
1

Simple Shell Scripting for
Scientists

Julian King
Bruce Beckles

University of Cambridge Computing Service

Day Two

2

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 2

Introduction
� Who:

! Julian King, Unix Support, UCS
! Bruce Beckles, e-Science Specialist, UCS

� What:
! Simple Shell Scripting for Scientists course, Day Two
! Part of the Scientific Computing series of courses

� Contact (questions, etc):
! scientific-computing@ucs.cam.ac.uk

� Health & Safety, etc:
! Fire exits

� Please switch off mobile phones!

As this course is part of the Scientific Computing
series of courses run by the Computing Service,
all the examples that we use will be more
relevant to scientific computing than to system
administration, etc.

This does not mean that people who wish to
learn shell scripting for system administration
and other such tasks will get nothing from this
course, as the techniques and underlying
knowledge taught are applicable to shell scripts
written for almost any purpose. However, such
individuals should be aware that this course was
not designed with them in mind.

3

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 3

What we don�t cover
� Different types of shell:

! We are using the Bourne-Again SHell
(bash).

� Differences between versions of bash
� Very advanced shell scripting � try

one of these courses instead:
! �Python: Introduction for Absolute Beginners�
! �Python: Introduction for Programmers�

bash is probably the most common shell on modern Unix/Linux
systems � in fact, on most modern Linux distributions it will be the
default shell (the shell users get if they don�t specify a different one).
Its home page on the WWW is at:

http://www.gnu.org/software/bash/

We will be using bash 4.0 in this course, but everything we do should
work in bash 2.05 and later. Version 4, version 3 and version 2.05 (or
2.05a or 2.05b) are the versions of bash in most widespread use at
present. Most recent Linux distributions will have one of these versions
of bash as one of their standard packages. The latest version of bash
(at the time of writing) is bash 4.1, which was released on 31
December, 2009.

For details of the �Python: Introduction for Absolute Beginners� course,
see:

http://www.training.cam.ac.uk/ucs/course/ucs-python

For details of the �Python: Introduction for Programmers� course, see:

http://www.training.cam.ac.uk/ucs/course/ucs-python4progs

4

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 4

Outline of Course
1. Recap of day one
2. Shell functions

SHORT BREAK
3. Command substitution
4. The mktemp command
5. Handling data from standard input

! Reading values from standard input
! Pipelines
! Loop constructs: while

SHORT BREAK
6. More while loops:

! Shell arithmetic
! Tests

Exercise

The course officially finishes at 17.00, but the
intention is that the lectured part of the course will
be finished by about 16.30 or soon after, and the
remaining time is for you to attempt an exercise that
will be provided. If you need to leave before 17.00
(or even before 16.30), please do so, but don�t
expect the course to have finished before then. If
you do have to leave early, please leave quietly.

If, and only if, you will not be attending the final
day of the course then please make sure that you
fill in a green Course Review form and leave it at
the front of the class for collection by the course
giver.

5

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 5

Start a shell

6

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 6

Screenshot of newly started shell

7

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 7

Recap: Day One

� Simple shell scripts: linear lists of
commands

� Simple use of shell variables and
parameters

� Simple command line processing
� Output redirection
� for loops

8

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 8

Recap: What is a shell script?

� Text file containing commands
understood by the shell

� Very first line is special:
#!/bin/bash

� File has its executable bit set
chmod a+x

Recall that the chmod command changes the permissions on
a file. chmod a+x sets the executable bit on a file for all
users on the system, i.e. it grants everyone permission to
execute the file. Unix file permissions were covered in the
�Unix: Introduction to the Command Line Interface� course,
see:

http://www.training.cam.ac.uk/ucs/course/ucs-unixintro1

The notes from this course are available on-line at:

http://www-uxsup.csx.cam.ac.uk/courses/UnixCLI/

9

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 9

Recap: Very simple shell scripts

� Linear lists of commands

� Just the commands you�d type
interactively put into a file

� Simplest shell scripts you�ll write

10

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 10

Shell variables and parameters
Shell variables hold data, much like variables in a

program:
$ VAR="My variable"
$ echo "${VAR}"
My variable

Shell parameters are special variables set by the
shell:
! Positional parameter 0 holds the name of the shell script
! Positional parameter 1 holds the first argument passed to the

script; positional parameter 2 holds the second argument passed
to the script, etc

! Special parameter @ expands to values of all positional
parameters (starting from 1)

! Special parameter # expands to the number of positional
parameters (not including 0)

We create shell variables by simply assigning them a value (as above for the shell variable VAR). We can
access a the value of a shell variable using the construct ${VARIABLE} where VARIABLE is the name of the
shell variable. Note that there are no spaces between the name of the variable, the equal sign (=) and the
variable�s value in double quotes. This is very important as whitespace (spaces, tabs, etc) is significant in the
names and values of shell variables.

Also note that although we can assign the value of one shell variable to another shell variable, e.g.
VAR1="${VAR}", the two shell variables are in fact completely separate from each other, i.e. each shell
variable can be changed independently of the other. Changing the value of one will not affect the other. So
VAR1 (in this example) is not a �pointer� to or an �alias� for VAR.

Shell parameters are special variables set by the shell. Many of them cannot be modified, or cannot be directly
modified, by the user or by a shell script. Amongst the most important parameters are the positional parameters
and the other shell parameters associated with them.

The positional parameters are set to the arguments that were given to the shell script when it was started, with
the exception of positional parameter 0, which is set to the name of the shell script. So, if myscript.sh is a
shell script, and I ran it by typing:

./myscript.sh argon hydrogen mercury

then positional parameter 0 = ./myscript.sh

1 = argon

2 = hydrogen

3 = mercury

and all the other positional parameters are not set.
The special parameter @ is set to the value of all the positional parameters, starting from the first parameter,
passed to the shell script, each value being separated from the previous one by a space. You access the value
of this parameter using the construct ${@}. If you access it in double quotes � as in "${@}" � then the shell
will treat each of the positional parameters as a separate word (which is what you normally want).
The special parameter # is set to the number of positional parameters not counting positional parameter 0.
Thus it is set to the number of arguments passed to the shell script, i.e. the number of arguments on the
command line when the shell script was run.

11

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 11

Shell parameters
! Positional parameters (${0}, ${1},

etc)
! Value of all arguments passed: ${@}
! Number of arguments: ${#}
$ ~/examples/params.sh 0.5 62 38 hydrogen
This script is /home/y250/examples/params.sh

There are 4 command line arguments.

The first command line argument is: 0.5
The second command line argument is: 62
The third command line argument is: 38

Command line passed to this script: 0.5 62 38 hydrogen

In the examples subdirectory of your home directory there is a
script called params.sh. If you run this script with some
command line arguments it will illustrate how the positional
parameters and related shell parameters work. Note that even if
you type exactly the command line on the slide above your output
will probably be different as the script will be in a different place for
each user.

The positional parameter 0 is the name of the shell script (it is the
name of the command that was given to execute the shell script).

The positional parameter 1 contains the first argument passed to
the shell script, the positional parameter 2 contains the second
argument passed and so on.

The special parameter # contains the number of arguments that
have been passed to the shell script. The special parameter @
contains all the arguments that have been passed to the shell
script.

12

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 12

for
Execute some commands once for each value in a

collection of values

for VARIABLE in <collection of values> ; do

<some commands>
done

Examples:
myCOLOURS="red green blue"
for zzVAR in ${myCOLOURS} ; do

echo "${zzVAR}"
done

for zzVAR in * ; do
ls -l "${zzVAR}"

done

We can repeat a set of commands using a for loop. A for loop repeats a set of
commands once for each value in a collection of values it has been given. We use a for
loop like this:

for VARIABLE in <collection of values> ; do

<some commands>

done

where <collection of values> is a set of one or more values (strings of
characters). Each time the for loop is executed the shell variable VARIABLE is set to
the next value in <collection of values>. The two most common ways of
specifying this set of values is by putting them in a another shell variable and then using
the ${} construct to get its value (note that this should not be in quotation marks), or by
using a wildcard or file name glob (e.g. *) to specify a collection of file names (pathname
expansion). <some commands> is a list of one or more commands to be executed.

