
1

Simple Shell Scripting for
Scientists

Julian King
Bruce Beckles

University of Cambridge Computing Service

Day Three

2

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 2

Introduction
� Who:

! Julian King, Unix Support, UCS
! Bruce Beckles, e-Science Specialist, UCS

� What:
! Simple Shell Scripting for Scientists course, Day Three
! Part of the Scientific Computing series of courses

� Contact (questions, etc):
! scientific-computing@ucs.cam.ac.uk

� Health & Safety, etc:
! Fire exits

� Please switch off mobile phones!

As this course is part of the Scientific
Computing series of courses run by the
Computing Service, all the examples that we
use will be more relevant to scientific
computing than to system administration, etc.

This does not mean that people who wish to
learn shell scripting for system administration
and other such tasks will get nothing from this
course, as the techniques and underlying
knowledge taught are applicable to shell
scripts written for almost any purpose.
However, such individuals should be aware
that this course was not designed with them in
mind.

3

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 3

What we don�t cover
� Different types of shell:

! We are using the Bourne-Again SHell
(bash).

� Differences between versions of bash
� Very advanced shell scripting � try

one of these courses instead:
! �Python: Introduction for Absolute Beginners�
! �Python: Introduction for Programmers�

bash is probably the most common shell on modern Unix/Linux systems
� in fact, on most modern Linux distributions it will be the default shell
(the shell users get if they don�t specify a different one). Its home page
on the WWW is at:

http://www.gnu.org/software/bash/

We will be using bash 4.0 in this course, but everything we do should
work in bash 2.05 and later. Version 4, version 3 and version 2.05 (or
2.05a or 2.05b) are the versions of bash in most widespread use at
present. Most recent Linux distributions will have one of these versions
of bash as one of their standard packages. The latest version of bash
(at the time of writing) is bash 4.1, which was released on 31
December, 2009.

For details of the �Python: Introduction for Absolute Beginners� course,
see:

http://www.training.cam.ac.uk/ucs/course/ucs-python

For details of the �Python: Introduction for Programmers� course, see:

http://www.training.cam.ac.uk/ucs/course/ucs-python4progs

4

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 4

Related course

Unix Systems: Further Commands:
!More advanced Unix/Linux

commands you can use in your
shell scripts

!Course discontinued (due to lack of
demand) but course notes still
available on-line

For the course notes from the �Unix Systems: Further
Commands� course, see:

http://www-uxsup.csx.cam.ac.uk/courses/Commands/

5

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 5

Outline of Course
1. Recap of days one & two
2. The if statement
3. exit, standard error

SHORT BREAK

4. More tests
5. if�then�else

6. Better error handling, return
7. if�elif�elif�elif�else

SHORT BREAK

8. Manipulating filenames
9. source

Exercise

The course officially finishes at 17.00, but the
intention is that the lectured part of the course will
be finished by about 16.30 or soon after, and the
remaining time is for you to attempt an exercise that
will be provided. If you need to leave before 17.00
(or even before 16.30), please do so, but don�t
expect the course to have finished before then. If
you do have to leave early, please leave quietly and
please make sure that you fill in a green Course
Review form and leave it at the front of the class
for collection by the course giver.

6

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 6

Start a shell

7

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 7

Screenshot of newly started shell

8

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 8

Recap: Days One & Two
� Shell scripts as linear lists of commands
� Simple use of shell variables and parameters
� Simple command line processing
� Shell functions
� Pipes and output redirection
� Accessing standard input using read
� for and while loops
� (Integer) arithmetic tests
� Command substitution and (integer) arithmetic

expansion
� The mktemp command

9

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 9

Recap: Shell functions (1)
$ cd
$ cat hello-function.sh
#!/bin/bash
function hello()
{
This is a shell function.
echo "Hello!"
echo "I am function ${FUNCNAME}."

}

$./hello-function.sh
$

Shell functions are similar to functions in most high-level programming languages.
Essentially they are �mini-shell scripts� (or bits of shell scripts) that are invoked (called)
by the main shell script to perform one or more tasks. When called they can be
passed arguments (parameters), as we will see later, and when they are finished they
return control to the statement in the shell script immediately after they were called.

To define a function, you just write the following at the start of the function:
function function_name()

{

where function_name is the name of the function. Then, after the last line of the
function you put a line with just a closing curly brace (}) on it:

}

Note that unlike function definitions in most high level languages you don�t list what
parameters (arguments) the function takes. This is not so surprising when you
remember that shell functions are like �mini-shell scripts� � you don�t explicitly define
what arguments a shell script takes either.

Like functions in a high-level programming language, defining a shell function doesn�t
actually make the shell script do anything � the function has to be called by another
part of the shell script before it will actually do anything.

FUNCNAME is a special shell variable (introduced in version 2.04 of bash) that the shell
sets within a function to the name of that function. When not within a function, the
variable is unset.

10

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 10

Recap: Shell functions (2)
� �mini-shell scripts�

� Usually used for well-defined tasks (often
called repeatedly)

� Specify arguments by listing them after
function name when calling function
hello Dave

� Positional parameters (and related special
shell parameters) set to function�s arguments
within function
In function hello, positional parameter 1 = Dave

If you�ve implemented your shell script entirely as shell functions, there is a really nice trick you
can use when something goes wrong and you need to debug your script, or if you want to re-
use some of those functions in another script. As you�ve implemented the script entirely as a
series of functions, you have to call one of those functions to start the script actually doing
anything. For the purposes of this discussion, let�s call that function main. So your script
looks something like:

function start()

{

�

}

function do_something()

{

�

}

function end()

{

�

}

function main()

{

�

}

main

By commenting out the call to the main function, you now have a shell script that does nothing
except define some functions. You can now easily call the function(s) you want to debug/use
from another shell script using the source shell builtin command (as we�ll see on the next day
of this course). This makes debugging much easier than it otherwise might be, even of really
long and complex scripts.

11

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 11

Recap: Output redirection and
pipes

� Commands normally send their output to
standard output (which is usually the screen)

� Standard output can be redirected to a file

� A pipe takes the output of one command and
supplies it to another command as input.

12

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 12

Recap: More input and output, and
while loops

� Command substitution $(command) can be used to get
the output of a command into a shell variable

� Use mktemp (see Appendix for details) to make temporary
files and directories

� read gets values from standard input

� while loops repeat some commands while something is
true � can be used to read in multiple lines of input with
read

� A command is considered to be true if its exit status is 0.

� The command true does nothing but is considered to be
true (its exit status is 0); the command false does nothing
but is not considered to be true (non-zero exit status).

