
 1

Python:
Operating system access

Bob Dowling

escience-support@ucs.cam.ac.uk

Welcome to the “Operating System Access in Python” course.

 2

Our task

Write a script that…

…processes its command line

…navigates the file system

…runs external programs

What do we mean by “operating system access”? In this session we are going to write
a Python script that interacts in the operating system in three particular ways all of
which are fairly common.
We are going to interact with our command line, somewhat more powerfully than we
do elsewhere.
We are going to navigate around the file system.
We are going to launch external program, for those rare times when we can't find a
Python module that does the job!

 3

Our task

Write a script that…

visits directories

reads parameters from a file

reads data from multiple files

writes an output file

dir
1

dir
2

dir
3

dir
4

params.cfg

*.dat

output.dat

The script is going to visit a number of directories, specified on the command line, and
in each is going to run a program using a parameters file as the argument to the
program, combining a number of input files to feed to that program and putting its
output in a file in that directory. The names of the parameters file and output file will be
passed as parameters on the command line as will the wildcard expression for the set
of input files to combine.

 4

The command line

Recall: sys.argv

#!/usr/bin/python

import sys

print sys.argv

./args.py one two$

['./args.py', 'one', 'two']

Let's start with the command line.
Other Python courses have met it in its primitive form; the list sys.argv from the sys
module.

 5

Complex command lines

$./myscript --output=output.dat
--params=params.cfg dir1 dir2 dir3

$./myscript --help

We want to be able to support a script that does something like this: It uses long
format options with support for short forms too and it has proper help support too.

 6

The optparse module

Define valid options

Build help automaticallyDescribe the program

Process options given

There is a Python module specifically for processing the command line. It is called
“optparse”. There is also an older, less useful module called “getopt”. We
recommend you use optparse in preference.

 7

The parser

import

parser = optparse.OptionParser()

optparse

(opts, args) = parser.parse_args()

The module

Creating the parser

Using the parser

To use it, obviously, we have to import it first. It contains a single function useful to us,
called “OptionParser()”. (Warning: Python is case sensitive so mind the capitals.)

This function hands us a “parser”, a program which interprets the text of the command
line.
We haven't told it what to expect on the command line yet, but we can still use it. The
parser object has a method “parse_args()” which interprets the command line by
default and returns a pair of values. The first carries he information gathered about the
options and the second the remaining command line arguments. We will come back to
it shortly. In the mean time we will consider what this bare bones program actually
does.

 8

Functionality!

#!/usr/bin/python

import optparse
parser = optparse.OptionParser()

(options, arguments) = parser.parse_args()

$./parse1.py --help
Usage: parse1.py [options]

Options:
 -h, --help show this help message

Only three lines!

You can find this bare bones program in your home directories as “parse1.py”. It is
executable, but because “.” is not on your PATH you will have to call it with
“./parse1.py”.

Well, to start with it supports help options. The unconfigured parser object knows how
to deal with “--help” or “-h” on the command line.

p.s.: Never define either of these two options. You do not want to override this built-in
behaviour.

 9

Extra functionality

#!/usr/bin/python

import optparse
parser = optparse.OptionParser()

(options, arguments) = parser.parse_args()

Creation

Use

Extra
settings
go here.

Of course, what we have to do is to add some more settings to tell it about the options
we expect.

 10

Setting the help text

Visit listed directories and process
the data files in them."""

parser.set_usage(help)

help = """Usage:
%prog [options] directories...

Converted to
script's name

The object we've just created

To start with we will expand on the bare bones help text it generates by default. We
will define a multi-line string with out text in it. We pass this into the parser, before we
run parse_args() with the method “set_usage()”. The “usage text” is the proper
name for this help text; it tells the user who to use the program.
Note that the expression “%prog” is replaced with the name of the script if it is printed
out by the parser.

 11

…
parser = optparse.OptionParser()

help_text = …
parser.set_usage(help_text)

(options, arguments) = parser.parse_args()

$./parse2.py --help
Usage: parse2.py [options] directories...

Visit listed directories and process the
data found in them.
…

The program parse2.py has the help text modified.