Note that you can put the do on a separate line, in which case you can omit the semi-
colon (;):

for VARIABLE in <collection of values>

do

<some commands>

done

There are some examples of how to use it in the for.sh and for1.sh scripts in the
examples directory of your home directory. Note that a for loop can contain another
for loop (the technical term for this is nesting).

13

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 13

Recap: What are we trying to do?

Scientific computing

i.e. shell scripts that do
some useful scientific
work, e.g. repeatedly
running a simulation
or analysis with different data

Recall the name of this course (�Simple Shell Scripting for Scientists�)
and its purpose: to teach you, the scientist, how to write shell scripts that
will be useful for your scientific work.

As mentioned on the previous day of the course, one of the most
common (and best) uses of shell scripts is for automating repetitive
tasks. Apart from the sheer tediousness of typing the same commands
over and over again, this is exactly the sort of thing that human beings
aren�t very good at: the very fact that the task is repetitive increases the
likelihood we�ll make a mistake (and not even notice at the time). So it�s
much better to write (once) � and test � a shell script to do it for us.
Doing it via a shell script also makes it easy to reproduce and record
what we�ve done, two very important aspects of any scientific endeavour.

So, the aim of this course is to equip you with the knowledge and skill
you need to write shell scripts that will let you run some program (e.g. a
simulation or data analysis program) over and over again with different
input data and organise the output sensibly.

14

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 14

Sample program: iterator

$./iterator 100 100 1000 0.05
x dimension of grid: 100

y dimension of grid: 100

Number of iterations: 1000

Epsilon: 0.050000

Output file: output.dat

Iterations took 2.100 seconds

The iterator program is in your home directory. It is a program written
specially for this course, but we�ll be using it as an example program for
pretty general tasks you might want to do with many different programs.
Think of iterator as just some program that takes some input on the
command line and then produces some output (on the screen, or in one or
more files, or both), e.g. a scientific simulation or data analysis program.

The iterator program takes 4 numeric arguments on the command line:
3 positive integers and 1 floating-point number. It always writes its output
to a file called output.dat in the current working directory, and also
writes some informational messages to the screen.

The iterator program is not as well behaved as we might like (which,
sadly, is also typical of many programs you will run). The particular way
that iterator is not well behaved is this: every time it runs it creates a file
called running in the current directory, and it will not run if this file is
already there (because it thinks that means it is already running).
Unfortunately, it doesn�t remove this file when it has finished running, so
we have to do it manually if we want to run it multiple times in the same
directory.

15

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 15

Exercise from Day One

We have a directory that contains the output
of several runs of the iterator program in
separate files. We have a file of commands
that will turn the output into a graph (using
gnuplot). We want to write a shell script
that turns the output from each run into a
graph.

We are specifically using the gnuplot program and the output of
the iterator program we met on the previous day of the course.
(gnuplot is a program that creates graphs, histograms, etc from
numeric data.) Think of this task as basically: I have some data sets
and I want to process them all in the same way. My processing
might produce graphical output, as here, or it might produce more
data in some other format.

If you haven�t met gnuplot before, you may wish to look at its
WWW page:

http://www.gnuplot.info/

If you think you might want to use the gnuplot program for creating
your own graphs, then you may find the �Introduction to Gnuplot�
course of interest � the course notes are on-line at:

http://www-uxsup.csx.cam.ac.uk/courses/Gnuplot/

16

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 16

Output of gnuplot

If you want to get an idea of what we�re trying to do, you can try
the following:
$ cd

$ cp gnuplot/iterator.gplt .

$ cp output-0.05.dat output.dat

$ ls output.png

/bin/ls: output.png: No such file or directory

$ gnuplot iterator.gplt

$ rm output.dat

$ ls output.png

output.png

$ eog output.png &

Note that the output of �ls output.png� may look slightly different � in
particular, the colours may be slightly different shades (assuming you are
reading these notes in colour).

17

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 17

Details of exercise
What we want to do is, for each output file:

1. Rename (or copy) the output file we want to
process to output.dat

$ mv output-0.05.dat output.dat

2. Run gnuplot with the iterator.gplt file
$ gnuplot iterator.gplt

3. Rename (or delete if you copied the original output
file) output.dat

$ mv output.dat output-0.05.dat

4. Rename output.png
$ mv output.png output-0.05.dat.png

The exercise set at the end of the previous day of the
course was to create a shell script that does the above task.
Basically, for each of the .dat files produced by the
multi-run.sh script, the shell script should run gnuplot
on it to create a graph (which will be stored as a .png file).
The iterator.gplt file provided will only work if the
.dat file is called output.dat and is in the current
directory. Also, gnuplot should not be allowed to
overwrite each .png file, so the shell script must rename
each .png file after gnuplot has created it.

18

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 18

multi-gnuplot1.sh
#!/bin/bash

Run gnuplot program once for each output file
for zzFILES in output-*.dat ; do

Rename output file to output.dat
mv "${zzFILES}" output.dat

Run gnuplot
gnuplot iterator.gplt

Rename output.dat to original name
mv output.dat "${zzFILES}"

Rename output.png
mv output.png "${zzFILES}.png"

done

So here�s one solution to that exercise. This file
(multi-gnuplot1.sh) is in the gnuplot directory.

It takes each file whose name is of the form
output-<something>.dat (where the <something> can
be any set of characters that can appear in a filename) in
turn and renames it to output.dat, runs gnuplot, then
renames the file back to its original name, and renames the
output.png file to output-<something>.dat.png.

19

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 19

multi-gnuplot2.sh
#!/bin/bash

Run gnuplot program once for each output file
for zzFILES in output-*.dat
do

Copy output file to output.dat
cp -f "${zzFILES}" output.dat

Run gnuplot
gnuplot iterator.gplt

Delete output.dat file
rm -f output.dat

Rename output.png
mv output.png "${zzFILES}.png"

done

�and here�s another solution. This file (multi-gnuplot2.sh) is in the
gnuplot directory.

It takes each file whose name is of the form output-<something>.dat
(where the <something> can be any set of characters that can appear in a
filename) in turn and copies it to output.dat, runs gnuplot, then deletes
the copy, and renames the output.png file to
output-<something>.dat.png.

These two shell scripts are functionally equivalent � you can use whichever
you like and the results will be identical.

Note that one purely cosmetic difference between them is that one has the do
keyword on the same line as the for keyword (with a semi-colon (;) before
the do) whilst the other has the do keyword on a separate line (and no semi-
colon). Some people feel that it makes scripts more readable to put the do on
a separate line.
However, whether you put the do on the same line as the for (and use the
semi-colon) or put it on a different line is entirely a matter of style and personal
preference � well, you want some outlet for your individuality, don�t you? ☺

20

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 20

multi-gnuplot3.sh
#!/bin/bash

Run gnuplot program once for each output file
for zzFILES in output-*.dat ; do

Create symbolic link called output.dat to output file
ln -s -f "${zzFILES}" output.dat

Run gnuplot
gnuplot iterator.gplt

Delete output.dat file
rm -f output.dat

Rename output.png
mv output.png "${zzFILES}.png"

done

�and here�s yet another solution. This file (multi-gnuplot3.sh) is also in
the gnuplot directory.

It takes each file whose name is of the form output-<something>.dat
(where the <something> can be any set of characters that can appear in a
filename) in turn and creates a symbolic link to it called output.dat, runs
gnuplot, then deletes the symbolic link (not the original file), and renames
the output.png file to output-<something>.dat.png.

This shell script is functionally equivalent to the previous two � you can use
whichever you like and the results will be identical.

There is, though, one way in which this script is better than the previous two.
Since it only creates a symbolic link to each file in turn rather than making a
copy of the file (like multi-gnuplot2.sh), it uses considerably less disk
space (symbolic links take up almost no space on disk), which can be an issue
if the files you are processing are large. Also, since it does not rename the
original file (like multi-gnuplot1.sh), if it is interrupted part way through its
execution you don�t need to worry about potentially �losing� any output files. If
multi-gnuplot1.sh was interrupted after it had renamed a file to
output.dat but before it had a chance to rename it back, then, unless the
person running it realised this had happened and dealt with it, the
output.dat file would be deleted next time the script was run(!).