Note that even if we are using:
set -e

or the first line of our shell script is
#!/bin/bash -e

the shell script will not exit if the �something� the
while loop depends on gives a non-zero exit
status (i.e. is false), since if it did, this would make
while loops unusable(!).

13

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 13

Recap: Exit Status
� Every program (or shell builtin command)

returns an exit status when it completes
� Number between 0 and 255
� Not the same as the program�s (or shell builtin

command�s) output
� By convention:

! 0 means the command succeeded
! Non-zero value means the command failed

� Exit status of the last command ran stored in
special shell parameter named ?

The exit status of a program is also called its exit
code, return code, return status, error code, error
status, errorlevel or error level.

You get the value of the special parameter ? by
using the construct ${?}.

14

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 14

Recap: Tests
Test to see if something is true:

[<expression>]

or: test <expression>

where <expression> can be any of a
number of things such as:

["a" �eq "b"]

["a" �le "b"]

["a" �gt "b"]

A test is basically the way if which the shell evaluates an expression to see if it is true.
(Recall that they can be used with while.) There are many different tests that you can
do, and we only list a few here:

"a" �lt "b" true if and only if the integer a is less than the integer b

"a" �le "b" true if and only if the integer a is less than or equal to the integer b

"a" �eq "b" true if and only if the integer a is equal to the integer b

"a" �ne "b" true if and only if the integer a is not equal to the integer b

"a" �ge "b" true if and only if the integer a is greater than or equal to the integer b

"a" �gt "b" true if and only if the integer a is greater than the integer b

You can often omit the quotation marks, particularly for arithmetic tests (we�ll meet other
sorts of tests on the next day of this course), but it is good practice to get into the habit of
using them, since there are times when not using them can be disastrous.
In the above tests, a and b can be any integers. Recall that shell variables can hold
pretty much any value we like � they can certainly hold integer values, so a and/or b in
the above expressions could come from shell variables, e.g.

["${VAR}" �eq "5"]

Or, equivalently:
test "${VAR}" �eq "5"

is true if and only if the shell variable VAR contains the value �5�.

Note that you must have a space between the square brackets [] (or the word test if
you are using that form) and the expression you are testing � if you do not then the shell
will not realise that you are trying to do a test.

15

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 15

Recap: Shell arithmetic

� The shell can do integer arithmetic �
this is known as arithmetic expansion

� The shell can also perform arithmetic
tests on integers (>, ≥, =, ≤, <)

16

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 16

Recap: Arithmetic Expansion
$(())

� Returns the value of an integer
arithmetic operation

� Operands must be integers (so no
decimals, e.g. 2.5, etc)

� Do not use quotes in the arithmetic
expression

$((<arithmetic-expression>))

Example:
$((${VAR} + 56))

The shell can also do (primitive) integer arithmetic, which can
be very useful.

The construct $((<arithmetic-expression>)) means
replace $((<arithmetic-expression>)) with the result
of the integer arithmetic expression
<arithmetic-expression>. This is known as arithmetic
expansion. (The arithmetic expression is evaluated as
integer arithmetic.)

Note that we don�t use quotes around our variables in
our arithmetic expression as that would cause the shell
to treat the values as strings rather than numbers.
(This is, alas, somewhat inconsistent with the shell�s
behaviour elsewhere, because the syntax used for
arithmetic expansion is actually a completely different
language to everything else we�ve met in bash.)

17

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 17

Recap: What are we trying to do?

Scientific computing

i.e. shell scripts that do
some useful scientific
work, e.g. repeatedly
running a simulation
or analysis with different data

Recall the name of this course (�Simple Shell Scripting for Scientists�)
and its purpose: to teach you, the scientist, how to write shell scripts that
will be useful for your scientific work.

As mentioned on the first day of the course, one of the most common
(and best) uses of shell scripts is for automating repetitive tasks. Apart
from the sheer tediousness of typing the same commands over and over
again, this is exactly the sort of thing that human beings aren�t very good
at: the very fact that the task is repetitive increases the likelihood we�ll
make a mistake (and not even notice at the time). So it�s much better to
write (once) � and test � a shell script to do it for us. Doing it via a shell
script also makes it easy to reproduce and record what we�ve done, two
very important aspects of any scientific endeavour.

So, the aim of this course is to equip you with the knowledge and skill
you need to write shell scripts that will let you run some program (e.g. a
simulation or data analysis program) over and over again with different
input data and organise the output sensibly.

18

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 18

Sample program: iterator

$./iterator 100 100 1000 0.05
x dimension of grid: 100

y dimension of grid: 100

Number of iterations: 1000

Epsilon: 0.050000

Output file: output.dat

Iterations took 2.100 seconds

The iterator program is in your home directory. It is a program written
specially for this course, but we�ll be using it as an example program for
pretty general tasks you might want to do with many different programs.
Think of iterator as just some program that takes some input on the
command line and then produces some output (on the screen, or in one or
more files, or both), e.g. a scientific simulation or data analysis program.

The iterator program takes 4 numeric arguments on the command
line: 3 positive integers and 1 floating-point number. It always writes its
output to a file called output.dat in the current working directory, and
also writes some informational messages to the screen.

The iterator program is not as well behaved as we might like (which,
sadly, is also typical of many programs you will run). The particular way
that iterator is not well behaved is this: every time it runs it creates a
file called running in the current directory, and it will not run if this file is
already there (because it thinks that means it is already running).
Unfortunately, it doesn�t remove this file when it has finished running, so
we have to do it manually if we want to run it multiple times in the same
directory.

19

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 19

Exercise from Day Two (Part One)

Improve the run_program function in
multi-run-while.sh so that as well
as running iterator it also runs
gnuplot (using the iterator.gplt
file) to plot a graph of the output.

The multi-run-while.sh shell script (in the scripts subdirectory of your
home directory) runs the iterator program (via a shell function called
run_program) once for each parameter set that it reads in from standard input.
This exercise requires you to modify the run_program shell function of that script
so that, as well as running the iterator program it also runs gnuplot to turn the
output of the iterator program into a graph.

One sensible way of doing this would be as follows:

1. Figure out the full path of the iterator.gplt file. Store it a shell variable
(maybe called something like myGPLT_FILE).

2. Immediately after running iterator, run gnuplot:

gnuplot "${myGPLT_FILE}"

3. Rename the output.png file produced by gnuplot along the same lines as
the output.dat file produced by iterator is renamed.

This exercise highlights one of the advantages of using functions: we can improve
or change our functions whilst leaving the rest of the script unchanged. In
particular, the structure of the script remains unchanged. This means two things:
(1) if there are any errors after changing the script they are almost certainly in the
function we changed, and (2) the script is still doing the same kind of thing (as we
can see at a glance) � we�ve just changed the particulars of one of its functions.

