’ve seen we can replace an ordinary slice of a list, i.e.
we set the selected part of the slice equal to another list of items. There is one restriction,
though: we must replace this part of a slice with exactly the same number of items, e.g.
>>> data = [1, 2, 3, 4, 5, 6, 7, 8]
>>> data[0:7:2] = [3, 9, 15, 21]
>>> data
[3, 2, 9, 4, 15, 6, 21, 8]

This restriction means that we can’t remove these sorts of parts of a slice by setting them
equal to the empty list ([]), as we can with normal slices. Oh, well, you can’t have
everything.

20

20

>>> data = [1, 2, 3]

>>> data

List repetition

* 3
[1,2, ,]3

multiplication
operator: *1,2, ,3 1,2, 3

>>> data * 0
[]

>>> data * -5
[]

“multiplying” by 0 gives
the empty list

“multiplying” by a negative integer
also gives the empty list

If we “multiply” a list by an integer (either a normal integer or a long integer) we
will get list repetition: a new list is generated which consists of the original list
repeated the specified number of times. If we “multiply” a list by a negative integer
or by zero, then we get the empty list ([]).

Note that we can’t “multiply” a list by a floating point number or a complex
number.

21

21

Evaluate the following Python statements
in your head. What are the items in the
list primes after each statement?

Now try them interactively in Python and see if
you were correct.

>>> primes[2:2] = [5] * 3

>>> primes[0::3] = [1, 6, 16]

>>> primes[0::4] = [2, 11]

>>> primes = [2, 3, 5, 7, 11, 13, 17, 19]

>>> primes[3::3] = [7, 17]

>>> del primes[2:5]

If you run into problems with this exercise, or if you don’t understand any of the Python on the
slide above, please ask the course giver or a demonstrator for help.

When you’ve finished take a short break of a minute or two – that means stop staring at the
computer screen and move around, relax, etc.

(Note: If you’ve done it correctly, you should find that the items in primes when you’ve
finished are the same (and in the same order) as when you first assigned a list to primes.)

22

22

>>> x = [[0, 0]] * 2

>>> x

When not to use list repetition

[[0, 0], [0, 0]]

>>> x[0][0] = 1
>>> x
[[1, 0], [1, 0]]

probably not what we wanted
to happen…

List repetition works fine if the list consists of
simple data types (integers, floats, complexes,
etc.) but with more complicated types (e.g. a
list of lists) the new list contains “shallow
copies” of the repeated item(s).

And now a very important “gotcha”: list repetition, used in the wrong circumstances, will not
behave the way we might expect.

If we use list repetition on a list of lists, then the new list consists of a set of “shallow copies”
of the repeated items, as we see on the slide above. Thus, in the example above, instead of
having a list of two items, each of which is a distinct list (that just happen to have the same
values in the same order when we first set them up), we have a list of two items, each of which
is the same list, c.f. what happened earlier when we tried to copy a list without using slices.

(Note that we get this wrong-headed behaviour whenever we use list repetition on a list whose
items are themselves complicated types, such as lists or dictionaries.)

You may be wondering why we would want to have a list of lists like the one we want to create on the slide
above. Such lists are often used as matrices. Since Python doesn’t have a built-in matrix type, people often use
a list of lists instead. So, on the slide above, x (if it behaved properly) could represent a 2×2 matrix. Similarly,
the 4×4 identity matrix might be represented by the following list:
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

If you are going to do serious matrix work in Python, though, you are better off using the NumPy module. This
is not a standard Python module, but is freely available from:

http://www.scipy.org/Download
For documentation on the NumPy module, see:

http://docs.scipy.org/
Using matrices in Python and basic use of the NumPy module are covered in the “Python: Interoperation with
Fortran” course. For details of this course, see:

http://www.training.cam.ac.uk/ucs/course/ucs-pythonfort

So how can we do something like list repetition for a list of lists? Well, first we need to know
a little more Python…

23

23

>>> data = [41, 2, 3, , 5, 6, 7, 8]

>>> x = [

List comprehension

for loop over list

3 * d for d in data]
>>> x
[123, 6, , ,15,18, 21, 24]9

Operation or function
on each item in list

The Python technique we need is called list comprehension.