21

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 21

Sample output: output-0.5.dat.png

You can try out one of these scripts if you want. First, create some output files for
the script to process:
$ cd

$ rm �f *.dat stdout-* logfile

$ scripts/multi-run.sh 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Now, make sure that the iterator.gplt file is in your current directory:
$ cp gnuplot/iterator.gplt .

Now run one of the scripts, either multi-gnuplot1.sh or multi-gnuplot2.sh
or multi-gnuplot3.sh, it doesn�t matter which:
$ gnuplot/multi-gnuplot1.sh

Now do an ls to see what files have been created, and then try viewing some of
them:
$ eog output-0.5.dat.png &

Your solutions to this exercise (you did do it, didn�t you?) should have been similar to
the ones presented here. If they weren�t, or if you had problems with the exercise,
please let the course giver or demonstrator know.

22

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 22

Shell functions
$ cd
$ cat hello-function.sh
#!/bin/bash
function hello()
{
This is a shell function.
echo "Hello!"
echo "I am function ${FUNCNAME}."

}

$./hello-function.sh
$

Shell functions are similar to functions in most high-level programming languages.
Essentially they are �mini-shell scripts� (or bits of shell scripts) that are invoked (called)
by the main shell script to perform one or more tasks. When called they can be
passed arguments (parameters), as we will see later, and when they are finished they
return control to the statement in the shell script immediately after they were called.

To define a function, you just write the following at the start of the function:
function function_name()

{

where function_name is the name of the function. Then, after the last line of the
function you put a line with just a closing curly brace (}) on it:

}

Note that unlike function definitions in most high level languages you don�t list what
parameters (arguments) the function takes. This is not so surprising when you
remember that shell functions are like �mini-shell scripts� � you don�t explicitly define
what arguments a shell script takes either.

Like functions in a high-level programming language, defining a shell function doesn�t
actually make the shell script do anything � the function has to be called by another
part of the shell script before it will actually do anything.

FUNCNAME is a special shell variable (introduced in version 2.04 of bash) that the shell
sets within a function to the name of that function. When not within a function, the
variable is unset.

23

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 23

Calling a shell function
$ gedit hello-function.sh &
#!/bin/bash
function hello()
{

This is a shell function.
echo "Hello!"
echo "I am function ${FUNCNAME}."

}

hello

$./hello-function.sh
Hello!
I am function hello.
$

Start your favourite editor (or gedit if you don�t have a preference) and modify the
file hello-function.sh in your home directory as shown above. Make sure
you save the file after you�ve modified it or your changes won�t take effect.

Now try running the shell script again:
$./hello-function.sh

Hello!

I am function hello.

$

This time it actually does something � the function hello is called and does
what we would expect.

You call a shell function by just giving its name (just as you would with any of the
standard Unix commands (or shell builtin commands) that we�ve met). Note that
you don�t put brackets after the name of the function when you call it. You only
do that when you first define the function. That�s one of the ways that the shell
figures out that you are trying to define a shell function.

24

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 24

Shell function arguments (1)
$ gedit hello-function.sh &
#!/bin/bash
function hello()
{

This is a shell function.
echo "Hello, ${1}"
echo "I am function ${FUNCNAME}."

}

hello

$./hello-function.sh Dave
Hello,
I am function hello.
$

Modify the file hello-function.sh in your home directory as
shown above. Make sure you save the file after you�ve modified it or
your changes won�t take effect.

Recall that the positional parameter 1 (whose value is accessed
using the construct ${1}) contains the value of the first argument
passed to the shell script (or is unset if no arguments are passed).
So what would we expect the above shell script to do? Surely, it will
print out �Hello, <whatever argument we gave it>�?

(For the pedants amongst you: <whatever argument we gave it>
means whatever argument we passed the shell script on the
command line when we invoked it � �Dave� in the above example.)

Apparently not. Maybe something�s wrong with out shell script?
Maybe positional parameter 1 isn�t being set correctly? Let�s try
some debugging and see.

25

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 25

Shell function arguments (2)
$ gedit hello-function.sh &
#!/bin/bash
function hello()
{

This is a shell function.
echo "Hello, ${1}"
echo "I am function ${FUNCNAME}."

}

echo "First argument: ${1}"
hello

$./hello-function.sh Dave
First argument: Dave
Hello,
I am function hello.

Modify the file hello-function.sh in your home directory as shown above. Make
sure you save the file after you�ve modified it or your changes won�t take effect.

This is a simple but useful debugging trick for shell scripts. When something isn�t
working right, make the shell script print out the values of all the shell variables,
environment variables or shell parameters that you are interested in just before the
point where you think it is going wrong.

In this case, what this shows us is that positional parameter 1 is being set correctly.
So that�s not the problem.

The problem is that within a function the positional parameters (from 1 onward, 0
doesn�t change) are set to the arguments that the function was given when it was
called. (Similarly, within a function the special parameters @ and # are set to all the
arguments passed to the function, and the number of arguments passed to the
function, respectively.) Since we called the function hello without any arguments,
while the function hello is executing positional parameter 1 is unset, and so when
we try to print its value, nothing is printed.

The way you call a shell function with arguments is to list those arguments
immediately after the name of the shell function, e.g. in our script:

hello Dave

would call the function hello with one argument: �Dave�.

26

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 26

Shell function arguments (3)
$ gedit hello-function.sh &
#!/bin/bash
function hello()
{

This is a shell function.
echo "Hello, ${1}"
echo "I am function ${FUNCNAME}."

}

echo "First argument: ${1}"
hello Hal

$./hello-function.sh Dave
First argument: Dave
Hello, Hal
I am function hello.

Modify the file hello-function.sh in your home
directory as shown above. Make sure you save the file
after you�ve modified it or your changes won�t take effect.

So, if we call our function with an argument (in this case
the argument is �Hal�), then the value of the positional
parameter 1 is indeed set to that argument within the
function.

So, if we want to our function to have the same first
argument as the shell script itself, then we need to call the
function with the first argument with which the shell script
was invoked.

You can probably guess how we do this�

27

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 27

Shell function arguments (4)
$ gedit hello-function.sh &
#!/bin/bash
function hello()
{

This is a shell function.
echo "Hello, ${1}"
echo "I am function ${FUNCNAME}."

}

#echo "First argument: ${1}"
hello "${1}"

$./hello-function.sh Dave
Hello, Dave
I am function hello.

Modify the file hello-function.sh in your home directory as
shown above. Make sure you save the file after you�ve modified
it or your changes won�t take effect.

Note that now we think we�ve cracked it, we can get rid of our
debugging effort. We could delete that line, but, if we were
wrong, we�d only have to put it back in again as we tried to figure
it out. So it is easier to just comment it out by inserting a hash
character (#) at the start of the line � recall that the shell treats
everything after a hash at the start of a line as a comment.

But as you probably guessed � it does indeed work the way we
want. Positional parameter 1 holds the first argument that was
given on the command line to the shell script, so if we want to
pass that argument to the hello function, we just put:

hello "${1}"

in our shell script, and voilà!

28

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 28

Why use shell functions?
� Allow us to structure our shell script:

! Functions " sub-tasks
� Easier to write small parts of the shell script at a

time:
! So we can write the easy bits first!

� Easier to test individual parts of the shell script
� Repetitive sequences of commands only appear in

one place:
! Less typing! Fewer typos!
! Easy to make changes
! Easy to fix errors

� Can re-use functions in different shell scripts

If you�re familiar with computer programming, you�ll
probably have already come across the concept of
functions in whatever programming languages you are
familiar with. The advantages of using shell functions
are basically the same as the advantages of using
functions in a programming language, as you can
probably tell from the slide above.

29

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 29

Script as a series of functions
function start()
{

�
}
function do_something()
{

�
}
function end()
{

�
}
function main()
{

�
}

main "${@}"

If you�ve implemented your shell script entirely as shell
functions, there is a really nice trick you can use when
something goes wrong and you need to debug your script, or if
you want to re-use some of those functions in another script.
As you�ve implemented the script entirely as a series of
functions, you have to call one of those functions to start the
script actually doing anything. For the purposes of this
discussion, let�s call that function main. So your script looks
something like that shown on the slide above. (You can see
an example of a script like this in the examples directory in
the file function-script.sh.)