 12

Setting an option ― 1

parser.add_option(

'-o',

'--output',

dest = 'output_file',

help = 'Name of output file',

)

Short form option

Long form option

Help text

default = 'output.dat'

Variable name

So how do we specify that we want to accept a particular option on the command line?
To tell the parser to expect it, again before parse_args() needs it, we use the
“add_option()” method.

We will focus on three or four of its options at this point.
The first two arguments give the long and the short forms. Either, but not both, can be
dropped.
After that we have named arguments. The “help” argument is the single line that will
be used to create --help's text.

The “dest” argument (for “destination”) is mostly used for getting at the option later
but we will see it in the help output too so we mention it here.

 13

…
parser.set_usage(help_text)

parser.add_option(…)

(options, arguments) = parser.parse_args()

$./parse3.py --help
Usage: parse3.py [options] directories...
…
Options:
 -h, --help show this help messa…
 -o OUTPUT_FILE, --output=OUTPUT_FILE
 Name of output file …

We still don't know what to do with this option once it has been found on the command
line by parse_args() but we can already see how it changes the behaviour of the
--help option. The parse3.py script has just one option added. We can try this with
--help.

Note that an extra line has been produced over before and that it uses our given help
text. Also note that the “OUTPUT_FILE” comes from the “dest” argument we set.

 14

Setting an option ― 2

parser.add_option(

'-o',

'--output',

dest = 'output_file',

help = 'Name of output file',

)

default = 'output.dat'

Variable name

Default value

Now let's look at actually getting at the option itself.
The dest argument specifies where the --output's value is put. It doesn't quite
define a simple variable name but it's not far off.
The “default” parameter specifies the default value to set. Because this has a type,
it identifies the type of the variable. If it had been an integer default then the command
line argument would have been automatically converted to an integer, etc.

 15

…
parser.add_option(…
 dest = ' ',
 …
)

(, arguments) =
 parser.parse_args()

print 'Output:', .

options

options

output_file

output_file

So how do we get at the option's value?
You will recall that parse_args() returns a pair of values. The first is an object that
encodes all the options. We said we wanted an option parsed with the destination
“output_file”. As a result the options object passed back as a member with that
name.

 16

$./parse4.py --output=foo.out
Output: foo.out

$./parse4.py
Output: output.dat

The parse4.py script has had this done to it and prints out the value the parser gets
from the --output option.

 17

parser.add_option(

'-o',

'--output',

dest = 'output_file',

help = 'Name of output file',

)

Short form option

Long form option

Help text

default = 'output.dat',

Variable name

Default value

type = 'string',

action = 'store'

There are other parameters that can be passed but only two really ever matter.
You can set the type explicitly if you don't want to have a default value.
You can also change how the value is treated. The default is to “store” the value in the
options object. There are other possibilities that we won't need.

 18

Non-options…
parser.add_option(…
 dest = 'output_file',
 …
)

(options,) =
 parser.parse_args()

print 'Output:', options.output_file
print 'Arguments:', arguments

arguments

So that's what the first element of the returned pair is for; it contains the options. What
does the second contain? It contains every remaining argument that was associated
with an option as a simple list.

 19

$./parse5.py -o foo.out
Output: foo.out
Arguments: []

$./parse5.py -o foo.out dir1 dir2
Output: foo.out
Arguments: ['dir1', 'dir2']

The parse5.py script prints out the second argument.

 20

Exercise 1

Complete exercise1.py

1. Set help text

2. Set options

3. Print out options variables

4. Print out remaining arguments
(call the list “directories”)

Ten minutes

Got that?
Now it's time to put it to the test.
You have a file in your home directory called “exercise1.py”. This has certain critical
elements missing and replaced by comments telling you what to do.
Write some help text of your own.

The options you should set are these:
dest default help

--output -o output_file output.dat “The output file”
--input -i input_pattern *.dat “The wildcard for the input files to use”
--params -p params_file params.cfg “The parameter file in the directory”

Print out all three options and the remaining arguments.

Test the script!