List comprehension is a handy technique for quickly creating one list from another.
Basically, you specify an operation or function to be carried out on each item in an
existing list. Python will then construct a new list for you whose items are the
results of carrying out the specified operation or function on the items (in order) in
the old list.

Note that the old list doesn’t, in fact, have to be a list at all: anything that you can
legitimately treat as a list for the purposes of a for loop (a dictionary, a file
object, etc) can be used.

24

24

>>> x = [[0, 0] for d in range(0,2)]

>>> x

List comprehensions to repeat a list

[[0, 0], [0, 0]]

>>> x[0][0] = 1
>>> x
[[1, 0], [0, 0]]

Yay! It works!

To repeat a list of lists (or other complicated
data types), don’t use list repetition, use a
list comprehension instead.

So now we can sensibly repeat a list of lists (or other complicated data types).

As we see above, the “operation” that we carry out in our list comprehension can in
fact be a constant value (which can be of any type: integers, floats, even lists (as
above)) – this will create a new list, each of whose items is a copy (a “deep copy”)
of the specified value.

(Recall that the range() function gives me a list of integers from the first integer
to one less than the second integer, so range(0,2) = [0, 1].)

25

25

>>> data = [41, 2, 3, , 5, 6, 7, 8]

>>> [

More list comprehensions

for loop over list

3 * d for d in data
[123, 6, , ,15]9

Operation or function
on each item in list

 if d < 6]
if clause on for
loop variable…

>>> [3 * d for d in data
[126,]

 if d < 6]

…as many if clauses
as you want…

 if (d % 2) == 0

List comprehensions are even more versatile than you might at first imagine – as
well as looping over an existing list, we can also add one or more if clauses to our
list comprehension to further limit the items from the original list upon which we
want our operation or function to act.

So the list comprehension
[3 * d for d in data if d < 6]

should be read as something like “for each item in the list data whose value is
less than 6, multiply 3 by that item and add it to our new list”.

And the list comprehension
[3 * d for d in data if d < 6 if (d % 2) == 0]

should be read as something like “for each item in the list data whose value is
less than 6, if that item is divisible by 2, multiply 3 by that item and add it to our
new list”.
Recall that for integers % means “the (non-negative) remainder when divided by”
(usually read as “mod”, short for “modulo”), so the expression “d % 2” is only
equal to 0 if d is even. (We don’t actually need the brackets around the “d % 2” in
the if clause, I’ve just put them in there for clarity.)

26

26

>>> data = [41, 2, 3, , 5, 6, 7, 8]

>>> x = [

Yet more list comprehensions

for loop

p for d in data

]

Operation or function
on each item in a list

 if d < 4

if clause

 for p in range(0, d)]

[0, 0, ,1 0,1, 2
>>> x

Another for loop

In fact, they are quite impressively versatile – as well as adding one or more if clauses to our
list comprehension, we can also add one or more additional for loops. So, the general form
of a list comprehension is:
[“function or operation” “for loop” “zero or more if clauses and/or for loops”]

So the list comprehension
[p for d in data if d < 4 for p in range(0,d)]

should be read as something like “for each item in the list data whose value is less than 4,
loop over the temporary list range(0, item), adding each item from this temporary list to our
new list”.

I.e. the following line of Python:
x = [p for d in data if d < 4 for p in range(0,d)]

is equivalent to:
x = []
for d in data:

if d < 4:
for p in range(0,d):

x.append(p)

(Recall that the range() function gives me a list of integers from the first integer to one less
than the second integer, so, for example, range(0,3) = [0, 1, 2].)

27

27

Evaluate the following Python statements
in your head. primes is defined as:
primes = [2, 3, 5, 7, 11, 13, 17, 19]

Now try them interactively in Python and see if
you were correct.

>>> [93 % p for p in primes if 93 % p != 0]

>>> [p for p in primes if p % 3 > 0]

>>> [5 ** p for p in primes if p % 4 == 0]

>>> [8 / p for p in primes]

>>> [2 * x for p in primes[0::2] for x in range(p-1,p+2)]

>>> [[0,0,0] for x in range(2,5)]

If you run into problems with this exercise, or if you don’t understand any of the Python on the
slide above, please ask the course giver or a demonstrator for help.