By commenting out the call to the main function, you now
have a shell script that does nothing except define some
functions. You can now easily call the function(s) you want to
debug/use from another shell script using the source shell
builtin command (as we�ll see on the next day of this course).
This makes debugging much easier than it otherwise might be,
even of really long and complex scripts.

30

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 30

Improving multi-run.sh
� Depends on run-once.sh
� Location of run-once.sh hard-coded into

script:
! If we move run-once.sh, script breaks until it is

updated

#!/bin/bash

Parameters that stay the same each run
myFIXED_PARAMS="100 100 1000"

Run iterator program once for each argument
Note: *no* quotes around ${myFIXED_PARAMS}
or they'll be interpreted as one argument!
for zzARGS in "${@}" ; do

"${HOME}/scripts/run-once.sh" ${myFIXED_PARAMS} "${zzARGS}"
done

On the previous day of this course we met the scripts multi-run.sh and
run-once.sh. Together, these scripts gave us a nice way of running a
program several times with different parameter sets. However, they are not
as versatile as we might hope. run-once.sh requires that the program it
runs (iterator) be in the current directory. Since, in this example,
iterator is a special program for us (imagine it were your program that
you had written from scratch), that�s not such a bad limitation, since we quite
probably would have a working copy of the program in the directory where
we were going to store its output.

multi-run.sh, on the other hand, depends on the run-once.sh script,
and has the location of that script hard-coded into it. If we move the
run-once.sh script for some reason, then multi-run.sh will immediately
stop working. Wouldn�t it be nice if we could somehow avoid this problem,
but still keep the functionality of the two scripts somewhat separate?

One of way of doing exactly that would be to incorporate run-once.sh into
multi-run.sh as a shell function. That should be quite easy. We define a
function in multi-run.sh that does exactly the same thing as the
run-once.sh script, and in our for loop, instead of calling the
run-once.sh script, we call our function.

So, let�s do that and see what happens.

31

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 31

First exercise
Add run-once.sh to multi-run.sh

as a shell function:
#!/bin/bash

function run_program()
{
This function runs the iterator program

What goes here?
}

Parameters that stay the same each run
myFIXED_PARAMS="100 100 1000"

Run iterator program once for each argument
Note: *no* quotes around ${myFIXED_PARAMS}
or they'll be interpreted as one argument!
for zzARGS in "${@}" ; do

run_program ${myFIXED_PARAMS} "${zzARGS}"
done

The multi-run.sh and run-once.sh shell scripts are in the scripts directory
of your home directory. Your task is to get the functionality of the run-once.sh
script into the multi-run.sh script as a shell function. Above I�ve given you the
skeleton of what the modified script should look like. You should be able to fill in the
rest.

This should be a quick exercise, so when you finish it, take a short break and then
we�ll start again with the solution. (I really do mean take a break � sitting in front of
computers for long periods of time is very bad for you. Get up, move around, have a
drink, do a little dance, relax�)

You can check that you�ve done it correctly by trying to run your modified multi-
run.sh script (remember to save it after you�ve made your modifications!):
$ cd

$ rm �f *.dat stdout-* logfile

$ ls

$ scripts/multi-run.sh 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

$ ls

Hint: This exercise is essentially a cut-and-paste (or copy-and-paste) task. If you are trying to do anything much more complicated
than that, then you�re on the wrong track�

32

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 32

Recap: Shell functions
� �mini-shell scripts�

� Usually used for well-defined tasks (often
called repeatedly)

� Specify arguments by listing them after
function name when calling function
hello Dave

� Positional parameters (and related special
shell parameters) set to function�s arguments
within function
In function hello, positional parameter 1 = Dave

One thing worth noticing from the exercise we�ve just done:

The original script had the line:
"${HOME}/scripts/run-once.sh" ${myFIXED_PARAMS} "${zzARGS}"

The new script has the line:
run_program ${myFIXED_PARAMS} "${zzARGS}"

Note that arguments that we are passing have not changed in the
slightest. In the original script we were calling another shell script with
some arguments. In our new script we are calling a shell function with
the same arguments. The syntax for these is almost identical: the main
change is the name (and location) of the things being called. See?, I told
you shell functions were like �mini-shell scripts�. ☺

33

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 33

Testing
#!/bin/bash

function run_program()
{
This function runs the iterator program

�
}

Parameters that stay the same each run
myFIXED_PARAMS="100 100 1000"

run_program ${myFIXED_PARAMS} 0.8

Run iterator program once for each argument
Note: *no* quotes around ${myFIXED_PARAMS}
or they'll be interpreted as one argument!
#for zzARGS in "${@}" ; do
run_program ${myFIXED_PARAMS} "${zzARGS}"
#done

One of the advantages of writing a shell script using shell functions should be immediately
apparent. The main body of this shell script � the for loop � is nice and simple. It just calls a
function over and over varying one parameter each time. Because we�ve hidden the commands
that do the real work in a shell function, we can see this immediately just by looking at the script.

If we�d put all the lines in the run_program function in the for loop it would have obscured the
script�s structure, and we might have spent a lot of time trying to figure out what the individual
lines of script did before realising what was going on. It also helps that we�ve chosen a
meaningful name for our shell function. So just by looking at the script we can immediately say
�Aha! This script probably runs a program (run_program) several times, varying one of its
parameters each time.� (Of course, at this point we�d be taking it on faith that the author of the
shell script wasn�t an evil troll who deliberately chose misleading names for his shell functions.
Fortunately, most of those spend the majority of their time under bridges harassing goats.)

Another advantage is that we can easily test our shell function by just commenting the other
complicating bits of the shell script out (as above) and just running the function once with some
test arguments. This is worth doing every time you�ve written a new function (especially if it is
complicated) so that you know it behaves the way you expected it to. It also means that you
know that, if there is an error, it is not in that part of the shell script (that shell function). That
makes it much easier to track down errors.

You can save the above modifications and try out the script if you want: it should just run the
run_program function once, producing two output files (output-0.8.dat and stdout-0.8)
and writing some information about what it is doing to the log file logfile.

If you do try it out, make sure that you undo those modifications and return the shell script to its
former state (and save it) as we will be using the shell script later.

34

Command substitution is the process whereby the shell runs a command and substitutes
the command�s output for wherever the command originally appeared (in a shell script or
on the command line).

So, for example, the following line in a shell script:
myDIR="$(pwd)"

would set the shell variable myDIR to the full path of the current working directory. (We
don�t have to surround the $(pwd) in quotes, but it is a good idea: the path may contain
spaces.) This is how it works:
1. The shell runs the pwd command. The pwd command prints out the full path of the

current working directory, i.e. its output is the full path of the current working directory.
Let�s suppose we were in /tmp, so the output of the pwd command would be �/tmp�.

2. The shell takes this output (�/tmp�) and substitutes it for where the original expression
$(pwd) appeared. So what we now have is:

myDIR="/tmp"

3. As you probably know by now, this is just the normal way of assigning a value to a
shell variable, and, sure enough, that�s exactly what the shell does: it assigns the
value �/tmp� to the shell variable myDIR.

Instead of the $() construct you can also use backquotes, i.e. you can use `command`
instead of $(command), and you are likely to come across these in many shell scripts.
However, the use of backquotes is generally a very bad idea for two reasons: (1) it�s very
easy to misplace or overlook a backquote (with catastrophic results) as the backquote
character (`) is so small, and (2) it�s very difficult to use backquotes to do nested
command substitution (one command substitution inside another one).

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 34

Command substitution
Sometimes we want to get the output of a command

and use it in our shell script, for instance, we might
want a shell variable to hold the output of a
command. How do we do this?:

$(command)

$ cd /tmp

$ myDIRECTORY="$(pwd)"

$ echo "I will use directory: ${myDIRECTORY}"

I will use directory: /tmp

35

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 35

Improving multi-run.sh (2)
#!/bin/bash

function run_program()
{

�
Run program with passed arguments
"${myPROG}" "${@}" > "stdout-${4}"

�
}

Program to run: iterator
myPROG="$(pwd -P)/iterator"

Parameters that stay the same each run
myFIXED_PARAMS="100 100 1000"

�

Let�s make a small, but major, improvement to the multi-run.sh script (this script is in the scripts directory of
your home directory).