 21

Navigating the filesystem

“here” dir
1

dir
2

dir
3

dir
4

file
2
.dat

file
3
.dat

params.cfg
file

1
.dat

Changing directory

Directory content

Our next interaction with the operating system is via the file system. Our script is going
t0o be passed a list of directories where it should go and launch a program. So we
need to be able to move around the file system. Our script is also going to combine
various input files so we will need to be able to read directories too.

 22

The os module

“operating system” module

sys

os

Universal systems-y facilities

Facilities varying between operating systems

Some may not be provided by base system

This course: Unix & Windows

The os module

We will need another module to give us the functionality. This is the “os” module and
provides simple access to the operating system.
We should pause for a moment to contrast it with the sys module that gives
something very similar. The idea is that sys gives those things that are the same on
all operating systems and the os module gives those that are different (o/s-specific).

 23

Changing directory

>>> import os

>>> os.getcwd()

'/home/y550'

get current
working directory

>>> os.chdir('/tmp') change
directory

>>> os.getcwd()

'/tmp'

Let's start by changing directory.
This is best illustrated in an interactive Python session. We import the module and can
then use the os.getcwd() function to get the file name of the current working
directory.
We can change directory with the os.chdir() function.

 24

Using the current directory

>>> os.chdir('/home/y550')

>>> f = open('first', 'w')

>>> os.chdir('/tmp')

>>> s = open('second', 'w')

$ ls -l first /tmp/second
-rw-r--r-- 1 rjd4 rjd4 0 … first
-rw-r--r-- 1 rjd4 rjd4 0 … /tmp/second

$$$

>>> f.close()

>>> s.close()

Start here

Create a file

Move here

Create a file

good habit

Using the current directory

Perhaps a quick reminder is called for as to why the current working directory matters.
If we create a file with a simple name (so no directories in it) then it appears in our
c.w.d.

 25

Only the Python process!

$ pwd
/home/y550

$ python
…

>>> import os

>>> os.getcwd()
'/home/y550'
>>> os.chdir('/tmp')

>>> os.getcwd()
'/tmp'
>>> [Ctrl]+[D]

$ pwd
/home/y550

…

No change in the shell Change directory in
the Python process

It's also worth recalling that while the Python process changes directory the shell that
launched it continues on with magnificent indifference in what ever directory it was to
start with.

 26

Lists of directories
!…

for directory in directories:
 os.chdir(directory)
 print 'CWD:', os.getcwd()

This looks innocent enough…

Now we need to cover a common mistake made by most beginners.
Suppose we have a list of directories (you have alpha, beta and gamma) defined in
your home directories for this purpose. What could be simpler than to run through a
list of these directories one after the other changing into each in turn?
The script shown has a critical bug.

 27

Lists of directories
!…

for directory in directories:
 os.chdir(directory)
 print 'CWD:', os.getcwd()

$./directory1.py /tmp /home /usr

CWD: /tmp
CWD: /home
CWD: /usr

$$

Works!

The bug doesn't always trigger. The script directory1.py has the bug but works fine if I
give it the list of three directories shown.
Note that these are all given by absolute paths.

 28

Lists of directories
!…

for directory in directories:
 os.chdir(directory)
 print 'CWD:', os.getcwd()

$./directory1.py alpha beta gamma

CWD: /home/y550/alpha
…
OSError: [Errno 2] No such file or
 directory:

$$

Fails!

'/home/y550/alpha/beta'

If we run it with the three directories in your home directory it works for the first and
then fails, complaining about a directory we never meant it to use.

 29

Relative paths

['alpha','beta','gamma']

/home/y550

beta gammaalpha

os.chdir('alpha')

beta

os.chdir('beta')





Relative paths

Relative path resolved relative
to current working directory

What is going wrong is this: the first change of directory works. We end up in alpha.
The second change of directory into beta, however, is performed relative to the
current working directory, which is now alpha. There is no directory beta under
alpha.

 30

Cleanest solution

/home/y550

beta gammaalpha

['alpha','beta','gamma']

Go back after
each directory

The cleanest solution whenever you are working through a list of directories is to
always return to where you started after “doing” a directory. Then when you move into
the next directory listed you are doing it from where you started, not where you ended
up.