Recall that:
● For integers, a % b means “the (non-negative) remainder when a is divided by b” (usually

read as “a mod b”, “mod” being short for “modulo”); and
● The range() function gives me a list of integers from the first integer to one less than the

second integer, so range(6,9) = [6, 7, 8].

When you’ve finished take a short break of one or two minutes – remember that, in this
context, “break” means “break from using the computer”.

28

28

>>> dict1 = {'H':1, 'He':2}

>>> dict1['H'] = 1.0079

>>> dict2 = dict1

{'H': 1, 'He': 2}

How not to copy a dictionary

Is dict2 a copy of dict1,
or does it refer to the same
dictionary as dict1?

dict1 and dict2
refer to the same dictionary

>>> dict2

>>> dict1
{'H': 1.0079, 'He': 2}

>>> dict2

{'H': 1.0079, 'He': 2}

We’ve seen how we can “properly” copy a list. What about if we want to copy a dictionary?
If we’ve assigned a dictionary to a variable (say a variable called dict1) and we want to make
a copy of that dictionary (and assign that copy to another variable, say a variable called
dict2), we might be tempted to do something like this:

dict2 = dict1
Unfortunately, as with lists, this does not work in the way we might expect!

What happens is that both dict1 and dict2 now refer to the same dictionary in the
computer’s memory. Changing dict1 will affect dict2 (and vice-versa), since they are both
actually the same dictionary. When we “copy” a dictionary like this, we don’t actually copy it
at all, we just create a new variable that “points” to the same dictionary that we had before.
(This is sometimes called a “shallow copy”.)

Again, we can see that this is the case if we use the id() function. If you’ve typed in the
Python on the slide above, you can try the id() function on dict1 and see what it returns:
>>> id(dict1)

and then on dict2:
>>> id(dict2)

You should find that id() returns the same value for both these variables (whatever that value
might happen to be).

So how can we make a real copy of a dictionary?…

29

29

>>> dict1 = {'H':1, 'He':2}

>>> dict1['H'] = 1.0079

>>> dict2 = dict1.copy()

{'H': 1, 'He': 2}

How to copy a dictionary
Same question: Is dict2
a copy of dict1, or does
it refer to the same
dictionary as dict1?

dict1 and dict2 refer
to different dictionaries:
dict2 was a “genuine”
copy of dict1

>>> dict2

>>> dict1
{'H': 1.0079, 'He': 2}

>>> dict2

{'H': 1, 'He': 2}

…Well, fortunately, dictionaries provide a method, the copy() method, that allows us to do
just that: create a real, genuine, honest-to-goodness copy that is a different dictionary (with the
same key/value pairs), stored in a different memory location. (This is sometimes called a “deep
copy”.) As copy() is a method of dictionaries, we can use it on any dictionary – it returns a
copy of the dictionary:
>>> {'H':1, 'He':2}.copy()
{'H': 1, 'He': 2}

Again, we can see that this is the case using the id() function. If you’ve typed in the Python
on the slide above, you can try the id() function on dict1 and see what it returns:
>>> id(dict1)

and then on dict2:
>>> id(dict2)

You should find that id() returns different values for each variable (whatever those values
might happen to be). That means that they refer to different objects in memory (which may or
may not happen to have the same value).

30

30

>>> data = [18, 4, 3, , 5, 6, 7, 2]

>>> data.

Sorting lists

…instead the list is sorted

sort()

>>> data
[41, 2, , , 5, 6, 7, 8]3

sort() method:
sorts a list “in place”

>>> data.
list sorted in
reverse order

sort(
>>> data
[58, 7, , , 4, 3, 2, 1]6

To reverse the sort order
use reverse=True

reverse=True)

Note no value returned

Another method that lists possess is the sort() method. This sorts a list “in
place”.

This method also provides a quick way to reverse the sort order: call the sort()
method setting the reverse named argument to the Boolean True (i.e. call the
method using sort(reverse=True) rather than just sort()). Note that the
reverse named argument was introduced in Python 2.4, so you can’t use it in
earlier versions of Python.

Note that lists also have a reverse() method that does not do a reverse sort of
the list, but rather reverses (“in place”) the order of the items in the list:
>>> data = [8, 4, 3, 1, 5, 6, 7, 2]
>>> data.reverse()
>>> data
[2, 7, 6, 5, 1, 3, 4, 8]

(Obviously, this means you could also do a reverse sort of a list by calling the
sort() method immediately followed by the reverse() method, but it is easier
and much more efficient to just call the sort() method with reverse=True.)