Change the lines:
Run iterator with passed arguments

./iterator "${@}" > "stdout-${4}"

to:
Run program with passed arguments

"${myPROG}" "${@}" > "stdout-${4}"

And add the lines:

Program to run: iterator

myPROG="$(pwd -P)/iterator"

Immediately before the line:
Parameters that stay the same each run

Why is this such a major improvement?
Firstly, by replacing the hard-coded ./iterator with a shell variable, we have made it much easier to modify the
script to use other programs instead of iterator. (Not to mention making it much more obvious where we make
such a modification.)
Secondly, by obtaining the full path of the iterator program our shell script can now work in another directory than
the one we start off in, as we now have a full path to the iterator program and so can run it from whatever
directory we may be in. We�ll see why this is a good idea in a minute.

For those wondering what �pwd -P� does, recall that, as already mentioned, pwd prints out the full path of the
current working directory. With the -P option it prints out the full physical path, i.e. the path will contain no symbolic
links which might change over time (or otherwise confuse things).

You can check that this modified multi-run.sh script still works � remember to save it after you�ve made your
modifications � with the same sequence of commands given for this purpose on the page 29 of your notes.

36

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 36

The mktemp command
Safely makes temporary files or directories for

you

Options:
-d make a directory instead of a file
-t make file or directory in a temporary

directory (usually /tmp)

$ mktemp -t -d iterator.XXXXXXXXXX
/tmp/iterator.khhcE30735

The mktemp command is an extremely useful command that allows users to
safely create temporary files or directories on multi-user systems. It is very
easy to unsafely create a temporary file or directory to work with from a shell
script, and, indeed, if your shell script tries to create its own temporary files or
directories using the normal Unix commands then it is almost certainly doing so
unsafely. Use the mktemp command instead.

Note that if you try the example above you will almost certainly get a directory
with a different name created for you.

Note also that mktemp has more options than the two listed above, but we
won�t be using them in this course. Note also that if you use a version of
mktemp earlier than version 1.3 (or a version derived from BSD, such as that
shipped with MacOS X) then you can�t use the -t option, and will have to
specify /tmp (or another temporary directory) explicitly, e.g.

mktemp -d /tmp/iterator.XXXXXXXXXX

How do you use mktemp? You give it a �template� which consists of a name
with some number of X�s appended to it (note that is an UPPER CASE letter
X), e.g. iterator.XXXXX. mktemp then replaces the X�s with random letters
and numbers to make the name unique and creates the requested file or
directory. It outputs the name of the file or directory it has created.

37

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 37

Improving multi-run.sh (3a)
#!/bin/bash
set -e

�
My current directory
myDIR="$(pwd -P)"
Temporary directory for me to work in
myTEMP_DIR="$(mktemp -t -d iterator.XXXXXXXXX)"

Change to temporary directory
cd "${myTEMP_DIR}"
Run program once for each argument
Note: *no* quotes around ${myFIXED_PARAMS}
or they'll be interpreted as one argument!
for zzARGS in "${@}" ; do

run_program ${myFIXED_PARAMS} "${zzARGS}"
done

Copy files back to my directory
cp -fpR . "${myDIR}"
Go back to my directory
cd "${myDIR}"
Clean up
rm -Rf "${myTEMP_DIR}"

Modify the multi-run.sh script in the scripts directory as shown above.

The improvement we�ve made here is to now do all our calculations in a temporary directory, and only
copy the output files (and log file) back to our working directory when we�ve finished.

(You should understand what all the lines of shell script we�ve just added are doing � if you don�t
please ask the course giver or demonstrator to explain.)

Why is this an improvement? Well, if, as in this course, the directory we are working from (our home
directory) is actually on a network filesystem, then this can have a major impact on performance,
particularly when the network is busy (like when a whole classroom is doing this course). By working
in /tmp, which is usually a local filesystem (as it is for PWF Linux machines) we no longer have to deal
with the network overheads and bottlenecks except right at the very end of the process. This should
make things much quicker. It also potentially makes things more reliable as well, as it minimises the
opportunity for network problems to mess up our work. (Hurrah!)

One other important thing to note is that we�ve told our script to abort as soon as it hits an error. That�s
what adding the �set -e� line immediately after �#!/bin/bash� at the start of the file does (you did
remember to make that modification, right?). (We can also get the same effect by starting the bash
shell with the -e option, for instance by changing the �#!/bin/bash� line at the start of the file to
�#!/bin/bash -e�.)

Why do this now? The reason is that our shell script is now doing something dangerous: it is
changing the working directory. Why is that dangerous? Well, imagine I tried to change to a
directory and failed for some reason. Thinking I�m in a different directory than I actually am, I promptly
delete everything in it. Oops!

We have one more change to make (see the next slide) and then you can check that you�ve modified
your script correctly by trying to run your modified multi-run.sh script (remember to save it after
you�ve made your modifications!).

38

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 38

Improving multi-run.sh (3b)
#!/bin/bash
set -e

function run_program()
{

�
Write to logfile
echo "" >> "${myLOGFILE}"
date >> "${myLOGFILE}"
echo "Running ${myPROG} with ${@}" >> "${myLOGFILE}"

�
Write to logfile
echo "Output file: output-${4}.dat" >> "${myLOGFILE}"
echo "Standard output: stdout-${4}" >> "${myLOGFILE}"

�
My current directory
myDIR="$(pwd -P)"
Location of log file
myLOGFILE="${myDIR}/logfile"

�

Now modify the multi-run.sh script in the scripts directory as shown
above.

We�ve made two improvements here. The first is to use a shell variable to
hold the location of our log file (so we only have to change its location in
one place in the future). The second (and more important) is to make our
script write to the end of the existing logfile in the current directory when
we run the script rather than overwriting logfile each time we run the
script. Since the log file is supposed to contain a record of all the runs of
the script that we do for posterity (and debugging), we normally wouldn�t
want it to be replaced with a new log file each time we run the script.
(You should understand what all the lines of shell script we�ve just added are
doing � if you don�t please ask the course giver or demonstrator to explain.)

You can check that you�ve done it correctly by trying to run your modified
multi-run.sh script (remember to save it after you�ve made your
modifications!):
$ cd

$ rm �f *.dat stdout-*

$ ls

$ scripts/multi-run.sh 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

$ ls

39

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 39

Now do it!

Make the changes to multi-run.sh indicated
on the previous slides (35, 37 & 38) and
then try the improved script.

Then take a short break. We�ll start again
in 5 minutes or thereabouts.

The multi-run.sh shell script is in the scripts directory of
your home directory. Make the modifications indicated on the
previous slides (35, 37 & 38), if you haven�t already.

Now check that you�ve done it correctly by trying to run your
modified multi-run.sh script (remember to save it after
you�ve made your modifications!):
$ cd

$ rm �f *.dat stdout-*

$ ls

$ scripts/multi-run.sh 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

$ ls

And when you finish doing this, please do take a quick break
before we continue. (And that�s �break� as in �break from the
computer� not �break to check my e-mail�.)

40

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 40

read
Get input from standard input�

�try to put each word (value) in as many
separate variables as are provided�

read VAR1 VAR2 VAR3

Options:
-p Use the following string as a prompt for the

user

$ read -p "What is the answer?: " myANSWER
What is the answer?: 42
$ echo "${myANSWER}"
42

The read shell builtin command takes input from standard input (usually the
keyboard) and returns it in the specified shell variable. If you don�t specify a
shell variable, it will return it in a shell variable called REPLY.

The -p option gives read a string that it displays as a prompt for the user.

You can give read more than one shell variable in which to return its input.
What happens then is that the first word it reads goes into the first shell variable,
the second word into the second shell variable and so on.

If there are more words than shell variables, the extra words all are put into the
last shell variable.

If there are more shell variables than words, each of the extra variables are set to
the empty string.

As far as read is concerned a �word� is a sequence of characters that does not
contain a space, i.e. it considers spaces as the thing that separates one word
from another. (The technical term for �thing that separates one thing from
another� is �delimiter�.)