 31

Lists of directories
…
oldcwd = os.getcwd()
for directory in directories:
 os.chdir(directory)
 print 'CWD:', os.getcwd()
 os.chdir(oldcwd)
del oldcwd, directory

$./directory2.py alpha beta gamma

CWD: /home/y550/alpha
CWD: /home/y550/beta
CWD: /home/y550/gamma

$$

The script directory2.py has this fix and works.

 32

Lists of directories
…
oldcwd = os.getcwd()
for directory in directories:
 os.chdir(directory)

 os.chdir(oldcwd)
del oldcwd, directory

something_useful()

1. Start here
2. Loop
3. Go

4. Do

5. Return
6. Clean up

“All” we have to do now is
write something_useful()

The general pattern for working through a list of directories goes like this:
1. We remember where we started.
2. We loop through the set of directories.

For each directory in the loop…
3. We change to the directory
4. We do whatever it is we came to do. This is most cleanly done in a function so
we don't distract from the navigation code.
5. We change directory back to where we started and then move on to the next
directory in the list.
6. Finally, when all the directories are done we clean up by deleting the variables
that are not longer meaningful.

 33

Content of directories

>>> os.listdir()

[, , 'etc', 'dev',
'home', 'apps', '.mozilla', 'servers',
'.ux', 'lib', 'media', 'sys', 'proc',
'authcon', 'srv', 'boot', 'mnt',
'root', '.pwf-linux', 'var', 'usr',
'bin', 'ux', 'opt', 'lost+found', 'tmp']

'/'

'.servers'

“Hidden”
entries

Ordinary
entries

Not “.” or “..”

'sbin'

Unordered

Directory name

We commented at the start that we needed to be able to see what was in a directory
as well as how to move into them. We so this with the os.listdir() function.

The output excludes the “.” and “..” directories that are always present on Unix
systems.
The list given is not in any particular order. It's a function of how the directory stores its
information.

 34

Content of directories

>>> os.listdir()'/' Absolute path

>>> os.listdir()'alpha' Relative path

>>> os.listdir()'../..' Relative path>>> os.listdir()'../..' Relative path

>>> os.listdir()'.' Current working directory

The directory name can be an absolute or relative path. Recall that “.” means “the
current working directory”.

 35

Content of directories
…
def something_useful():
 print 'CWD:', os.getcwd()
 files = os.listdir('.')
 files.sort()
 print files
…

1. Where?
2. What?
3. Sorted
4. Output

$./directory4.py alpha beta gamma

To begin with we have a dummy something_useful() function that just lists the
files found in the directory. Note that we have to explicitly sort them if we want them
sorted.
We will slowly build up this function. So far it simply builds an ordered list of the files in
the directory and prints them out.

 36

Doing something useful

Select the input files from files

['input1.dat','input2.dat','input3.dat',

Output file:
Parameters file:
Input files:

output.dat
params.cfg
*.dat

 'notes','output.dat','params.cfg',

['input1.dat','input2.dat','input3.dat',['input1.dat','input2.dat','input3.dat',

 'readme.txt','variants.dat']





 



 



Now we must consider our script's purpose again. It is meant to pull out just the input
files in the directory that match the pattern given. We must also exclude the output
and parameters file in case they are covered by the input pattern too.
So if our input pattern is “*.dat” and our output file is “output.dat” we should take
the shown files as inputs.

 37

Filtering the files ― 1

def something_useful(options):
 …

for directory in directories:
 os.chdir(directory)
 something_useful(options)
 …

Pass the options
into the function.

Definition

Use

First of all we need to pass the options into the something_useful() function. We
do this simply by passing the options object.

 38

Filtering the files ― 2

def something_useful(options):
 print 'CWD:', os.getcwd()
 files = os.listdir('.')
 files.sort()

Remove the two
named files.

files.remove(options.output_file)
files.remove(options.params_file)

Fails if they
are not there

Next we want to take the files list we already have and strip the output and parameters
file from it.
This script will fail, however, if the files are not there to start with!