The sort() method also allows you to define your own sort order for sorting a
list – you do this by using defining a comparison function and giving that function
to the sort() method as an argument. For further details see the Python Library
Reference sub-section on “Mutable Sequence Types”:

http://docs.python.org/library/stdtypes.html#typesseq-mutable

31

31

Exercise
Write a function that takes a dictionary and prints
out its values in ascending order.
Dictionary → values in ascending order

{'Ar': 39.95, 1.0079
 'H': 1.0079, → 14.007
 'N': 14.007} 39.95

…since if we arrange the values of the above
dictionary in ascending order, they look like this:
1.0079, 14.007, 39.95

So if the function took as its input the dictionary:
{'Ar': 39.95, 'H': 1.0079, 'N': 14.007}

it would produce the output:
1.0079
14.007
39.95

If you run into problems with this exercise, ask the course giver or a demonstrator for
help.

(An answer is given on the page after next.)

Hint: Recall that if x is a dictionary then x.keys() gives you a list of the dictionary’s keys (in a might as well be
random order) whilst x.values() gives you a list of the values in the dictionary (also in a (possibly different) might as
well be random order).

32

32

Exercise redux
Write a function that takes a dictionary and prints
out its values in descending order of the
corresponding keys.
Dictionary → values in descending order of keys

{'H': 1.0079, 14.007
 'N': 14.007, → 1.0079
 'Ar': 39.95} 39.95

…since if we arrange the keys of the above
dictionary in descending order, they look like this:
'N', 'H', 'Ar'

So if the function took as its input the dictionary:
{'H': 1.0079, 'N': 14.007, 'Ar': 39.95}

it would produce the output:
14.007
1.0079
39.95

If you run into problems with this exercise, ask the course giver or a demonstrator for
help.

After this exercise take at least a 5 or 10 minute break. Remember that this means you
should stop using the computer, and move around, exercise your arms, wrists, neck,
etc.

(An answer is given to this exercise on the page after next.)

Hint: Recall that if x is a dictionary then x.keys() gives you a list of the dictionary’s keys (in a might as well be
random order) whilst x.values() gives you a list of the values in the dictionary (also in a (possibly different) might as
well be random order).

33

33

Answer to Exercise

for value in sorted_values:

print value

def print_dict_values_sorted(dict):

sorted_values = dict.values()

sorted_values.sort()

Here is a solution to the first exercise that you were to attempt over the break.

If there is anything in the solution that you do not understand, or if your solution
looks utterly different from that shown above, please tell the course giver or
demonstrator.

34

34

Answer to Exercise redux

for key in ordered_keys:

print dict[key]

def print_dict_values_sorted_by_reverse_keys(dict):

ordered_keys = dict.keys()

ordered_keys.sort(reverse=True)

Here is a solution to the second exercise that you were to attempt over the break.

If there is anything in the solution that you do not understand, or if your solution
looks utterly different from that shown above, please tell the course giver or
demonstrator.

35

35

Temporary files
Temporary files: a great way
to accidentally give access to
your system to someone who
shouldn’t have it.

We’re going to briefly return now to file I/O to look at one particular aspect of it:
temporary files.

Often we need a file to write some data to for a short period of time, which we will
then delete. We might need to do this because we need to pass some intermediate
data to another program for processing but we don’t want to keep that intermediate
data.

Some of you may think: “but I already know how to create a file, why don’t I just
create a temporary file myself?”. In general, that’s an extremely bad idea – on a
multi-user system it is very difficult to securely create a temporary file, and very
easy to insecurely create one, which, over the years, has led to any number of
security holes in systems that have allowed unauthorised people to get access to the
system.

Fortunately, there are a number of functions that have been provided which do this
for us in a safe, secure manner. We’ll look at two of them now.

36

36

>>> data = NamedTemporaryFile()

>>> import tempfile

tempfile.

tempfile module

NamedTemporaryFile()
function: securely creates a
temporary file

file-like object

NamedTemporaryFile()

The NamedTemporaryFile() function (which lives in the tempfile module) will
securely create a temporary file for us, which it will delete when we close the file. It returns
a file-like object (“like” as in it has all the familiar properties and methods of file
objects, but it is actually a different type of object). This function was introduced in Python
2.3, so you can’t use it in earlier versions of Python.