41

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 41

Using read (1)
$ cd
$ gedit scripts/run-once-using-read.sh &

#!/bin/bash

Read in parameters from standard input
read -p "Input parameters for iterator: " myNX myNY myN_ITER myEPSILON

�

$ cd
$ scripts/run-once-using-read.sh
Input parameters for iterator: 10 10 100 0.7
$

In the scripts directory there is a shell script called
run-once-using-read.sh. Open this up with your
favourite editor (or gedit) and have a look at it.

The first line (that doesn�t start with a # character) is a
read shell builtin command that reads some values from
standard input and puts them in some shell variables.
(You should be able to work out how the rest of the script
has been modified to use these shell variables � if there
is anything you don�t understand, ask the course giver or
demonstrator.)

Let�s try this script out and see how it behaves.

42

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 42

Using read (2)
$ cd
$ rm -f *.dat stdout-* logfile *.png
$ scripts/run-once-using-read.sh
Input parameters for iterator: 10 10 100 0.7 garbage
$ ls
answers gnuplot iterator.gplt scripts
bin hello-function.sh logfile source
Desktop hello.sh output-0.7 garbage.dat stdout-0.7 garbage
examples iterator run-iterator.sh treasure.txt

$ gedit scripts/run-once-using-read.sh &

#!/bin/bash

Read in parameters from standard input
read -p "Input parameters for iterator: " myNX myNY myN_ITER myEPSILON myJUNK

So, on first try it seemed to do what we�d expect. However, if we give it some
input that should be invalid something slightly strange happens. If we give it 5
input parameters instead of 4, instead of complaining, or only using the first 4
parameters, it puts the last two parameters together to form one argument (�0.7
garbage�) in the above example and runs the iterator program with that (we
can see this is what is happening by inspecting the contents of the log file
logfile). The fact that the iterator program doesn�t complain, as we can
see by inspecting the files it produces, is an indication that the iterator
program is (yet again) not as well written as we might like (an all too common
complaint with software).
(Note that the output of the ls command may not exactly match what is shown above � in particular there may be other files
or directories show, and the colours may be slightly different.)

However, that fact that our script gives it mangled input to work with is an
indication that our script is broken. What is the problem and how can we fix it?

Recall how read works: if it reads more words (values) than it was given shell
variables, it puts all the extra ones together in the last shell variable. This is what
is happening here, and it is undesirable. We can fix this by giving read an extra
�dummy� shell variable that we never use, but that is simply there to hold any
extra junk it may read in.

Modify the run-once-using-read.sh shell script in the scripts directory as
shown above (remember to save it when you�ve finished).

43

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 43

Using read (3)
$ cd

$ rm -f *.dat stdout-* logfile

$ scripts/run-once-using-read.sh
Input parameters for iterator: 10 10 100 0.7 garbage

$ ls
answers gnuplot iterator.gplt scripts

bin hello-function.sh logfile source

Desktop hello.sh output-0.7 stdout-0.7

examples iterator run-iterator.sh treasure.txt

Now it works better. If we give it more than 4 input parameters it doesn�t mangle
the 4th argument that it passes to the iterator program.
(Note that the output of the ls command may not exactly match what is shown above � in particular there may be other files
or directories show, and the colours may be slightly different.)

Now this may seem like a lot of trouble to go to for not much in the way of
improvement to our script. After all, the original run-once.sh script could
perfectly well accept a single set of 4 parameters without all these problems � it
just wanted them on the command line rather than from standard input.

So, what�s the big deal about standard input? After all, if I have lots of parameter
sets to run I�m hardly going to sit there and type them all in one at a time!

Well, how many command line arguments can a shell script have? The answer
is quite a few but not an unlimited number. In fact, If I have thousands of
parameter sets, that�s definitely going to be too many for me to pass to my shell
script all in one go (or even a small number of goes) on the command line. So,
how do we deal with situation?

Hmmmm, maybe if I could put all my thousands of parameter sets into a file, and
then could somehow get my shell script to read in that file, one parameter set at
at time, that might do it� we need to be able to do a few more things to make
that particular idea fly, so let�s have a look at some of them now�

44

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 44

Pipes
A pipe takes the

�output of one command�
�and passes it to another command as
input�

command1 | command2

Pipes can be combined:

command1 | command2 | command3

A set of one or more pipes is known as a
pipeline

A pipe takes the output of one command and feeds it to another
command as input. We tell the shell to do this using the |
symbol. So:

ls | more

takes the the output of the ls command and passes it to the
more command, which displays the output of the ls command
one screenful at a time. We can combine several pipes by
taking the output of the last command of each pipe and passing
it to the first command in the next pipe, e.g.

ls | grep 'fred' | more

takes the output of ls and passes it to grep, which searches for
lines with the string �fred� in them, and then the output of grep
is passed to the more command to display one screenful at a
time. A set of one or more pipes is known as a pipeline. This
pipeline would show us all the files with the string �fred� in their
name, one screenful at a time.

45

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 45

Using pipes
$ cd
$ rm -f *.dat stdout-* logfile
$ cat scripts/param_set
100 100 1000 0.05
100 100 1000 0.1
100 100 1000 0.15
100 100 1000 0.2
100 100 1000 0.25
100 100 1000 0.3
100 100 1000 0.35
100 100 1000 0.4
100 100 1000 0.45
100 100 1000 0.5

$ cat scripts/param_set | scripts/run-once-using-read.sh
$ ls
answers gnuplot iterator.gplt scripts
bin hello-function.sh logfile source
Desktop hello.sh output-0.05 stdout-0.05
examples iterator run-iterator.sh treasure.txt

In the scripts directory there is a file called param_set that contains a
number of parameter sets. We can use the cat command to display the
contents of this file. In fact, if we use the cat command on this file, the output
of the cat command will be a list of parameter sets�

�and our run-once-using-read.sh shell script will accept a complete
parameter set as its input, so�

�if we connect the output of the cat command to the input of our shell script �
by, say, using a pipe � maybe that will give us what we want? Let�s try it!

Well, it almost does!, i.e. it does it for the first parameter set, but none of the
others. If we try running it again and again it will still only do it for the first
parameter set in the file, so we�re not quite there, but close. What we want is
some way of telling the script to keep reading until there is no more stuff to
read.

In fact, what we want is for the script to do some sort of loop: reading in a set
of values, then running the iterator program, then reading in the next set of
values, and so on. How can we get it to do that? Before we look at that, we
need to understand something else first�

46

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 46

Exit Status (1)
� Every program (or shell builtin command)

returns an exit status when it completes
� Number between 0 and 255
� Not the same as the program�s (or shell builtin

command�s) output
� By convention:

! 0 means the command succeeded
! Non-zero value means the command failed

� Exit status of the last command ran stored in
special shell parameter named ?

The exit status of a program is also called its exit code,
return code, return status, error code, error status,
errorlevel or error level.

47

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 47

Exit Status (2)
$ ls
answers gnuplot iterator.gplt scripts
bin hello-function.sh logfile source
Desktop hello.sh output-0.05 stdout-0.05
examples iterator run-iterator.sh treasure.txt

$ echo "${?}"
0

$ ls zzzzfred
/bin/ls: zzzzfred: No such file or directory

$ echo "${?}"
2

You get the value of the special parameter ? by using the
construct ${?}, as in the above example.

Note that when the ls command is successful, its exit
status is 0. When, however, it fails (for example because
the file does not exist, as here), its exit status is non-zero
(�2�, in this case). In our shell scripts, we will make
significant use of the fact that a non-zero exit status of a
program (or a shell builtin command) means that there was
an error.

Please note that the output of the ls command may not exactly
match what is shown on this slide � in particular, the colours may
be slightly different shades and there may be additional files and/or
directories shown (and/or � if you�ve recently cleaned up your
home directory � you may not have all of the files shown here).

48

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 48

true, false
true do nothing, successfully
$ true

$ echo "${?}"

0

false do nothing, unsuccessfully
$ false

$ echo "${?}"

1

It�s worth introducing a couple of commands at this point which do nothing.
(No, really.)

true does nothing and always succeeds, i.e. its exit status of 0.

false does nothing and always fails, i.e. its exit status is non-zero.