 39

Filtering the files ― 3

def something_useful(options):
 print 'CWD:', os.getcwd()
 files = os.listdir('.')
 files.sort()

Remove the two
named files.

if options.output_file in files:
 files.remove(options.output_file)
if options.params_file in files:
 files.remove(options.params_file)

Test to see if
they exist

We need to do a simple test. If the two files are in the list, remove them. If they are
not, do nothing.
So now our script prints a list of every file in the directory except for those two if they
exist already.

 40

Matching against a pattern
fnmatch module filename matching

import fnmatch
…
files = fnmatch.filter(
 files,
 options.input_pattern
)
…

fnmatch.filter()

So now our files list has to have its final pruning. We want to consider only those files
that match the input pattern. To do this we will call upon a further module, fnmatch
(“filename matching”).
Note that we can import that module purely within the something_useful()
function. It could be done globally as well; it makes no difference.
The fnmatch module provides us with one function useful for our purposes:
fnmatch.filter().

This function takes a list of file names and a wildcard pattern. It returns the list of
names that match the pattern. This is what we will use.

 41

Exercise 2

Complete exercise2.py

1. List the directory contents.

2. Remove the output and parameter files.

3. Filter the files against the input pattern.

4. Sort the resulting list.

All edits should be in something_useful()

Ten minutes

So, it's time to put all that to use. The script exercise2.py has within it all the option
parsing and the directory traversal code. Its something_useful() function is
incomplete, though, and you have to get it working.
Your function should get the list of directory contents, remove the output and
parameter files if they are present and then filter it against the input pattern. The final
list (which is all or input files) should be sorted.

 42

Running a “program”

sort -n output>plotter|inputs

Sort
numerically List of

input
files

Pipe
Another
program

Redirect
output

Output
file

params

Parameter
file

Now let's look at the last bit of our work: we have to get our script to call another
program.
The slide shows the shell version of what we need to achieve. We will use the sort
program to combine our input files and pipe its output into another program which
plots the data to the output file.
If we didn't have the piping this would be a lot simpler as we will soon see, but this lets
us see the full power of Python's facilities.
The plotter program is not a standard application but a made up one for this
course. It can be found on the PWF in /ux/Lessons/PythonOS/plotter.

 43

Running programs

“subprocess” module

import subprocess

The module needed to run external programs is called “subprocess”.

 44

Simplest case

ls -lls

subprocess])'-l','ls'([call.

module

call a
program

Where does
the output go?

subprocess '-l','ls'call.

Suppose we had no piping. Suppose all we wanted to do was to call a single program.
In this case the module has a function called subprocess.call() which does
exactly that.
This function takes, in its simplest form, a list of strings. This list is the argument string
of a command with the lead item (number zero) being the command to run. So if we
want to run “ls -l” in each directory that this is the Python to run.

 45

Arguments to ls -l

ls -lls '-l','ls']'-l','ls'[

ls -lls

'-l','ls'][

file
1
file

2
file

3

'file
1
' 'file

2
' 'file

3
', ,, ,,

'-l','ls']['file
1
' 'file

2
' 'file

3
'] ,, ,,[+=

concatenate

Of course, “ls -l” can take a list of specific files to look at as additional arguments.
The use of lists for the command line passed to subprocess.call() leads to a very
useful way to treat the command (“ls”) with its options (“-l”) and the file name
argument (“file

1
 file

2
 file

3
”).

The list passed to subprocess.call() has all of these items but we can build it by
concatenating two separate lists, one for the command and its options (“ls -l”) and
the other for the arguments (“file

1
 file

2
 file

3
”).

 46

Exercise 3

Edit exercise2.py

1.

2.

subprocess.call(['ls','-l'] + files)

Five minutes

again

print files

import subprocess

For the next exercise, do just that, but instead of running “ls -l”, run “ls -l
files” where the list of files is the filtered set of input files we will be processing later.
To do this, simply add the list of file names to the “ls -l” list.

So ['ls', '-l'] + ['input1.dat', 'input2.dat'] becomes
['ls', '-l', 'input1.dat', 'input2.dat']
which corresponds to the command
$ ls -l input1.dat input2.dat
in the shell.