20

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 20

Solution to Part One
#!/bin/bash
set -e

function run_program()
{

�
Run program with passed arguments
"${myPROG}" "${@}" > "stdout-${1}-${2}-${3}-${4}"

Run gnuplot
gnuplot "${myGPLT_FILE}"

�
Rename files
mv output.dat "output-${1}-${2}-${3}-${4}.dat"
mv output.png "output-${1}-${2}-${3}-${4}.png"

�
Write to logfile
echo "Output file: output-${1}-${2}-${3}-${4}.dat" >> "${myLOGFILE}"
echo "Plot of output file: output-${1}-${2}-${3}-${4}.png" >> "${myLOGFILE}"

�
}

Program to run: iterator
myPROG="$(pwd -P)/iterator"

Location of gnuplot file
myGPLT_FILE="$(pwd �P)/iterator.gplt"

�

If you examine the multi-run-while.sh script in the scripts
subdirectory of your home directory, you will see that it has been
modified as shown above to run gnuplot after running iterator.

You should be able to tell what all the highlighted parts of the shell
script above do � if there is anything you don�t understand, or if you
had any difficulty with this part of the exercise, please let the course
giver or demonstrator know.

You can test that this script works by doing the following:
$ cd

$ rm �f *.dat *.png stdout-* logfile

$ cat scripts/param_set | scripts/multi-run-while.sh

$ ls

You should see that there is a PNG file for each of the renamed .dat
output files. You should also inspect logfile to see what it looks like
now.

21

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 21

Exercise from Day Two (Part Two)

Now create a new shell script based on
multi-run-while.sh that will run iterator three
times for each parameter set the script reads in on
standard input, changing the third parameter each
time as follows:

For a given parameter set a b c d, first your script should
run iterator with the parameter set:

a b 10 d
�then with the parameter set:

a b 100 d
�and then with the parameter set:

a b 1000 d

An example may help to make this task clearer. Suppose your script reads in the parameter
set:

10 10 50 0.5
�it should then run the iterator program 3 times, once for each of the following parameter
sets:

10 10 10 0.5

10 10 100 0.5

10 10 1000 0.5

Now, currently the script will read in a parameter set and then call the run_program
function to process that parameter set. Clearly, instead of passing all four parameters that the
script reads in, the new script will now only be passing the first (myNX), second (myNY), and
fourth (myEPSILON) parameters that it has read in. However, the iterator program
requires 4 parameters (and it cares about the order in which you give them to it), so the new
script still needs to give it 4 parameters, it is just going to ignore the third parameter it has
read (myN_ITER) and substitute values of its own instead.

There are two obvious approaches you could have taken in performing this task. One would
be to call the run_program function 3 times, once with 10 as the third parameter, once with
100 as the third parameter and once with 1000 as the third parameter. The other would be to
use some sort of loop that calls the run_program function, using the appropriate value (10,
100 or 1000) for the third parameter on each pass of the loop. I wanted you to use the loop
approach.

22

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 22

Solution to Part Two (1)
#!/bin/bash

set -e

�
Read in parameters from standard input

and then run program with them

and run it again and again until there are no more

while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,

use 10, then 100, then 1000.

for zzITER in 10 100 1000 ; do

Run program

run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"

done

�

If you examine the multi-10-100-1000.sh script in the scripts
subdirectory of your home directory, you will see that it is a version of the
multi-run-while.sh script that has been modified as shown above.

You should be able to tell what all the highlighted parts of the shell script
above do, and you should be able to see why this is a solution to this part of
the exercise � if there is anything you don�t understand, or if you had any
difficulty with this part of the exercise, please let the course giver or a
demonstrator know.

You can test that this script works by doing the following:
$ cd

$ rm �f *.dat *.png stdout-* logfile

$ cat scripts/param_set | scripts/multi-10-100-1000.sh

$ ls

You should see that a number of PNG and .dat files have been produced.
You could view some of the PNG files to make sure they were what was
expected by using Eye of GNOME (eog) or another PNG viewer (such as
Firefox).

23

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 23

Solution to Part Two (2)
#!/bin/bash
set -e

�
Read in parameters from standard input
and then run program with them
and run it again and again until there are no more
while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,
use 10, then 100, then 1000.
zzITER=10
while ["${zzITER}" -le "1000"] ; do

Run program
run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"
zzITER=$((${zzITER} * 10))

done

�

There is another way you could have achieved the same thing, also using a loop, but this
time using a while loop instead of a for loop. This may seem a somewhat perverse way
of doing things, but if you had a parameter that was an integer that you wished to increase
by some constant factor a large number of times, e.g. 2, 4, 8, 16, 32, 64, etc. then this
would be a better way of doing it than trying to type them all out as a list of values for a for
loop.

If you examine the multi-10-100-1000-alternate.sh script in the scripts
subdirectory of your home directory, you will see that it is a version of the
multi-run-while.sh script that has been modified as shown above.

You should be able to tell what all the highlighted parts of the shell script above do, and you
should be able to see why this is a solution to this part of the exercise � if there is anything
you don�t understand, or if you had any difficulty with this part of the exercise, please let the
course giver or a demonstrator know.

You can test that this script works by doing the following:
$ cd

$ rm �f *.dat *.png stdout-* logfile

$ cat scripts/param_set | scripts/multi-10-100-1000-alternate.sh

$ ls

�and examining the files produced.

24

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 24

Exercise from Day Two (Part Three)
Now create a new shell script, based on the script you created in the previous

part of the exercise, that does the following:
Instead of running iterator three times for each parameter set it reads in, this

script should accept a set of values on the command line, and use those
instead of the hard-coded 10, 100, 1000 previously used.

Thus, for each parameter set it reads in on standard input, it should run
iterator substituting, in turn, the values from the command line for the
third parameter in the parameter set it has read in.

So, if the script from the previous part of the exercise was called
multi-10-100-1000.sh, and we called this new script
multi-iterations.sh (and stored both in the scripts directory of our
home directory), then running the new script like this:

$ cat ~/scripts/param_set | ~/scripts/multi-iterations.sh 10 100 1000

should produce exactly the same output as running the old script with the
same input file:

$ cat ~/scripts/param_set | ~/scripts/multi-10-100-1000.sh

You may be wondering what the point of the previous script and this
script are. Consider what these scripts actually do: they take a
parameter set, vary one of its parameters and then run some program
with the modified parameter sets. Why would we want to do this?