You may be wondering what possible use there could be for such
commands. The most obvious use is for debugging: suppose you have a
script that runs a program that take a long time, and you want to test the
script to make sure it works. You could replace the program that takes a
long time with true to see what your script does if it thinks the program has
succeeded. Similarly, you could replace the program your script is calling
with false if you want to see what your script will do if it thinks the program
has failed.

Another use for true is when you want the shell to do nothing (this is known
as a NOP or no-op command): for instance, shell functions and for loops
must contain at least one command. If, for some reason, you want a shell
function or a for loop that does nothing (maybe because you haven�t gotten
around to writing it yet but you want to be able to test the rest of your script)
you can use true. Then the shell won�t complain about the definition of your
function or the syntax of your for loop being incorrect, but they won�t
actually do anything.

49

Now that we know about the exit status of a command we
are ready to meet the loop structure alluded to earlier:

We can repeat a collection of one or more commands using
a while loop. A while loop repeats a collection of
commands as long as the result of some command is true.
The result of a command is considered to be true if it returns
an exit status of 0 (i.e. if the command succeeded). (The
command we use in a while loop could also be a test of
whether some expression is true. We�ll see how to do that
shortly.)

Note that even if set -e is in effect, or the first line of our
shell script is
#!/bin/bash -e

the shell script will not exit if the result of the command the
while loop depends on gives a non-zero exit status, since if
it did, this would make while loops unusable(!).

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 49

commands
to repeat

False

True

command
(or test)

rest
of script

while loop
Repeat some
commands
while some
command (or
test) is true

50

We use a while loop like this:

while <command> ; do

<some commands>

done

where <command> is a command (which could be a test; more on
tests later), and <some commands> is a collection of one or more
commands. Note that if <command> is false the shell script will not
exit, even if set -e is in effect or the first line of the shell script is
#!/bin/bash -e

As with a for loop, you can put the do on a separate line, in which
case you can omit the semi-colon (;).

There are some examples of how to use while loops in the
following files in the examples directory:

while1.sh

while2.sh

�but don�t look at those files just yet as we need to meet a few more
things first�

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 50

while <command> ; do

Keywords

Command that must be true
(execute successfully)

Commands to
repeat

<some commands>

done Keyword indicating
end of loop

while

51

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 51

while
Repeat while some command is true

while <command> ; do

<some commands>

done

To recap: we can repeat a collection of commands using a while loop. A while
loop repeats a collection of commands as long as the result of some command is
true. The result of a command is considered to be true if it returns an exit status of
0 (i.e. if the command succeeded). (The command we use in a while loop could
also be a test of whether some expression is true. We�ll see how to do that
shortly.) We use a while loop like this:

while <command> ; do

<some commands>

done

where <command> is a command (which could be a test), and <some commands>
is a collection of one or more commands. Note that even if set -e is in effect, or
the first line of the shell script is #!/bin/bash -e, the shell script will not exit if
the result of <command> is not true.

As with a for loop, you can put the do on a separate line, in which case you can
omit the semi-colon (;).

There are some examples of how to use while loops in the following files in the
examples directory:

while1.sh

while2.sh

�but don�t look at those files just yet as we need to meet a few more things first�

52

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 52

Using while (1)
$ cd

$ cp -p scripts/run-once-using-read.sh scripts/run-while-read.sh

$ gedit scripts/run-while-read.sh &

#!/bin/bash

Read in parameters from standard input

and then run iterator with them

and run it again and again until there are no more

while read myNX myNY myN_ITER myEPSILON myJUNK ; do

�
echo "Standard output: stdout-${myEPSILON}" >> logfile

done

Create a copy of the run-once-using-read.sh shell script in the scripts
directory called run-while-read.sh. Open this up with your favourite editor
(or gedit) and modify it as shown above.

Basically, replace the line:
read -p "Input parameters for iterator: " myNX myNY myN_ITER
myEPSILON myJUNK

with:
and then run iterator with them

and run it again and again until there are no more

while read myNX myNY myN_ITER myEPSILON myJUNK ; do

And at the very end of the file add the following line:
done

Remember to save the script when you�ve finished.

Now let�s try this script out and see if it does what we want:
$ cd

$ rm �f *.dat stdout-* logfile

$ cat scripts/param_set | scripts/run-while-read.sh

$ ls

53

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 53

Second exercise
Make a copy of multi-run.sh and

make it read all the arguments for iterator
in from standard input using a while loop:

$ cd
$ cp -p scripts/multi-run.sh scripts/multi-run-while.sh

#!/bin/bash
set -e

�
Run program once for each argument
Note: *no* quotes around ${myFIXED_PARAMS}
or they'll be interpreted as one argument!
for zzARGS in "${@}" ; do

run_program ${myFIXED_PARAMS} "${zzARGS}"
done

�

The multi-run.sh shell scripts is in the scripts directory of your home directory. Make a
copy of it called multi-run-while.sh, also in the scripts directory, and work on that.
Your task is to get multi-run-while.sh to read in all the arguments for iterator from
standard input (all its arguments, not just the fourth one) using a while loop.

Start by deleting the following two lines:
Parameters that stay the same each run

myFIXED_PARAMS="100 100 1000"

�and you should also get rid of any other references to the shell variable myFIXED_PARAMS �
you won�t be using it in this script.

We have gone through everything you need to do this exercise. You should comment the
modifications you make to your shell script, preferably as you are writing it.

And when you finish this exercise, please do take a short break before we start again with the
solution. (And that�s �break� as in �break from the computer� not �break to check my e-mail�.)

You can check that you�ve done it correctly by trying to run your multi-run-while.sh script
(remember to save it after you�ve made your modifications!):
$ cd

$ rm �f *.dat stdout-* logfile

$ ls

$ cat scripts/param_set | scripts/multi-run-while.sh

$ ls

Hint: Try copying the run-while-read.sh script�

54

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 54

Recap: standard input/while loops
� Command substitution $(command) can be used to get

the output of a command into a shell variable

� Use mktemp to make temporary files and directories

� read gets values from standard input

� Pipes connect one command�s output to another�s input

� The command true does nothing but is considered to
be true (its exit status is 0); the command false does
nothing but is not considered to be true (non-zero exit
status).

� while loops repeat some commands while something
is true � can be used to read in multiple lines of input
with read

Note that while loops can contain other while
loops, and they can also contain for loops (or
both). Similarly, for loops can contain while
loops or other for loops (or both).

55

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 55

Tests
Test to see if something is true:

[<expression>]

or: test <expression>

where <expression> can be any of a
number of things such as:

["a" �eq "b"]

["a" �le "b"]

["a" �gt "b"]

A test is basically the way in which the shell evaluates an expression to see if it is true.
(Recall that they I said they can be used with while; we�ll see how in a minute.) There
are many different tests that you can do, and we only list a few here:

"a" �lt "b" true if and only if the integer a is less than the integer b

"a" �le "b" true if and only if the integer a is less than or equal to the integer b

"a" �eq "b" true if and only if the integer a is equal to the integer b

"a" �ne "b" true if and only if the integer a is not equal to the integer b

"a" �ge "b" true if and only if the integer a is greater than or equal to the integer b

"a" �gt "b" true if and only if the integer a is greater than the integer b

You can often omit the quotation marks, particularly for arithmetic tests (we�ll meet other
sorts of tests on the next day of this course), but it is good practice to get into the habit of
using them, since there are times when not using them can be disastrous.
In the above tests, a and b can be any integers. Recall that shell variables can hold
pretty much any value we like � they can certainly hold integer values, so a and/or b in
the above expressions could come from shell variables, e.g.

["${VAR}" �eq "5"]

Or, equivalently:
test "${VAR}" �eq "5"

is true if and only if the shell variable VAR contains the value �5�.

Note that you must have a space between the square brackets [] (or the word test if
you are using that form) and the expression you are testing � if you do not then the shell
will not realise that you are trying to do a test.

56

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 56

Arithmetic Expansion: $(())
� Returns the value of an integer

arithmetic operation
� Operands must be integers (so no

decimals, e.g. 2.5, etc)
� Do not use quotes in the arithmetic

expression

$((<arithmetic-expression>))

Example:
$((${VAR} + 56))

The shell can also do (primitive) integer arithmetic, which can
be very useful, as we will see in a minute.