 47

Input & output?

bash⌨

exercise2.py

ls -l

inherits
stdin /
stdout

Ultimately we want to put our output in a file in each directory called output.dat or
some other name passed on the command line. Our script, exercise2.py, outputs
to the screen.
It does this because the shell starts with getting input from the keyboard and sending
output to the terminal window. It launched the exercise2.py script and that script's
process inherits exactly the same input and output. The script launched “ls -l” and it
inherits the same again.
Standard input and output are inherited.

 48

Changing the output

subprocess.call(['ls', '-l'] + files,

stdout

)

output

output = open(

Overrides the
default output

=

output.close() Don't forget

options.output_file, 'w')

Output file name

We can change the output (and input) of a program launched by
subprocess.call().

First we have to open the output file name. The procedure works with real file objects,
not just file names.
Then we set the optional parameter “stdout” to be this file object.
The program runs and sends its output to that file rather than the screen.
When we are finished we should close our file. Some programs close their own output
and others don't. There is no fault in calling the close() method on a file object more
than once and it pays to be careful.

 49

Exercise 4

Edit exercise2.py

1. Open the output file for writing

2.
subprocess.call()

Five minutes

yet again

options.output_file

Set the standard output for

3. Check the output files.

In this exercise you need to set the output to be a file rather than the screen. This is
really just putting the previous slide's content to use.

 50

subprocess.call()
may be enough for you

subprocess.call(
 [program, options, arguments],
 stdin = input,
 stdout = output
)

Single program

Input from file

Output to file

Now, this may be all you need. While we are going to move on from
subprocess.call() we are going to extend our use in ways that you don't need.

If you want to launch a single program and the input and output for that program are
files, then you have everything you need.

 51

sort -n inputs plotter params > output|

Our “program”

call(['sort','-n'] + files)

call(['plotter',options.params_file],
 stdout = output)

But our task is more complex. We want to run two programs, hooked together by a
pipe. There are two problems we need to overcome and we will address them one
after the other.

 52

sort -n inputs plotter params > output|

First problem: timing

call(['sort','-n'] + files)

call(['plotter',options.params_file],
 stdout = output)

Pipe: programs run at the same time

Call: one after the other

When two commands are piped together they both run simultaneously. The call()
function we are using runs its program and only completes when the program is run.
We can't run two call()s side-by-side.

 53

subprocess.call()

subprocess.Popen()

Launch the program
and wait for it to end

Launch the program
and don't wait

exit code

running process

We need to move away from the simplicity of call() to something rather more
complicated.
The Popen() (n.b.: capital “P”) function launches a command but doesn't wait for it to
finish. It is the Python equivalent of running a command in the background in the shell.
Its arguments are exactly the same as for call() but instead of returning the
command's return code, which is what call() does, it returns an object
corresponding to the running process.

 54

No waiting!
$./process2.py alpha/ beta/ gamma/
CWD: /home/rjd4/Courses/PythonOS/alpha
CWD: /home/rjd4/Courses/PythonOS/beta
-rw-r--r-- 1 rjd4 … input1.dat
-rw-r--r-- 1 rjd4 … input2.dat
-rw-r--r-- 1 rjd4 … input3.dat
-rw-r--r-- 1 rjd4 … input4.dat
CWD: /home/rjd4/Courses/PythonOS/gamma
-rw-r--r-- 1 rjd4 … input1.dat
-rw-r--r-- 1 rjd4 … input2.dat
-rw-r--r-- 1 rjd4 … input3.dat
-rw-r--r-- 1 rjd4 … variants.dat
-rw-r--r-- 1 rjd4 … input1.dat
-rw-r--r-- 1 rjd4 … input2.dat
-rw-r--r-- 1 rjd4 … input3.dat
-rw-r--r-- 1 rjd4 … input4.dat

All three runs
simultaneous!

The script process2.py has this simple change made for the “ls -l” example. We
notice immediately that we would get confusion if the various commands running
simultaneously all have the same output. They get mixed up.
We must specify distinct stdout parameters if we are going to use Popen(). But
that's all right; we are.

 55

sort -n inputs plotter params > output|

Our “program”

Popen(['sort','-n'] + files)

Popen(['plotter',options.params_file],
 stdout = output)

So we will tackle the timing issue by using Popen(). There is still one other problem
with reproducing the functionality of a pipe.