The temporary file is opened in binary mode, and also is opened for both reading and writing
(this is a a new mode we haven’t yet met, which is specified by using 'w+b' – 'w+'
specifies the file should be opened for both reading and writing, the 'b' on the end
specifies it should be opened in binary mode). Note that if the file already exists, opening it
in 'w+' mode will remove its contents (just as opening it in ordinary 'w' mode does).
Since this is a temporary file specially created for us this doesn’t matter.
If, however, you want the temporary file opened in a different mode, then you can specify a
mode to the NamedTemporaryFile() function, like this:

tempfile.NamedTemporaryFile(mode='w')
which would create a temporary file for writing (in text mode).

Note that NamedTemporaryFile() will delete the temporary file when we close it.

37

37

>>> data = NamedTemporaryFile()
>>> import tempfile

tempfile.

>>> name name attribute
holds the file’s name'/tmp/tmpXI3Yj7'

>>> data.close()

File is deleted on close()

NamedTemporaryFile()

data.

The name of the temporary file, in case this is of interest, lives in the name attribute of
the file‑like object created by the NamedTemporaryFile() function.

Now, NamedTemporaryFile() will delete the temporary file when we close it, which
might not be what we want if, for instance, we want to create a temporary file to pass to
another program. So how can we securely create a temporary file without having it
automatically deleted?…

(Note that if you try the Python commands above, you will almost certainly get a
completely different file name for the temporary file.)

(Finally, note that, starting with Python 2.6, NamedTemporaryFile() has a named
argument, delete, that you can set to False when calling
NamedTemporaryFile() if you do not want the temporary file to be deleted when it
is closed, like this:

tempfile.NamedTemporaryFile(delete=False)
Unfortunately, this functionality does not exist in versions of Python prior to Python 2.6,
so you can’t do this if you are using a version of Python earlier than 2.6.)

38

38

>>> = mkstemp()

>>> import tempfile

tempfile.

mkstemp() function:
securely creates a
temporary file

OS file handle to
the opened file

fhandle(, fname)

Name (and full path)
of the temporary file

mkstemp()

The mkstemp() function (which also lives in the tempfile module) will
securely create and open for both reading and writing (in binary mode) a temporary
file for us, but having created it, it leaves it alone. It is up to us to delete it when
we’ve finished using it. The mkstemp() function returns a tuple consisting of a
file handle to the opened file, and the file’s name (and full path), as a string. If you
want mkstemp() to open the file in text mode, set the named argument text to
True when calling mkstemp(), like this:

tempfile.mkstemp(text=True)
(Note that the mkstemp() function was also introduced in Python 2.3, so you
can’t use it in earlier versions of Python.)

The file handle is not a file object, and so does not have all the useful file
object methods. Instead it provides low level operating system (OS) access to the
file, which is not something we wish to use if we can help it. Consequently the best
thing to do with this file handle is use it to create a Python file object, after which
we can forget about it and just use the familiar Python file object methods. How
do we do that…?

39

39

'wb'

>>> = mkstemp()
>>> import tempfile

tempfile.
OS file handle to
the opened file

>>>

fhandle(, fname)

>>> import os
fdopenos. fhandle(),

open file
for writing,
in binary
mode

data =

fdopen() function: creates a file object
from an OS file handle

mkstemp()

To create a Python file object from a file handle we need to use the fdopen()
function that lives in the os module. If we give the os.fdopen() function an open
file handle, it will create a corresponding Python file object for us, created with the
specified mode (if we don’t specify a mode it behaves as though we specified a mode of
'r'). (The mode that we give to os.fdopen() is the same as we would give to the
open() command, except that it must start with an 'r', 'w' or 'a').

The mode we give os.fdopen() must be compatible with the mode which was used
when creating the file handle. So, if tempfile.mkstemp() has opened the file in
binary mode (its default behaviour), then we should tell os.fdopen() to do likewise
(i.e. add a 'b' to the end of the mode we give os.fdopen()). Similarly, if
tempfile.mkstemp() has opened the file in text mode, we should tell
os.fdopen() to do likewise (no 'b').