Well, in this example the parameter we are varying specifies the
number of iterations for which our program will run. You can easily
imagine that we might have a simulation or calculation for which, for
any given parameter set, interesting things happened after various
numbers of iterations. These scripts allow us to take each parameter
set and run it several times for different numbers of iterations. We can
then look at each parameter set and see how varying the number of
iterations affects the program�s output for that parameter set.

If we were using the parameter sets in the scripts/param_set file,
we might notice that these parameters are the same except for the
fourth parameter which varies. So if we pipe those parameter sets
into one of these scripts, we are now investigating how the output of
the iterator program varies as we vary two of its input parameters,
which is kinda neat, doncha think? ☺

25

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 25

Solution to Part Three
#!/bin/bash

set -e

�
Read in parameters from standard input

and then run program with them

and run it again and again until there are no more

while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,

cycle through command line arguments.

for zzITER in "${@}" ; do

Run program

run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"

done

�

If you examine the multi-iterations.sh script in the scripts
subdirectory of your home directory, you will see that it is a version of
the multi-10-100-1000.sh script that has been modified as shown
above.

You should be able to tell what all the highlighted parts of the shell
script above do, and you should be able to see why this is a solution to
this part of the exercise � if there is anything you don�t understand, or if
you had any difficulty with this part of the exercise, please let the
course giver or a demonstrator know.

You can test that this script works by doing the following:
$ cd

$ rm �f *.dat *.png stdout-* logfile

$ cat scripts/param_set | scripts/multi-iterations.sh 10 100 1000

$ ls

You should see that a number of PNG and .dat files have been
produced.

26

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 26

What else are tests good for?

We have seen that we can use tests in
while loops. What else are they good
for?

Suppose we know some (valid)
parameters for our program produce no
interesting output. Could we use some
tests to filter these out?

27

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 27

Using tests (1)
We�ve met (integer) arithmetic tests.

Suppose we�d like to test to see whether some of
our parameters are within a certain range (say
1 to 10000). If they are not, we shouldn�t do
anything, i.e.

If parameter < 1 or parameter > 10000 stop
executing the script�

How do we do this?

28

We can decide whether a collection of commands should be
executed using an if statement. An if statement executes a
collection of commands if and only if the result of some
command or test is true. (Recall that the result of a command
is considered to be true if it returns an exit status of 0 (i.e. if the
command succeeded)).

Note that even if set -e is in effect, or the first line of our shell
script is
#!/bin/bash -e

the shell script will not exit if the result of the command or test
the if statement depends on is false (i.e. it returns a non-zero
exit status), since if it did, this would make if statements fairly
useless(!).

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 28

commands
to do if true

False

True

command
(or test)

rest
of script

if statement
Do something only
if some command
(or test) is true

29

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 29

if
Do something only if some command is

true

if <command> ; then

<some commands>

fi

We use an if statement like this:

if <command> ; then

<some commands>

fi

where <command> is either a command or a test, and
<some commands> is a collection of one or more commands. Note
that if <command> is false the shell script will not exit, even if set -e
is in effect, or the first line of the shell script is
#!/bin/bash -e

In a similar manner to for and while loops, you can put the then on
a separate line, in which case you can omit the semi-colon (;), i.e.

if <command>

then

<some commands>

fi

Now, we just need to know how to tell our script to stop executing and
we will have all the pieces we need to modify our script to behave the
way we want�

30

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 30

exit
To stop executing a shell script:

exit

�can explicitly set an exit status thus:

exit value

The exit shell builtin command causes a shell script to exit (stop
executing) and can also explicitly set the exit status of the shell script
(if you specify a value for the exit status).

Recall that the exit status is an integer between 0 and 255, and should
be 0 only if the script was successful in what it was trying to do. If the
script encounters an error it should set the exit status to a non-zero
value.

If you don�t give exit an exit status then the exit status of the shell
script will be the exit status of the last command executed by the script
before it reached the exit shell builtin command.

(If you don�t have a exit shell builtin command in your shell script,
then your script will exit when it executes its last command. In this
case its exit status will be the exit status of the last command
executed by your script.)

31

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 31

Using if (and tests)
#!/bin/bash
set -e

�
while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,
cycle through command line arguments.
for zzITER in "${@}" ; do

if ["${zzITER}" -lt "1"] ; then
echo "Number of iterations (${zzITER}) must be positive!"
exit 1

fi
if ["${zzITER}" -gt "10000"] ; then

echo "Too many iterations (${zzITER})!"
exit 1

fi

Run program

�

Modify the multi-iterations.sh script in the scripts subdirectory
of your home directory as shown above. (Make sure to save it after
you�ve modified it.)

What do you think these modifications do?

Note that if we exit the script because one of the command line
arguments is incorrect, then we need to indicate that there was a
problem running the script, so we set our exit status to a non-zero value
(1 in this case, which is the conventional value to use if we don�t set
different values for the exit status for different types of error).

You can test that this script works by doing the following:
$ cd

$ rm �f *.dat *.png stdout-* logfile

$ cat scripts/param_set | scripts/multi-iterations.sh 0

Number of iterations (0) must be positive!

$ cat scripts/param_set | scripts/multi-iterations.sh 20000

Too many iterations (20000)!

32

We are already familiar with standard output as a �channel� along which our program
or shell script�s output is sent to somewhere. By default, this �somewhere� will be the
screen, unless we redirect it to somewhere else (like a file).

Standard output is one of the standard streams that all programs (whether they are
shell scripts or not) have. (The idea of a stream here is that there is a �stream� of
data flowing to/from our program and to/from somewhere else, like the screen.)
Another standard stream that we have already met is standard input (which by
default comes from the keyboard unless we redirect it).

There is actually a third standard stream called standard error. Like standard output,
this is an �output stream� � data flows from our program along this stream to
somewhere else. This stream is not for ordinary output though, but for any error
messages our program may generate (and by default it also goes to the screen).

Why have two output streams? The reason is that this allows error messages to be
easily separated from a program�s output, e.g. for ease of debugging, etc.

For more information on standard error and the other standard streams (standard
input and standard output) see the following Wikipedia article:

http://en.wikipedia.org/wiki/Standard_streams

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 32

standard
input

program
(shell script in
our case)

standard
output

standard
error

By default, this comes
from the keyboard

By default, this goes to
the screen

By default, this also
goes to the screen

Program I/O

33

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 33

Standard Error (1)
$ ls iterator

iterator

$ ls iterator zzzzfred
/bin/ls: zzzzfred: No such file or directory

iterator
$ ls iterator zzzzfred > stdout-ls
/bin/ls: zzzzfred: No such file or directory

$ cat stdout-ls
iterator

If we look at what happens when a standard Unix command, such as
ls, encounters an error, the way standard error works may become
clearer.