The construct $((<arithmetic-expression>)) means
replace $((<arithmetic-expression>)) with the result
of the integer arithmetic expression
<arithmetic-expression>. This is known as arithmetic
expansion. (The arithmetic expression is evaluated as
integer arithmetic.)

Note that we don�t use quotes around our variables in
our arithmetic expression as that would cause the shell
to treat the values as strings rather than numbers.
(This is, alas, somewhat inconsistent with the shell�s
behaviour elsewhere, because the syntax used for
arithmetic expansion is actually a completely different
language to everything else we�ve met in bash.)

57

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 57

while loops that count
Consider the following while loop:

zzCOUNT=1

while ["${zzCOUNT}" �le "6"] ; do

echo "${zzCOUNT}"

zzCOUNT=$((${zzCOUNT} + 1))

done

When we put together arithmetic tests, while loops and
arithmetic expansion, we can construct a while loop that
counts for us, as in the above example. Can you figure
out what the above loop will do?

When you think you know, try running the script
while2.sh in the examples directory of your home
directory. That will show you the output of the above
while loop, immediately followed by the output of a very
similar while loop where zzCOUNT starts off with the
value 0 rather than 1.

Note that while loops can (and often do) contain other
while loops (or for loops). We say that one loop is
nested inside the other one.

58

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 58

Using while (2)
$ cd

$ cat scripts/generate-params.sh

#!/bin/bash

myNX="10"

myNY="10"

myEPSILONS="0.1 0.2 0.3 0.4 0.5"

for zzEPS in ${myEPSILONS} ; do

zzITERS="10"

while ["${zzITERS}" -le "10000"] ; do

echo "${myNX} ${myNY} ${zzITERS} ${zzEPS}" >> new_param_set

zzITERS=$((${zzITERS} * 10))

done

done

$ scripts/generate-params.sh

$ more new_param_set

Examine the file called generate-params.sh in the
scripts directory of your home directory (shown above).

Then try it out and see what it does.

59

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 59

Generalising multi-run-while.sh

#!/bin/bash

set -e

�
"${myPROG}" "${@}" > "stdout-${1}-${2}-${3}-${4}"

�
mv output.dat "output-${1}-${2}-${3}-${4}.dat"

�
echo "Output file: output-${1}-${2}-${3}-${4}.dat" >> "${myLOGFILE}"

echo "Standard output: stdout-${1}-${2}-${3}-${4}" >> "${myLOGFILE}"

Modify the multi-run-while.sh script in the scripts directory as
shown above.

(Remember to save it when you�ve finished.)

Basically we are replacing all the instances of the string �${4}� with the
string �${1}-${2}-${3}-${4}�. This means that now, instead of our
output files being based on the fourth argument that is passed to
iterator, they are based on all the parameters in the parameter set.
This is is clearly necessary as we start to experiment with varying
parameters other than just the fourth one.

And we finish with an exercise.

If you want to do the exercise outside of class, the files you�ll need can be
found at:

http://www-uxsup.csx.cam.ac.uk/courses/ShellScriptingSci/exercises/day-two.html

60

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 60

Final exercise � Part One

Improve the run_program function in
multi-run-while.sh so that as well
as running iterator it also runs
gnuplot (using the iterator.gplt
file) to plot a graph of the output.

This exercise should be fairly straightforward. One sensible way of approaching it
would be as follows:

1. Figure out the full path of the iterator.gplt file. Store it in a shell variable
(maybe called something like myGPLT_FILE).

2. Immediately after running iterator, run gnuplot:

gnuplot "${myGPLT_FILE}"

3. Rename the output.png file produced by gnuplot along the same lines as
the output.dat file produced by iterator is renamed.

Make sure you test the script after you�ve modified it and check that it does
what you would expect.

This exercise highlights one of the advantages of using functions: we can improve
or change our functions whilst leaving the rest of the script unchanged. In
particular, the structure of the script remains unchanged. This means two things:
(1) if there are any errors after changing the script they are almost certainly in the
function we changed, and (2) the script is still doing the same kind of thing (as we
can see at a glance) � we�ve just changed the particulars of one of its functions.

61

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 61

Final exercise � Part Two
Now create a new shell script based on
multi-run-while.sh that will run iterator three
times for each parameter set the script reads in on
standard input, changing the third parameter each
time as follows:

For a given parameter set a b c d, first your script should
run iterator with the parameter set:

a b 10 d
�then with the parameter set:

a b 100 d
�and then with the parameter set:

a b 1000 d

An example may help to make this task clearer. Suppose your script reads in the parameter set:

10 10 50 0.5
�it should then run the iterator program 3 times, once for each of the following parameter sets:

10 10 10 0.5

10 10 100 0.5

10 10 1000 0.5

The first thing to do is to make a copy of the multi-run-while.sh script and work on the copy � I
suggest you call your copy something like multi-10-100-1000.sh:

$ cd

$ cp �p scripts/multi-run-while.sh scripts/multi-10-100-1000.sh

Now, currently the script will read in a parameter set and then call the run_program function to
process that parameter set. Clearly, instead of passing all four parameters that the script reads in,
your new script will now only be passing the first (myNX), second (myNY), and fourth (myEPSILON)
parameters that it has read in. However, the iterator program requires 4 parameters (and it cares
about the order in which you give them to it), so your script still needs to give it 4 parameters, it is just
going to ignore the third parameter it has read (myN_ITER) and substitute values of its own instead.

There are two approaches you could take. One would be to call the run_program function 3 times,
once with 10 as the third parameter, once with 100 as the third parameter and once with 1000 as the
third parameter. The other would be to use some sort of loop that calls the run_program function,
using the appropriate value (10, 100 or 1000) for the third parameter on each pass of the loop. I want
you to use the loop approach.

Hint: Use a for loop.

62

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 62

Final exercise � Part Three
Now create a new shell script, based on the script you created in the previous

part of the exercise, that does the following:
Instead of running iterator three times for each parameter set it reads in, this

script should accept a set of values on the command line, and use those
instead of the hard-coded 10, 100, 1000 previously used.

Thus, for each parameter set it reads in on standard input, it should run
iterator substituting, in turn, the values from the command line for the
third parameter in the parameter set it has read in.

So, if the script from the previous part of the exercise was called
multi-10-100-1000.sh, and we called this new script
multi-iterations.sh (and stored both in the scripts directory of our
home directory), then running the new script like this:

$ cat ~/scripts/param_set | ~/scripts/multi-iterations.sh 10 100 1000

should produce exactly the same output as running the old script with the
same input file:

$ cat ~/scripts/param_set | ~/scripts/multi-10-100-1000.sh

The first thing to do is to make a copy of the previous script (which I suggested you call
multi-10-100-1000.sh) and work on the copy � I suggest you call your copy
something like multi-iterations.sh:

$ cd

$ cp �p scripts/multi-10-100-1000.sh scripts/multi-iterations.sh

You may be wondering what the point of the previous script and this script are.
Consider what these scripts actually do: they take a parameter set, vary one of its
parameters and then run some program with the modified parameter sets. Why would
we want to do this?

Well, in this example the parameter we are varying specifies the number of iterations
for which our program will run. You can easily imagine that we might have a simulation
or calculation for which, for any given parameter set, interesting things happened after
various numbers of iterations. These scripts allow us to take each parameter set and
run it several times for different numbers of iterations. We can then look at each
parameter set and see how varying the number of iterations affects the program�s
output for that parameter set.
If we were using the parameter sets in the scripts/param_set file, we might notice
that these parameters are the same except for the fourth parameter which varies. So if
we pipe those parameter sets into one of these scripts, we are now investigating how
the output of the iterator program varies as we vary two of its input parameters,
which is kinda neat, doncha think? ☺

Hint: Modify the loop you used in the previous script to loop over all the command line arguments rather than some hard coded
values. If you don�t remember the construct that gives you all the command line arguments have a look at the recap of the
previous day of this course.

63

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 63

Final exercise � Files

All the files (scripts, iterator program, etc)
used in this course are available on-line at:

http://www-uxsup.csx.cam.ac.uk/courses/ShellScriptingSci/exercises/
day-two.html

We�ll be looking at the answers to this exercise on
the next day of this course, so please make sure you
have attempted this exercise before you come to the
next day of this course.