Once we’ve created a file object for our newly created temporary file, we can get on
with accessing it in the normal Python manner (using the write() method, etc).
Remember to close the file using the file object’s close() method when you’ve
finished using it!

It is only when a file is closed that the writes to it are committed to the file system.

40

40

Saving complex
objects to a file
Object serializiation:
pickle and cPickle modules

Python has two modules which can be used for what is sometimes called “object serialization”, which is
also known – in the Python world – as “pickling”. This is essentially a way of taking a Python object and
storing it in a compact format (usually on disk). (“Serialization” is also known as “marshalling” or
“flattening”, although Python uses the term “marshalling” in a more specialised manner.)
Python can pickle almost all its basic object types – integers, long integers, floating point numbers,
complex numbers, Booleans, the NoneType, strings, etc – and, more usefully, many of its composite
data types – such as lists, tuples and dictionaries – provided all their individual items are also objects it
can pickle. Thus, if, for example, your dictionary contains only integers, floating point numbers, etc, or
lists or tuples of such objects, then you can pickle it. This provides a very easy way of storing a complex
object like a dictionary or a list of lists without you having to individually write each item the object
contains out to a file. You can find the complete list of objects that can be pickled in the “What can be
pickled and unpickled?” subsection of the pickle module’s documentation:

http://docs.python.org/library/pickle.html

There are two modules which you can use almost interchangeably for pickling – the pickle module and
the cPickle module. Why are there two of them? Well, the cPickle module is implemented in C
and so is much, much faster than the pickle module. However, the pickle module can be extended
using Python’s object oriented framework (not covered in this course). So if you have some special
requirement that can’t be satisfied by the built-in pickle module, you might want to extend it – which
you can’t do with the cPickle module. Most users don’t need to do this though, and so can use the
cPickle module (and gain the benefit of its speed).

Python guarantees that if you use the pickle module to store something, you can load it again using the
cPickle module, and vice-versa. In addition, if you pickle something on one machine, you can load it
again on a different machine, even if that machine is running a different operating system or has a
different version of Python (well, provided the versions of Python aren’t too different).

The pickle and cPickle modules are covered in more detail in the “Python: Checkpointing” course:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonchckpt

41

41

>>> savefile = open('saved', 'w')

Pickling data to a file

>>> chemicals = ['H', 'He', 'B', 'Si']

>>> savefile.close()

>>> import pickle pickle module

chemicals>>> dump()pickle. , savefile

dump() function

file object

Object to be pickled

As previously mentioned, Python can pickle almost all its basic object types – integers, floating
point numbers, strings, etc, and, more usefully, many of its composite data types – such as lists,
tuples and dictionaries – provided all their individual items are also objects it can pickle. Thus, if,
for example, your dictionary contains only integers, floating point numbers, etc, or lists or tuples
of such objects, then you can pickle it.

The basic way of “pickling” data to a file is to use the dump() function. The dump() function
works on file objects, so you need to open the file (for writing) before calling the dump()
function.

As mentioned before, you can use the dump() function from either the pickle or the cPickle
module.

If you give the dump() function something that it cannot pickle, Python will raise a
PicklingError exception (as this exception is defined in the pickle and cPickle
modules, if you wish to handle it you would refer to it as pickle.PicklingError or
cPickle.PicklingError). In rare cases, attempting to pickle a very complex data structure
may cause a RuntimeError exception to be raised.

Remember to close the file to which you are pickling using its close() method when you’ve
finished using it.

It is only when a file is closed that the writes to it are committed to the file system.

You normally only store a single “pickle” of data in a file. If you need to pickle several pieces of
data and store them in the same file, just put all the data into a tuple and pickle the tuple. The
author knows of no good reason to store multiple “pickles” of data in a single file. If, however,
you are absolutely convinced you need to do this, then have a look at the shelve module (one of
the standard Python modules).

42

42

Restoring pickled data

>>> savefile = open('saved')

>>> savefile.close()
>>> print new_chemicals
['H', 'He', 'B', 'Si']

>>> import cPickle cPickle module

>>> load()cPickle. savefile

load() function

file object

new_chemicals =

variable to hold
“unpickled” data

The basic way of restoring pickled data from a file is to use the load() function.
The load() function works on file objects, so you need to open the file (for
reading) before calling the load() function. (Obviously, once you’ve restored the
pickled data, make sure you close the file.)