When we ask ls to list a non-existent file, it prints out an error
message. If we redirect the (standard) output of ls to a file, we see
that the error message still goes to the screen. This is because the
error message does not go to standard output, but to standard error.
If we wanted to send the error message to file we would need to
redirect standard error to that file.

So how do we manipulate standard error?

Please note that the output of the ls command may not exactly match what is
shown on this slide � in particular, the colours may be slightly different shades.

34

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 34

Standard Error (2)
To redirect standard error to a file we use

the following construct:

command 2> file

To send the output of a command to
standard error, we use the following
construct:

command >&2

Note that there is no space between the �2� and the �>� or
the �>� and the �&2�, i.e.

it is �2>� not �2 >�

and �>&2� not �> &2� or �> & 2�

This is very important � if you put erroneous space
characters in these constructs, the shell will not
understand what you mean and will either produce an
error message, or worse, do the wrong thing.

35

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 35

Using standard error
#!/bin/bash
set -e

�
while read myNX myNY myN_ITER myEPSILON myJUNK ; do

Instead of using read in value for iterations,
cycle through command line arguments.
for zzITER in "${@}" ; do

if ["${zzITER}" -lt "1"] ; then
echo "Number of iterations (${zzITER}) must be positive!" >&2
exit 1

fi
if ["${zzITER}" -gt "10000"] ; then

echo "Too many iterations (${zzITER})!" >&2
exit 1

fi

Run program

�

Modify the multi-iterations.sh script in the scripts
subdirectory of your home directory as shown above. (Remember
to save it after you�ve made the above changes or they won�t take
effect.)

Since when we exit the script because we don�t like one of the
parameters, we consider this an error, the message we print out
telling the user what the problem is is an error message, and so
should go to standard error rather than standard output. This is
what adding �>&2� to those echo shell builtin commands does.

This is the conventional behaviour for shell scripts (or indeed any
other program) � ordinary output goes to standard output, error
messages go to standard error. It is very important that you follow
this convention when writing your own shell scripts as this is what
anyone else using them will expect them to do.

36

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 36

First exercise
The problem with the checking we�ve added to the
multi-iterations.sh script is that it will only stop as and when
it encounters a bad parameter, so that it may start a run and then abort
it part way through.

Write a function called check_args to check that each of its arguments is
between 1 and 10000. (You can assume that each argument is an integer.)
Modify the script to use this function on all the command line arguments before it
enters its while loop.
#!/bin/bash
set -e

�
function check_args()
{
This function checks all the arguments it has been given

What goes here?
}

�
Location of log file
myLOGFILE="${myDIR}/logfile"

Make sure our command line arguments are okay before continuing
check_args "${@}"

�

The multi-iterations.sh shell script is in the scripts directory of your
home directory. Your task is to add a shell function to this script that the script
can use to check all the command line parameters it has been given to ensure
they are between 1 and 10000 (you can assume the parameters are integers),
and then to modify the script to call that function before it does anything
significant. Above I�ve given you the skeleton of what the modified script should
look like. You should be able to fill in the rest. Make sure you save your script
after you�ve modified it.

Note that you need to (re)move the if statements that we�ve added to the shell
script as once we use the check_args function we will have already checked
the command line arguments by the time we enter the while loop, and there is
no point in checking them twice.

When you finish this exercise, take a short break and then we�ll start again with
the solution. (I really do mean take a break � sitting in front of computers for
long periods of time is very bad for you. Move around, go for a jog, do some
aerobics, whatever�)

Note that in the skeleton above I call the check_args function before I use the
mktemp command � there�s no point in creating a temporary directory if I�ve
been given bad parameters and am going to abort my script�

Hint: We�ve actually already written most of the function � so you can cut-and-paste those lines of the current shell script
into the function. You then need to somehow loop through all the function�s arguments, checking each in turn.

37

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 37

More tests (1)
Test to see if something is true:

[<expression>]

or: test <expression>

where <expression> can be any of a
number of things such as:

[-z "a"]

["a" = "b"]

[-e "filename"]

As well as the (integer) arithmetic tests we have already met, there are a number
of other tests we can do. They fall into two main categories: tests on files and tests
on strings. There are many different such tests and we only list a few of the most
useful below:

�z "a" true if and only if a is a string whose length is zero

"a" = "b" true if and only if the string a is equal to the string b

"a" == "b" true if and only if the string a is equal to the string b

"a" != "b" true if and only if the string a is not equal to the string b

�d "filename" true if and only if the file filename is a directory

�e "filename" true if and only if the file filename exists

�h "filename" true if and only if the file filename is a symbolic link

�r "filename" true if and only if the file filename is readable

�x "filename" true if and only if the file filename is executable

You can often omit the quotation marks but it is good practice to get into the habit
of using them, since if the strings or file names have spaces in them then not using
the quotation marks can be disastrous. (Note that string comparison is always
done case sensitively, so �HELLO� is not the same as �hello�.)

You can get a complete list of all the tests by looking in the CONDITIONAL
EXPRESSIONS section of bash�s man page (type �man bash� at the shell prompt
to show bash�s man page.)

38

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 38

More tests (2)
We can negate an expression, i.e. test to see whether the

expression was false, using ! thus:

[! <expression>]
or: test ! <expression>

The above are true if and only if <expression> is false, e.g.

[! -z "a"]
is true if and only if a is a string whose length is not zero.

We can also use ! with a command in an if statement or
while loop to mean only do whatever the if or while is
supposed to do if the command fails (i.e. its exit status is
not 0).

Remember that in a while loop or an if statement we can use commands as well as tests.
The command is considered true if it succeeds, i.e. its exit status is 0. In a while loop or an
if statement we can negate a command in exactly the same way we negate
<expression>, using ! � negating a command means that the while loop or if statement
will only consider it true if the command fails, i.e. its exit status is non-zero.

So:
while ! ls datafile ; do

echo "Can't list file datafile!"

done

�would print the string �Can't list file datafile!� on the screen as long as ls was
unable to list the file datafile, i.e. as long as the ls command returns an error when it tries
to list the file datafile (for instance, if the file didn�t exist).

Similary:
if ! ./iterator ; then

echo "Unable to run ./iterator successfully"

fi

�will only print the message �Unable to run ./iterator successfully� if the
iterator program in the current directory returns a non-zero exit status (i.e. it fails for some
reason).