 56

sort -n inputs plotter params > output|

Second problem: connecting

Popen(['sort','-n'] + files)

Popen(['plotter',options.params_file],
 stdout = output)

Pipe: first program feeds second program

⌨ Popen: our programs
aren't connected

We know how to divert standard output to a file but we don't know how to send it to
another Popen()ed process. We can't hook up the commands in our pipeline.

 57

Connectivity

subprocess.Popen(
 ['sort','-n'] + files,

)

subprocess.Popen(
 ['plotter',options.params_file],

 stdout = output,
)

p1=

p2=

stdout = subprocess.PIPE,

stdin = p1.stdout,

Need to refer to the
running process

p2's stdin is
p1's stdout

Prepare stdout
to be passed on

Connecting two running processes requires three things.
First, we need to be able to refer to the process of the command whose output we
want to pass on. So we don't just call Popen(), we assign its output to a variable, p1
say.
Next we tell it that its output is going to be passed on. We do this by assigning a
special value to its stdout parameter: subprocess.PIPE.

Finally, in the subprocess to which we are going to pass the data we set its standard
input parameter, “stdin” the stdout member of the earlier process object,
p1.stdout. This is the “make its output my input” step.

 58

Putting it all together

def something_useful(options):
 …
 sort_proc = subprocess.Popen(
 ['sort', '-n'] + files,
 stdout=subprocess.PIPE
)
 plot_proc = subprocess.Popen(
 ['plotter', options.params_file],
 stdin = sort_proc.stdout,
 stdout = output
)

Closing output?

So now we put it all together. We remove the trivial “ls -l” instruction in
something_useful() and put in two subprocess.Popen() instructions.

Note that we can't close the output until we know the processes are finished with it!

 59

One last nicety

def something_useful(options):
 …
 sort_proc.wait()
 plot_proc.wait()

Don't move on until both
processes have finished

output.close() Then close output!

There's one last tweak we need to make right at the end of the function. We have
launched the processes in the background, running in parallel. We ought to wait for
them to finish before we move on.
Strictly we only need to wait for them before quitting the script altogether. It's easier for
us to wait for them in pairs. So we add these two lines at the very end of the function.
If we wanted to check the return codes from these commands (and we ought to) they
would be the returned values from these two wait() methods:
sort_rc = sort_proc.wait()
plot_rc = plot_proc.wait()
Once we have both processes finished we can safely close the output file. Note that
the closing must not happen before the waiting. If we close the output file prematurely
the plotting process may get cut off before it has finished writing its output to the file.

 60

Exercise 5

Edit exercise5.py

Update

Fifteen minutes

something_useful

1. Launch sort process

2. Launch plotter process
/ux/Lessons/PythonOS/plotter

3. Wait for processes to finish

So let's do that.
The exercise5.py script is another script with a few critical lines missing and
replaced by comments.
Please note that the “plotter” command I am using is not a standard command .
You will need to use its full path name in the first item in the list:
/ux/Lessons/PythonOS/PythonOS/plotter

 61

Viewing the output

Output file is a graph

$./exercise5.py alpha beta gamma

$ eog alpha/output.dat

The output file is a graph, as might have been guessed from the name of the “plotter”
program. If you would like to see your handicraft use the eog program (“eye of
gnome; don't ask).

 62

And that's it!

optparse

os

fnmatch

optparse

subprocess

Command line

File system

Wild cards

Launching programs

escience-support@ucs.cam.ac.uk

And that's it!
We have built ourselves a Python script that manages a powerful command line,
navigates the file system and launches sets of Unix commands with their inputs and
outputs linked together. This is a significantly powerful piece of code.
Congratulations.

We have just scratched the surface of the four modules we used. Full documentation
(but limited tutorial information) is available on line:

optparse http://docs.python.org/library/optparse.html
os http://docs.python.org/library/os.html
fnmatch http://docs.python.org/library/fnmatch.html
subprocess http://docs.python.org/library/subprocess.html

Please do experiment. If you have difficulties resulting from anything in this course,
feel free to ask escience-support@ucs.cam.ac.uk.