As mentioned before, you can use the load() function from either the pickle or
the cPickle module.

If the load() function has a problem with unpickling the data, Python will usually
raise an UnpicklingError exception. (Note that as this exception is defined in
the pickle and cPickle modules, if you wish to handle it you would refer to it
as pickle.UnpicklingError or cPickle.UnpicklingError.)
However, there are a number of other exceptions that might be raised instead if
there is a problem unpickling the data depending on exactly what the problem was.
Some of the other exceptions that Python might raise when there is a problem
unpickling data include (but are not limited to) the AttributeError,
EOFError, ImportError or IndexError exceptions.

43

43

Structuring a program for
checkpointing

1. Initialise

2. Check for the existence of a previous
checkpoint:
1. If present, load it

3. Start processing loop:
1. If there’s a checkpoint file, retrieve state from file
2. Process data
3. Save state to checkpoint file

4. Final output

The most common use of pickling is for checkpointing.

Basically, you put all the variables that hold the current state of your program (i.e.
all the variables whose values you would need if you wanted to restart the program
whatever point it has just reached) into a tuple and then pickle that tuple. The file
that contains this pickled data is your checkpoint file.

Each time you have done a certain amount of processing you dump the state of your
program out to a checkpoint file. Then you restore from the checkpoint, i.e. load
the pickled data from the checkpoint file – so you can be sure that the checkpoint
actually did correctly store all the data it should have – and continue.

We examine this process in more detail in the “Python: Checkpointing” course:
http://www.training.cam.ac.uk/ucs/course/ucs-pythonchckpt

44

44

Graphical output
Whilst there are Python modules
that provide graphical capabilities,
they are far too complex to be
covered in this course, and probably
overkill for most scientific computing
anyway, so…

A more useful approach is to use
something like gnuplot or ploticus to
produce the graphical output for you.

There are two basic approaches to using such packages for your graphical output.

The first is to create a file containing the commands that tell the package what to do.
You then save your data in one or more other files and call the package you want to use
giving it the file of commands and the data file(s) as input. (See the next slide for more
details.)

The second is to use – if it exists – a Python module that allows you to (more) directly
interface with the package in question.

Fortunately, there are Python modules for both gnuplot and ploticus (although the
ploticus module is not very sophisticated). These modules have been installed on PWF
Linux, but are not part of standard Python and so may not be on other systems you use.
They are, however freely available from the following sources:

Gnuplot.py:
http://gnuplot-py.sourceforge.net/

Python API for ploticus:
http://www.srcc.lsu.edu/pyploticus.html

In case you are unfamiliar with gnuplot and/or ploticus, you may wish to look at their
home pages:

gnuplot: http://www.gnuplot.info/
ploticus: http://ploticus.sourceforge.net/

45

45

DIY graphical output

1. Obtain (create, load, calculate, etc) the data to
be graphically displayed

2. Write the data to a temporary file

3. Write the commands for your graphics
package to another temporary file

4. Run your graphics package using the
temporary files you’ve created

If you don’t have the appropriate modules to communicate directly with your
graphics package (or you can’t install them or get them to work), then you can
(probably) still use your graphics package with Python.

First, you get the data you want to graphically display (whether you are calculating
that data, loading it from a file, or whatever).

Next, you write that data to a temporary file in whatever format your graphics
package understands.

Then you write the commands that will control your graphics package to another
temporary file (assuming your graphics package works by reading a file of
commands that tell it what to do: gnuplot and ploticus can both work like this). If
your graphics package doesn’t support working in this way, check its
documentation to see how it can be used to automatically read and plot data from a
file (this is sometimes called “scripting” the package). If it provides no way of
doing this, then you are probably out of luck! – use a more flexible graphics
package.

Finally you run your graphics package, telling it to use the temporary files you’ve
created for its input (the commands that tell it what to do, and the data on which
those commands will operate). We cover how to call other programs from your
Python script (the best way of doing this is to use the subprocess module) in the
“Python: Operating System Access” course:

http://www.training.cam.ac.uk/ucs/course/ucs-pythonopsys

46

46

Any questions?

If there are any questions about anything we’ve covered on either day of this course
then I’ll try to answer them now.