39

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 39

Using tests (2)
#!/bin/bash

set -e

function check_args()

{

This function checks all the arguments it has been given

Make sure our first argument is not nothing; this also makes sure we are not

given no arguments at all.

if [-z "${1}"] ; then

echo "No valid arguments given." >&2

echo "This script takes one or more number of iterations as its arguments." >&2

echo "It requires at least one argument." >&2

exit 1

fi

�

Modify the multi-iterations.sh script in the scripts subdirectory of
your home directory as shown above. (Remember to save it after you�ve
made the above changes or they won�t take effect.)

Now we not only complain if we have arguments that are out of range, we also
complain if we have no arguments at all (and also if our first argument is an
empty string). Try this script out now and see what happens:

$ cd

$ cat scripts/param_set | scripts/multi-iterations.sh
No valid arguments given.

This script takes one or more number of iterations as its arguments.

It requires at least one argument.

Note also that we are once again making use of the fact that we have
separated some functionality from our script and put it in a function. We can
easily change the function without complicating the rest of the script or
affecting its structure.

40

As well as deciding whether a collection of commands
should be executed at all, we can also decide whether one
or other of two collections of commands should be executed
using a more advanced form of the if statement. If there is
an else section to an if statement the collection of
commands in the else section will be executed if and only
if the command (or test) we are evaluating is false.

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 40

commands
to do if true

False

True

command
(or test)

rest
of script

commands
to do if false

if�then�else
Do something only
if some command
(or test) is true,
else (i.e. if the
command is false)
do something else

41

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 41

if�then�else
Do something only if some command is true,

else (i.e. if the command is false) do
something else.

if <command> ; then
<some commands>

else
<some other commands>

fi

As well as deciding whether a collection of commands
should be executed at all, we can also decide whether one
or other of two collections of commands should be executed
using a more advanced form of the if statement. If there is
an else section to an if statement the collection of
commands in the else section will be executed if and only
if the given <command> is false. Note the syntax above.

42

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 42

Using if�then�else
#!/bin/bash
set -e

�
function multi_iterate()
{
Instead of using read in value for iterations,
cycle through arguments passed to function.

for zzITER in "${@}" ; do

Run program
run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}"

done
}

�
while read myNX myNY myN_ITER myEPSILON myJUNK ; do

if [-z "${1}"] ; then
If no first command line argument given,
use these defaults.
echo "Using default number of iterations: 10, 100, 1000"
multi_iterate "10" "100" "1000"

else
Use the command line arguments
multi_iterate "${@}"

fi

done

Open up the multi-iterations-default.sh script in the scripts
subdirectory of your home directory in your favourite editor (or gedit) and have a
look at it.

Notice that the check_args function in this script doesn�t complain if there are
no command line arguments. This is because this script will use some default
parameters if it hasn�t been given any on the command line. (And note that we
print a message on the screen so the person using our script knows its using
default values and what those values are.)

Pay particular attention to the bits of the script highlighted above. Can you work
out what we�ve changed and how the shell script will now behave? If not,
please tell the course giver or a demonstrator what part of the script you don�t
understand.

Try out this script and see what happens:
$ cd

$ rm �f *.dat *.png stdout-* logfile

$ cat scripts/param_set | scripts/multi-iterations-default.sh

$ ls

Note that we didn�t need to create a separate multi_iterate function � we
could have just typed out very similar lines of shell script twice. This would have
been a mistake � just like with real programming languages, repetition of parts of
our script (program) are almost always to be avoided.

43

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 43

Better error handling (1)
At the moment, any errors stop our script

dead. Often, that�s better than letting it
carry on regardless, but sometimes we
want to be a bit more sophisticated.

For instance, supposing a few parameter
sets we read in are corrupt and cause
errors in iterator or gnuplot � we
might want to note which ones these
were and continue with the others.

How can we do this?

44

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 44

return
Just like programs and shell scripts have an exit status, so too do

shell functions. We can set the exit status of a function using
the return shell builtin command.

To stop executing a function and return to
wherever we were called from:

return

�or we can explicitly set an exit status as we
exit the function thus:

return value

The return shell builtin command causes a shell function to
stop executing and return control to whatever part of the shell
script called it. It can also explicitly set the exit status of the
function (if desired).

As with ordinary programs and shell scripts themselves, the exit
status of a shell function is an integer between 0 and 255, and
should be 0 only if the function was successful in what it was
trying to do. If the function encounters an error it should
return with a non-zero exit status.

If you don�t give return an exit status then the exit status of the
shell function will be the exit status of the last command
executed by the function before it reached the return shell
builtin command.

(If you don�t have a return shell builtin command in your shell
function, then your function will exit when it executes its last
command. In this case its exit status will be the exit status of the
last command executed in your function.)

45

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 45

Better error handling (2)
#!/bin/bash

set -e

�
function multi_iterate()

{

Instead of using read in value for iterations,

cycle through arguments passed to function.

for zzITER in "${@}" ; do

Run program and report if there were problems

if ! run_program "${myNX}" "${myNY}" "${zzITER}" "${myEPSILON}" ; then

echo "Problem with parameter set: ${myNX} ${myNY} ${zzITER} ${myEPSILON}" >&2

fi

done

}

�

Open up the multi-iterations-errors.sh script in the
scripts subdirectory of your home directory in your
favourite editor (or gedit) and have a look at it.

First have a look at the multi_iterate function, paying
particular attention to the bits of the script highlighted above.
Can you work out why we�ve changed this function like this?
Recall that shell functions should exit with an exit status of 0
only if they were successful, and that if ! command will do
something only if command failed (exited with a non-zero exit
status) � command can be a shell function as well as a
program or shell script.

To be sure that this really is behaving the way we expect, we
need to look at the run_program function and see how
that�s been changed. First though, we need to learn how to
toggle the shell�s �quit on any error� behaviour on and off at
will�

46

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 46

set �e, set +e
Abort shell script if an error occurs:

set -e

Abort shell script only if a syntax error is
encountered (default):

set +e

We already know that if the first �magic� line of our shell script is:
#!/bin/bash �e

then the shell script will abort if it encounters an error. We also know we can
make this happen by using set -e instead, if we prefer.

Sometimes though, we may want to handle errors ourselves, rather than just
having our shell script fall over in a heap. So it would be nice if we could turn
this behaviour off and on at the appropriate points in the shell script, and
bash provides a mechanism for us to do just that:

� As we know, set -e tells the shell to quit when it encounters an error
in the shell script. Whenever you are not doing your own error handling
(i.e. checking to make sure the commands you run in your shell script
have executed successfully), you should use set �e.

� set +e returns to the default behaviour of continuing to execute the
shell script even after an error (other than a syntax error) has occurred.

A good practice to get into is to always have the following as the first line of
your shell script that isn�t a comment (i.e. doesn�t start with a #):

set �e

and then to turn this behaviour off only when you are actually dealing with
the errors yourself.

47

Now look at the run_program function in the multi-iterations-errors.sh script,
paying particular attention to the bits of the script highlighted above.

Can you work out what the highlighted bits are doing? Recall that the exit status of the last
command that ran is stored in the special shell parameter ?.

We observe that the logic of this function is that if the iterator program failed there�s no
point running gnuplot (�garbage in, garbage out�). We need to look a bit further down the
function�s definition (not shown above) to see what it does if gnuplot fails. Can you work out
what it is doing (and why)?

If you are not sure, or you have any questions, please ask the course giver or a demonstrator.

You should try out this script and see what it does:
$ cd

$ rm �f *.dat *.png stdout-* logfile

$ cat scripts/bad_param_set | scripts/multi-iterations-errors.sh
Nx must be positive

Problem with parameter set: Z00 100 10 0.1

Nx must be positive

Problem with parameter set: Z00 100 100 0.1

Nx must be positive

Problem with parameter set: Z00 100 1000 0.1

$ ls

The file bad_param_set contains one bad parameter set mixed in amongst some good ones, as you
can see by inspecting it.

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 47

Better error handling (3)
#!/bin/bash
set -e

�
function run_program()
{

�
Run program with passed arguments
set +e
"${myPROG}" "${@}" > "stdout-${1}-${2}-${3}-${4}"
myPROG_ERR="${?}"
set -e

Run gnuplot only if the program succeeded
if ["${myPROG_ERR}" -eq "0"] ; then

set +e
gnuplot "${myGPLT_FILE}"
myGPLT_ERR="${?}"
set -e

else
rm -f running
echo "Failed! Exit status: ${myPROG_ERR}" >> "${myLOGFILE}"
return 1

fi

�

48

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 48

Nested ifs (1)
Do something only if some expression is true,

else do another thing if another expression is
true�and so on

if <command1> ; then
<some commands>

elif <command2> ; then
<some other commands>

elif <command3> ; then
<yet other commands>

�
else

<other commands>
fi

We can have even more complicated if statements than those we have
met. We can nest if statements: if one command (or test) is true, do one
thing, if a different command (or test) is true do something else and so on,
culminating in an optional else section (�if none of the previous expressions
were true, do this�).

One of the easiest ways of doing this is by using elif (short for else if)
for all the alternative expressions we want to test.

Why would we do this? Imagine that we had a shell script that could do
several different things and the decision as to which it should do was made
by the user specifying different arguments on the command line. We might
want our script to have the following logic: if the user said �a� do this, else if
they said �b� do that, else if they said �c� do something else, and so on,
ending with else if they said something that was none of the previous things
say �I don�t know what you are talking about�.

There are better ways to do that than using this sort of if statement, but
they involve a construct (case) and a shell builtin command (shift) that we
don�t cover on this course � brief notes on these are given on the �Advanced
techniques� slides at the end of this course.

49

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 49

Nested ifs (2)
#!/bin/bash

�
if ["${1}" = "one"] ; then

first_function
elif ["${1}" = "two"] ; then

second_function
elif ["${1}" = "three"] ; then

third_function
elif ["${1}" = "four"] ; then

fourth_function
else

echo "Huh?" >&2
exit 1

fi

$ cd
$ examples/nested-if.sh one

In the examples subdirectory there is a silly shell script
called nested-if.sh that illustrates the nested if
construct. The heart of the script is shown above �
first_function, second_function,
third_function and fourth_function are all shell
functions defined in the script.

Try the script out and see what it does. Although it�s a silly
example, it should give you an idea of the sort of useful
things for which you can use such scripts.

50

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 50

Second exercise
The multi-iterations-errors.sh script is reasonably robust at
dealing with bad parameter sets. However, it would be nice if it told us
whether it was iterator or gnuplot which failed.

Modify this script so that in its multi_iterate function it prints
different messages depending on whether it was gnuplot or
iterator that failed. (You may also need to modify other parts of the
script as well.)

When you�ve finished this exercise, take a short break (break = �not still
in front of the computer�) and then we�ll look at the answer.

The multi-iterations-errors.sh shell script is in the scripts directory
of your home directory. Your task is to modify this script � mainly the
multi_iterate function � so that the multi_iterate function prints out
different messages on standard error depending on whether it was iterator
or gnuplot that failed. Make sure you save your script after you�ve modified it.

Some of you may be tempted to just dispense with bash�s �exit the shell script
on any error� feature for this exercise. Don�t � part of the purpose of this
exercise is to get used to how the shell handles errors and how you work with
this.

Remember that this shell script attempts to change directory � a very
dangerous thing to do in a shell script, so you must make sure that if the
script fails to change directory that it exits and doesn�t try to do things in the
wrong directory. The easiest way to do that is to have set -e in effect.

When you finish this exercise, take a short break and then we�ll start again with
the solution. (Yes, I really do mean �a break from the computer�.)

Hint: One approach is to get the run_program function to return a different exit status depending on whether it was
iterator or gnuplot that failed. You could then test for this in the multi_iterate function.

Another hint: You may wish to use nested if statements, although they aren�t the only way to do this exercise.

51

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 51

Manipulating filenames (1)
$ rm -f *.dat

$ touch file1.dat file2.dat file3.dat

Suppose I want to rename a collection of files
all in one go, e.g. rename all my files
ending in .dat to files ending in .old. I
could try:

$ mv *.dat *.old
mv: target `*.old' is not a directory

A common issue you�ll probably run into on a Unix/Linux
platform is trying to rename groups of files whose names
all end in the same characters.

For example, let�s suppose that you have a collection of
data files all ending in .dat from the previous time you
ran your program. You want to run the program again,
but don�t want to overwrite the old files, so you want to
rename them so they all end in .old. Other than
manually renaming each file, how can we do this?

52

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 52

${VARIABLE%word}

�Return the value of VARIABLE with word
removed from the end of the it�

$ myFILENAME="output.dat"

$ echo "${myFILENAME%.dat}"

output

This strange looking operation is a form of what is known as
parameter expansion. We�ve already met the simplest form of
parameter expansion: ${VARIABLE}, which just gives us the
value of the environment variable, shell variable or parameter
VARIABLE. There are many minor variants like the one above,
but we�re not going to cover them in this course. See the
Parameter Expansion section of bash�s man page for further
details on the other forms.

As you can see from the example above, this form of parameter
expansion just removes the specified characters from the end of
the variables value and then returns that to us � it is important to
realise that it doesn�t directly modify the variable itself.

In the context we�ve just been looking at, we can make use of
this form of expansion to remove the common ending from our
filenames � we can then more easily rename the files.

53

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 53

Manipulating filenames (2)
#!/bin/bash -e

function rename_files()
{

if [-z "${1}"] ; then
return 1

fi

if [-z "${2}"] ; then
return 1

fi

for zzFILE in *"${1}" ; do
mv "${zzFILE}" "${zzFILE%${1}}${2}"

done
}

In the scripts subdirectory there is a file called my-functions.sh that contains the
rename_files function shown above. You can inspect it with your favourite editor or by just using
the more command.

The heart of this function is the highlighted portion above: for each file ending with the first
argument the function has been given, it renames the file to the same name with a different
ending. So if we called this function like this:

rename_files .dat .old

�then it would change the name of any files ending in .dat to end in .old.

We can try this function out like this (for the moment accept that the source shell builtin
command �loads� the functions from my-function.sh into the running instance of the
shell � we�ll look at it in more detail in a minute):

$ cd

$ source scripts/my-functions.sh

$ rm �f *.dat *.old

$ touch file1.dat file2.dat file3.dat

$ ls *.dat *.old

/bin/ls: *.old: No such file or directory

file1.dat file2.dat file3.dat

$ rename_files .dat .old

$ ls *.dat *.old

/bin/ls: *.dat: No such file or directory

file1.old file2.old file3.old

54

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 54

source
Read and execute commands from file in

the current shell environment

source file

Equivalently:

. file

source executes one shell script in the environment of the
current shell script (or shell) � it is as though you had copied the
shell script and pasted it into your current shell script. A
synonym for source is �.�, i.e.

source filename

. filename

do the same thing � they both execute the contents of the file
filename in the environment of the current shell script (or
shell).

If your shell script just defines some functions, then using
source on it will just define those functions for you in your
current shell script (or shell). When used this way, you can think
of the shell script containing the functions as a �library� of
functions, and the source command as �loading� that library
into the current script (or into the shell itself if you use it in an
instance of the shell).

55

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 55

Manipulating filenames (3)
dirname return the directory name

from a file path
$ dirname /usr/bin/python
/usr/bin

basename return the filename from a file
path, removing the given
ending (if specified)

$ basename /usr/bin/python
python
$ basename ~/hello.sh .sh
hello

Finally just a quick note of a couple of Unix/Linux commands that can help with
manipulating files. If you have a path to a file, dirname will give you just the directory,
removing the actual filename whilst basename will give you the filename, removing the
directory path.

basename can also remove the endings of files, which means we could have used
command substitution and the basename command in the rename_files function
we just looked as an alternative way of implementing it.

If you need to do more advanced filename (or file) manipulation, then you should look
at the find and xargs commands. The find command is covered in the �Unix
Systems: Further Commands� course, the notes for which are available here:

http://www-uxsup.csx.cam.ac.uk/courses/Commands/

The find command searches for files in a directory tree, and having found the
specified files, can run a command on each file.

The xargs command builds a command line from a combination of values read from
standard input and arguments specified on the command line, and then executes that
command line a certain number of times. You can find out more about xargs from its
man page:

man xargs

56

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 56

Final exercise
In your home directory is a program called lissajous.py, which produces points on a
Lissajous curve that it prints to standard output. lissajous.py takes two floating point
command line arguments, although we�ll restrict ourselves to using only integer
arguments for it.
In the gnuplot subdirectory there is a file of gnuplot commands called
lissajous.gplt that can be used to plot the data produced by lissajous.py � the
commands in this file expect their input to be in a file called lissajous.dat in the
current directory, and they produce a PNG file called lissajous.png (also in the
current directory).
Write a shell script that will read the first parameter for lissajous.py from standard
input and the second parameter from the command line. It should run the
lissajous.py program, turning its output into a graph using gnuplot. The following
should illustrate how to combine the parameters from these two sources � suppose you
read the following values from standard input:

12
23

�and the values 5 9 32 from the command line, then your script should run:
./lissajous.py 12 5
./lissajous.py 12 9
./lissajous.py 12 32
./lissajous.py 23 5
./lissajous.py 23 9
./lissajous.py 23 32

Please read this BEFORE you start on this exercise!
The point of this exercise is to consolidate everything you�ve learnt over all three days of this
course. To that end I want you to write your own shell script FROM SCRATCH to do this
exercise � do not just take one of the ones we�ve constructed over this course and change
the names of the programs it runs. Whilst you could certainly get an answer to this exercise
that way, you wouldn�t learn very much.

Also, I want your shell script to be as good a shell script as you can possibly make it � it
should:
! be well structured using shell functions,

! be fully commented,

! do some error handling,

! keep a log file of what it is doing,

! print its error messages on standard error,

! use a temporary directory for working in,

! do some checking of its input,

! etc

There is a file in the scripts subdirectory called lissajous_params that you can use as
a source of parameters to read via standard input. I suggest that for the command line
arguments you use:

2 4 6 8

The files you need to do this exercise are available on-line at:

http://www-uxsup.csx.cam.ac.uk/courses/ShellScriptingSci/exercises/day-three.html

57

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 57

Final exercise � Files

All the files (scripts, the lissajous.py and
iterator programs, etc) used in this
course are available on-line at:

http://www-uxsup.csx.cam.ac.uk/courses/ShellScriptingSci/exercises/
day-three.html

58

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 58

Advanced Techniques

The following slides outline some more
advanced shell scripting techniques
that, whilst beyond the scope of this
course, may be of interest.

59

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 59

Advanced techniques: case
� Do different things depending on the value of

a variable
� Equivalent to using lots of if and else

constructs

case "${VARIABLE}" in
value1|value2|value3)

<commands>
;;

value4|value5)
<other commands>
;;

*)
<more commands>
;;

esac

Some programming languages have a construct which
does the same sort of thing as the shell�s case construct.
In many of these languages it is known as the switch
statement.

There are some examples of how to use it in the following
files in the examples directory:

case1.sh

case2.sh

60

scientific-computing@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 60

Advanced techniques:
Command-line handling

${1}="red" ${2}="blue" ${3}="green"

shift

${1}="blue" ${2}="green" no ${3}

shift

${1}="green" no ${2} no ${3}

The shift shell builtin command moves command-line
parameters �along one to the left�.

An example of its use is given in the file shift.sh in the
examples directory.

In conjunction with the case construct we can use it to do
some reasonably sophisticated command-line handling.
The following files in the examples directory give some
examples of how to do this:

params1.sh

params2.sh

